1
|
Serpeloni JM, Silva IMD, van Helvoort Lengert A, de Souza MF, Dos Reis MB, Kuasne H, Fuganti PE, Cólus IMDS. Genetic polymorphisms, methylation, and expression levels in the GSTP1 and MGMT genes in urothelial bladder tumors. Gene 2024; 939:149158. [PMID: 39706230 DOI: 10.1016/j.gene.2024.149158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Alteration in DNA repair and metabolism genes can affect the maintenance of DNA integrity or xenobiotics metabolism, potentially leading to DNA damage accumulation. The present study investigated the association between polymorphisms in Glutathione S-Transferase Pi 1 (GSTP1, rs1695) and O-6-Methylguanine-DNA Methyltransferase (MGMT, rs2308321) genes with urothelial bladder cancer (UBC) susceptibility and prognosis. Furthermore, the methylation patterns of the promoter region of these genes were analyzed in tumor and non-tumor bladder tissues, besides MGMT gene expression in tumor samples. METHODS AND RESULTS Blood samples of 295 patients and 295 healthy controls were genotyped using TaqMan probe assays. The DNA of 39 bladder tumors and 4 adjacent non-tumor samples were used in the Methylation-Sensitive High-Resolution Melting (MS-HRM) assay. Neither polymorphism conferred UBC susceptibility/protection or affected tumor grade, muscle invasion, and recurrence). GSTP1 did not show methylation in the promoter region, while in the MGMT gene, all samples presented heterogeneous methylation with no significant differences between tumor and non-tumor tissues. High MGMT expression was associated with low-grade (p = 0.0153) and trends related to non-invasive tumors (p = 0.070). CONCLUSIONS In our cohort, MGMT expression seems helpful as a biomarker of good prognosis (low-grade and absence of muscle invasion). A heterogeneous methylation pattern in the MGMT gene requires additional investigation to elucidate its potential implications.
Collapse
Affiliation(s)
- Juliana Mara Serpeloni
- State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil.
| | - Isabely Mayara da Silva
- State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil.
| | - André van Helvoort Lengert
- State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil.
| | - Marilesia Ferreira de Souza
- State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil.
| | | | - Hellen Kuasne
- McGill University, Rosalind and Morris Goodman Cancer Institute, Montreal H3A1A3, QC, Canada.
| | | | - Ilce Mara de Syllos Cólus
- State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil.
| |
Collapse
|
2
|
Panagopoulou M, Panou T, Gkountakos A, Tarapatzi G, Karaglani M, Tsamardinos I, Chatzaki E. BRCA1 & BRCA2 methylation as a prognostic and predictive biomarker in cancer: Implementation in liquid biopsy in the era of precision medicine. Clin Epigenetics 2024; 16:178. [PMID: 39643918 PMCID: PMC11622545 DOI: 10.1186/s13148-024-01787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND BReast CAncer gene 1 (BRCA1) and BReast CAncer gene 2 (BRCA2) encode for tumor suppressor proteins which are critical regulators of the Homologous Recombination (HR) pathway, the most precise and important DNA damage response mechanism. Dysfunctional HR proteins cannot repair double-stranded DNA breaks in mammalian cells, a situation called HR deficiency. Since their identification, pathogenic variants and other alterations of BRCA1 and BRCA2 genes have been associated with an increased risk of developing mainly breast and ovarian cancer. Interestingly, HR deficiency is also detected in tumors not carrying BRCA1/2 mutations, a condition termed "BRCAness". MAIN TEXT One of the main mechanisms causing the BRCAness phenotype is the methylation of the BRCA1/2 promoters, and this epigenetic modification is associated with carcinogenesis and poor prognosis mainly among patients with breast and ovarian cancer. BRCA1 promoter methylation has been suggested as an emerging biomarker of great predictive significance, especially concerning Poly (ADP-ribose) Polymerase inhibitors (PARP inhibitor-PARPi) responsiveness, along with or beyond BRCA1/2 mutations. However, as its clinical exploitation is still insufficient, the impact of BRCA1/2 promoter methylation status needs to be further evaluated. The current review aims to gather the latest findings about the mechanisms that underline BRCA1/2 function as well as the molecular characteristics of tumors associated with BRCA1/2 defects, by focusing on DNA methylation. Furthermore, we critically analyze their translational meaning and the validity of BRCA methylation biomarkers in predicting treatment response. CONCLUSIONS We believe that BRCA1/2 methylation alone or combined with other biomarkers in a clinical setting is expected to change the scenery in prognosis and predicting treatment response in multiple cancer types and is worthy of further attention. The quantitative BRCA1 promoter methylation assessment might predict treatment response in PARPi and analysis of BRCA1/2 methylation in liquid biopsy might define patient subgroups at different time points that may benefit from PARPi. Finally, we suggest a pipeline that could be implemented in liquid biopsy to aid precision pharmacotherapy in BRCA-associated tumors.
Collapse
Grants
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
Collapse
Affiliation(s)
- Maria Panagopoulou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
- Institute of Agri-Food and Life Sciences, University Research and Innovation Centre, Hellenic Mediterranean University, 71003, Heraklion, Greece.
| | - Theodoros Panou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Anastasios Gkountakos
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, University Research and Innovation Centre, Hellenic Mediterranean University, 71003, Heraklion, Greece
| | - Ioannis Tsamardinos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece
- Department of Computer Science, University of Crete, Voutes Campus, 70013, Heraklion, Greece
- Institute of Applied and Computational Mathematics, 70013, Heraklion, Greece
- JADBio Gnosis Data Analysis (DA) S.A., Science and Technology Park of Crete (STEPC), 70013, Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece
| |
Collapse
|
3
|
Kersting J, Lazareva O, Louadi Z, Baumbach J, Blumenthal DB, List M. DysRegNet: Patient-specific and confounder-aware dysregulated network inference towards precision therapeutics. Br J Pharmacol 2024. [PMID: 39631757 DOI: 10.1111/bph.17395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/09/2024] [Accepted: 10/05/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND PURPOSE Gene regulation is frequently altered in diseases in unique and patient-specific ways. Hence, personalised strategies have been proposed to infer patient-specific gene-regulatory networks. However, existing methods do not scale well because they often require recomputing the entire network per sample. Moreover, they do not account for clinically important confounding factors such as age, sex or treatment history. Finally, a user-friendly implementation for the analysis and interpretation of such networks is missing. EXPERIMENTAL APPROACH We present DysRegNet, a method for inferring patient-specific regulatory alterations (dysregulations) from bulk gene expression profiles. We compared DysRegNet to the well-known SSN method, considering patient clustering, promoter methylation, mutations and cancer-stage data. KEY RESULTS We demonstrate that both SSN and DysRegNet produce interpretable and biologically meaningful networks across various cancer types. In contrast to SSN, DysRegNet can scale to arbitrary sample numbers and highlights the importance of confounders in network inference, revealing an age-specific bias in gene regulation in breast cancer. DysRegNet is available as a Python package (https://github.com/biomedbigdata/DysRegNet_package), and analysis results for 11 TCGA cancer types are available through an interactive web interface (https://exbio.wzw.tum.de/dysregnet). CONCLUSION AND IMPLICATIONS DysRegNet introduces a novel bioinformatics tool enabling confounder-aware and patient-specific network analysis to unravel regulatory alteration in complex diseases.
Collapse
Affiliation(s)
- Johannes Kersting
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Olga Lazareva
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Junior Clinical Cooperation Unit Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - David B Blumenthal
- Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Munich Data Science Institute, Technical University of Munich, Garching, Germany
| |
Collapse
|
4
|
Richard SA. The pivotal role of autophagy in the pathogenesis and therapy of medulloblastoma. Future Oncol 2024; 20:3313-3324. [PMID: 39513232 PMCID: PMC11633412 DOI: 10.1080/14796694.2024.2420629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Medulloblastoma (MB) is the most frequent malignant brain tumor in children. MB originates from neural precursor cells in distinctive regions of the rhombic lip and their maturation occurs in the cerebellum or the brain stem during embryonal development. Autophagy is also referred to as self-eating' which is a catabolic process that often triggers cellular homeostasis through the salvaging of degenerated proteins as well as organelles. Autophagy influence cell survival via aberrant proteins that could accumulate within the cell and influence potential signaling and transport mechanisms. The role of autophagy in MB aggressiveness as well as tumorigenesis is a very complex process. This review targets specifically data reporting the key roles of autophagy in the pathogenesis and therapy of MB.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Biochemistry and Forensic Sciences, School of Chemistry and Biochemical Science, C. K. Tedam University of Technology and Applied Sciences, P. O. Box 24, Navrongo, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052,China
| |
Collapse
|
5
|
Wang M, Yan X, Dong Y, Li X, Gao B. From driver genes to gene families: A computational analysis of oncogenic mutations and ubiquitination anomalies in hepatocellular carcinoma. Comput Biol Chem 2024; 112:108119. [PMID: 38852361 DOI: 10.1016/j.compbiolchem.2024.108119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is a widespread primary liver cancer with a high fatality rate. Despite several genes with oncogenic effects in HCC have been identified, many remain undiscovered. In this study, we conducted a comprehensive computational analysis to explore the involvement of genes within the same families as known driver genes in HCC. Specifically, we expanded the concept beyond single-gene mutations to encompass gene families sharing homologous structures, integrating various omics data to comprehensively understand gene abnormalities in cancer. Our analysis identified 74 domains with an enriched mutation burden, 404 domain mutation hotspots, and 233 dysregulated driver genes. We observed that specific low-frequency somatic mutations may contribute to HCC occurrence, potentially overlooked by single-gene algorithms. Furthermore, we systematically analyzed how abnormalities in the ubiquitinated proteasome system (UPS) impact HCC, finding that abnormal genes in E3, E2, DUB families, and Degron genes often result in HCC by affecting the stability of oncogenic or tumor suppressor proteins. In conclusion, expanding the exploration of driver genes to include gene families with homologous structures emerges as a promising strategy for uncovering additional oncogenic alterations in HCC.
Collapse
Affiliation(s)
- Meng Wang
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China
| | - Xinyue Yan
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China
| | - Yanan Dong
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China
| | - Xiaoqin Li
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China.
| | - Bin Gao
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Marrero-Gutiérrez J, Bueno AC, Martins CS, Coeli-Lacchini FB, Silva-Júnior RMP, Marques Gonçalves GH, Ozaki JGO, de Almeida E Silva DC, Wildemberg LE, da Silva Antunes XL, Dos Santos AC, Machado HR, Santos MV, Moreira AC, Gadelha MR, Vêncio RZN, Antonini SRR, de Castro M. Epigenetic Control of Adamantinomatous Craniopharyngiomas. J Clin Endocrinol Metab 2024; 109:e1867-e1880. [PMID: 38181427 DOI: 10.1210/clinem/dgae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Studies addressing the methylation pattern in adamantinomatous craniopharyngioma (ACP) are lacking. OBJECTIVE To identify methylation signatures in ACPs regarding clinical presentation and outcome. METHODS Clinical and pathology data were collected from 35 patients with ACP (54% male; 18.1 years [2-68]). CTNNB1 mutations and methylation profile (MethylationEPIC/Array-Illumina) were analyzed in tumoral DNA. Unsupervised machine learning analysis of this comprehensive methylome sample was achieved using hierarchical clustering and multidimensional scaling. Statistical associations between clusters and clinical features were achieved using the Fisher test and global biological process interpretations were aided by Gene Ontology enrichment analyses. RESULTS Two clusters were revealed consistently by all unsupervised methods (ACP-1: n = 18; ACP-2: n = 17) with strong bootstrap statistical support. ACP-2 was enriched by CTNNB1 mutations (100% vs 56%, P = .0006), hypomethylated in CpG island, non-CpG Island sites, and globally (P < .001), and associated with greater tumor size (24.1 vs 9.5 cm3, P = .04). Enrichment analysis highlighted pathways on signaling transduction, transmembrane receptor, development of anatomical structures, cell adhesion, cytoskeleton organization, and cytokine binding, and cell type-specific biological processes as regulation of oligodendrocytes, keratinocyte, and epithelial cells differentiation. CONCLUSION Two clusters of patients with ACP were consistently revealed by unsupervised machine learning methods, with one of them significantly hypomethylated, enriched by CTNNB1 mutated ACPs, and associated with increased tumor size. Enrichment analysis reinforced pathways involved in tumor proliferation and in cell-specific tumoral microenvironment.
Collapse
Affiliation(s)
- Junier Marrero-Gutiérrez
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Ana Carolina Bueno
- Department of Pediatrics, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Clarissa Silva Martins
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | | | - Rui M Patrício Silva-Júnior
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | | | - Jorge Guilherme Okanobo Ozaki
- Department of Medical Imaging, Hematology and Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Danillo C de Almeida E Silva
- Department of Computation and Mathematics Biology, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, 14040-901, Brazil
| | - Luiz Eduardo Wildemberg
- Neuroendocrinology Research Center/Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, 21941-913, Brazil
| | - Ximene Lima da Silva Antunes
- Neuroendocrinology Research Center/Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, 21941-913, Brazil
| | - Antônio Carlos Dos Santos
- Department of Medical Imaging, Hematology and Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Helio Rubens Machado
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Marcelo Volpon Santos
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Ayrton Custodio Moreira
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Monica R Gadelha
- Neuroendocrinology Research Center/Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, 21941-913, Brazil
| | - Ricardo Zorzetto Nicoliello Vêncio
- Department of Computation and Mathematics Biology, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, 14040-901, Brazil
| | - Sonir Roberto R Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Margaret de Castro
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| |
Collapse
|
7
|
Kafle A, Suttiprapa S, Muhammad M, Tenorio JCB, Mahato RK, Sahimin N, Loong SK. Epigenetic Biomarkers and the Wnt/β-Catenin Pathway in Opisthorchis viverrini-associated Cholangiocarcinoma: A Scoping Review on Therapeutic Opportunities. PLoS Negl Trop Dis 2024; 18:e0012477. [PMID: 39236081 PMCID: PMC11407677 DOI: 10.1371/journal.pntd.0012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation and histone modifications, are pivotal in regulating gene expression pathways related to inflammation and cancer. While there is substantial research on epigenetic markers in cholangiocarcinoma (CCA), Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) is overlooked as a neglected tropical disease (NTD) with limited representation in the literature. Considering the distinct etiological agent, pathogenic mechanisms, and pathological manifestations, epigenetic research plays a pivotal role in uncovering markers and potential targets related to the cancer-promoting and morbidity-inducing liver fluke parasite prevalent in the Great Mekong Subregion (GMS). Emerging studies highlight a predominant hypermethylation phenotype in Opisthorchis viverrini (O. viverrini) tumor tissues, underscoring the significance of abnormal DNA methylation and histone modifications in genes and their promoters as reliable targets for Ov-CCA. PRINCIPAL FINDINGS Relevant published literature was identified by searching major electronic databases using targeted search queries. This process retrieved a total of 81 peer-reviewed research articles deemed eligible for inclusion, as they partially or fully met the pre-defined selection criteria. These eligible articles underwent a qualitative synthesis and were included in the scoping review. Within these, 11 studies specifically explored Ov-CCA tissues to investigate potential epigenetic biomarkers and therapeutic targets. This subset of 11 articles provided a foundation for exploring the applications of epigenetics-based therapies and biomarkers for Ov-CCA. These articles delved into various epigenetic modifications, including DNA methylation and histone modifications, and examined genes with aberrant epigenetic changes linked to deregulated signalling pathways in Ov-CCA progression. CONCLUSIONS This review identified epigenetic changes and Wnt/β-catenin pathway deregulation as key drivers in Ov-CCA pathogenesis. Promoter hypermethylation of specific genes suggests potential diagnostic biomarkers and dysregulation of Wnt/β-catenin-modulating genes contributes to pathway activation in Ov-CCA progression. Reversible epigenetic changes offer opportunities for dynamic disease monitoring and targeted interventions. Therefore, this study underscores the importance of these epigenetic modifications in Ov-CCA development, suggesting novel therapeutic targets within disrupted signalling networks. However, additional validation is crucial for translating these novel insights into clinically applicable strategies, enhancing personalised Ov-CCA management approaches.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Mubarak Muhammad
- Department of Physiology and Graduate School, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jan Clyden B. Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | | | - Norhidayu Sahimin
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Wu Z, Dai J, Li J, Zhang Z, Shen X. Exploiting the role of O6-methylguanine-DNA-methyltransferase (MGMT) in gastrointestinal cancers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03365-4. [PMID: 39167167 DOI: 10.1007/s00210-024-03365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Gastrointestinal (GI) cancer is a prevalent disease and is recognized as the primary cause of cancer-related mortality globally. Therefore, there is an urgent need for novel diagnostic and treatment approaches for GC. The methylation of the O(6)-methylguanine DNA methyltransferase (MGMT) gene promoter is a significant factor in the development of colorectal cancer (CRC), namely in roughly 30-40% of cases where the cancer has spread. MGMT plays a role in the repair of DNA damage caused by methylating drugs like temozolomide (TMZ) and chloroethylating compounds like carmustine. As a result, it contributes to the resistance of chemotherapy when these agents are utilized. Although MGMT's role in the development of CRC is well established, its prognostic significance remains a subject of debate. Only a limited number of research have been conducted to examine the prognostic significance of MGMT methylation, yielding varying outcomes. This review explores the structural functions and repair processes of MGMT, focusing on the putative structural and functional significance of the N-terminal domain of MGMT. It also investigates the advancement of cancer treatment techniques that specifically target MGMT.
Collapse
Affiliation(s)
- Ziming Wu
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Dai
- Anqing 116 Hospital, Anqing, 246001, Anhui, China
| | - Jie Li
- Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zhengyu Zhang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zheijiang, China
| | - Xbing Shen
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
9
|
Koukourikis P, Papaioannou M, Pervana S, Apostolidis A. Exploring the DNA Methylation Profile of Genes Associated with Bladder Cancer in Bladder Tissue of Patients with Neurogenic Lower Urinary Tract Dysfunction. Int J Mol Sci 2024; 25:5660. [PMID: 38891848 PMCID: PMC11171624 DOI: 10.3390/ijms25115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
DNA methylation is an epigenetic process that commonly occurs in genes' promoters and results in the transcriptional silencing of genes. DNA methylation is a frequent event in bladder cancer, participating in tumor initiation and progression. Bladder cancer is a major health issue in patients suffering from neurogenic lower urinary tract dysfunction (NLUTD), although the pathogenetic mechanisms of the disease remain unclear. In this population, bladder cancer is characterized by aggressive histopathology, advanced stage during diagnosis, and high mortality rates. To assess the DNA methylation profiles of five genes' promoters previously known to be associated with bladder cancer in bladder tissue of NLUTD patients, we conducted a prospective study recruiting NLUTD patients from the neuro-urology unit of a public teaching hospital. Cystoscopy combined with biopsy for bladder cancer screening was performed in all patients following written informed consent being obtained. Quantitative methylation-specific PCR was used to determine the methylation status of RASSF1, RARβ, DAPK, hTERT, and APC genes' promoters in bladder tissue samples. Twenty-four patients suffering from mixed NLUTD etiology for a median duration of 10 (IQR: 12) years were recruited in this study. DNA hypermethylation was detected in at least one gene of the panel in all tissue samples. RAR-β was hypermethylated in 91.7% samples, RASSF and DAPK were hypermethylated in 83.3% samples, APC 37.5% samples, and TERT in none of the tissue samples. In 45.8% of the samples, three genes of the panel were hypermethylated, in 29.2% four genes were hypermethylated, and in 16.7% and in 8.3% of the samples, two and one gene were hypermethylated, respectively. The number of hypermethylated genes of the panel was significantly associated with recurrent UTIs (p = 0.0048). No other significant association was found between DNA hypermethylation or the number of hypermethylated genes and the clinical characteristics of the patients. Histopathological findings were normal in 8.3% of patients, while chronic inflammation was found in 83.3% of patients and squamous cell metaplasia in 16.7% of patients. In this study, we observed high rates of DNA hypermethylation of genes associated with bladder cancer in NLUTD patients, suggesting an epigenetic field effect and possible risk of bladder cancer development. Recurrent UTIs seem to be associated with increased DNA hypermethylation. Further research is needed to evaluate the impact of recurrent UTIs and chronic inflammation in DNA hypermethylation and bladder cancer etiopathogenesis in NLUTD patients.
Collapse
Affiliation(s)
- Periklis Koukourikis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece;
| | - Maria Papaioannou
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stavroula Pervana
- Department of Pathology, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece;
| | - Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece;
| |
Collapse
|
10
|
Ye L, Gu L, Wang Y, Xing H, Li P, Guo X, Wang Y, Ma W. Identification of TMZ resistance-associated histone post-translational modifications in glioblastoma using multi-omics data. CNS Neurosci Ther 2024; 30:e14649. [PMID: 38448295 PMCID: PMC10917648 DOI: 10.1111/cns.14649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUD Glioblastoma multiforme (GBM) is among the most aggressive cancers, with current treatments limited in efficacy. A significant hurdle in the treatment of GBM is the resistance to the chemotherapeutic agent temozolomide (TMZ). The methylation status of the MGMT promoter has been implicated as a critical biomarker of response to TMZ. METHODS To explore the mechanisms underlying resistance, we developed two TMZ-resistant GBM cell lines through a gradual increase in TMZ exposure. Transcriptome sequencing of TMZ-resistant cell lines revealed that alterations in histone post-translational modifications might be instrumental in conferring TMZ resistance. Subsequently, multi-omics analysis suggests a strong association between histone H3 lysine 9 acetylation (H3K9ac) levels and TMZ resistance. RESULTS We observed a significant correlation between the expression of H3K9ac and MGMT, particularly in the unmethylated MGMT promoter samples. More importantly, our findings suggest that H3K9ac may enhance MGMT transcription by facilitating the recruitment of the SP1 transcription factor to the MGMT transcription factor binding site. Additionally, by analyzing single-cell transcriptomics data from matched primary and recurrent GBM tumors treated with TMZ, we modeled the molecular shifts occurring upon tumor recurrence. We also noted a reduction in tumor stem cell characteristics, accompanied by an increase in H3K9ac, SP1, and MGMT levels, underscoring the potential role of H3K9ac in tumor relapse following TMZ therapy. CONCLUSIONS The increase in H3K9ac appears to enhance the recruitment of the transcription factor SP1 to its binding sites within the MGMT locus, consequently upregulating MGMT expression and driving TMZ resistance in GBM.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lingui Gu
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengtao Li
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
11
|
Peng G, Liu B, Zheng M, Zhang L, Li H, Liu M, Liang Y, Chen T, Luo X, Shi X, Ren J, Zheng Y. TSCRE: a comprehensive database for tumor-specific cis-regulatory elements. NAR Cancer 2024; 6:zcad063. [PMID: 38213995 PMCID: PMC10782923 DOI: 10.1093/narcan/zcad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024] Open
Abstract
Cis-regulatory elements (CREs) and super cis-regulatory elements (SCREs) are non-coding DNA regions which influence the transcription of nearby genes and play critical roles in development. Dysregulated CRE and SCRE activities have been reported to alter the expression of oncogenes and tumor suppressors, thereby regulating cancer hallmarks. To address the strong need for a comprehensive catalogue of dysregulated CREs and SCREs in human cancers, we present TSCRE (http://tscre.zsqylab.com/), an open resource providing tumor-specific and cell type-specific CREs and SCREs derived from the re-analysis of publicly available histone modification profiles. Currently, TSCRE contains 1 864 941 dysregulated CREs and 68 253 dysregulated SCREs identified from 1366 human patient samples spanning 17 different cancer types and 9 histone marks. Over 95% of these elements have been validated in public resources. TSCRE offers comprehensive annotations for each element, including associated genes, expression patterns, clinical prognosis, somatic mutations, transcript factor binding sites, cancer-type specificity, and drug response. Additionally, TSCRE integrates pathway and transcript factor enrichment analyses for each study, enabling in-depth functional and mechanistic investigations. Furthermore, TSCRE provides an interactive interface for users to explore any CRE and SCRE of interest. We believe TSCRE will be a highly valuable platform for the community to discover candidate cancer biomarkers.
Collapse
Affiliation(s)
- Guanjie Peng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, China
| | - Bingyuan Liu
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, China
| | - Mohan Zheng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Luowanyue Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Huiqin Li
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengni Liu
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Yuan Liang
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Tianjian Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaotong Luo
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianping Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| |
Collapse
|
12
|
Kang YT, Yang WJ, Huang HC, Tang SC, Ko JL. Exposure to nickel chloride induces epigenetic modification on detoxification enzyme glutathione S-transferase M2. ENVIRONMENTAL TOXICOLOGY 2024; 39:1729-1736. [PMID: 38050843 DOI: 10.1002/tox.24055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023]
Abstract
Nickel (Ni) is a human carcinogen with genotoxic and epigenotoxic effects. Environmental and occupational exposure to Ni increases the risk of cancer and chronic inflammatory diseases. Our previous findings indicate that Ni alters gene expression through epigenetic regulation, specifically impacting E-cadherin and angiopoietin-like 4 (ANGPTL4), involved in epithelial-mesenchymal transition and migration. GST-M2, a member of the glutathione S-transferase (GST) enzyme family, plays a crucial role in cellular defense against oxidative damage and has been increasingly associated with cancer. GST-M2 overexpression inhibits lung cancer invasion and metastasis in vitro and in vivo. Hypermethylation of its promoter in cancer cells reduces gene expression, correlating with poor prognosis in non-small-cell lung cancer patients. The impact of Ni on GST-M2 remains unclear. We will investigate whether nickel exerts regulatory effects on GST-M2 through epigenetic modifications. Additionally, metformin, an antidiabetic drug, is being studied as a chemopreventive agent against nickel-induced damage. Our findings indicate that nickel chloride (NiCl2 ) exposure, both short-term and long-term, represses GST-M2 expression. However, the expression can be restored by demethylation agent 5-aza-2'-deoxycytidine and metformin. NiCl2 promotes hypermethylation of the GST-M2 promoter, as confirmed by methylation-specific PCR and bisulfite sequencing. Additionally, NiCl2 also influences histone acetylation, and metformin counteracts the suppressive effect of NiCl2 on histone H3 expression. Metformin reestablishes the binding of specificity protein 1 to the GST-M2 promoter, which is otherwise disrupted by NiCl2 . These findings elucidate the mechanism by which Ni reduces GST-M2 expression and transcriptional activity, potentially contributing to Ni-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Yu-Ting Kang
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wan-Jung Yang
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsu Chih Huang
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
14
|
Tessmer I, Margison GP. The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions. Int J Mol Sci 2023; 25:463. [PMID: 38203633 PMCID: PMC10779285 DOI: 10.3390/ijms25010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Geoffrey P. Margison
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
15
|
Abdelhady R, Senthong P, Eyers CE, Reamtong O, Cowley E, Cannizzaro L, Stimpson J, Cain K, Wilkinson OJ, Williams NH, Barran PE, Margison GP, Williams DM, Povey AC. Mass Spectrometric Analysis of the Active Site Tryptic Peptide of Recombinant O6-Methylguanine-DNA Methyltransferase Following Incubation with Human Colorectal DNA Reveals the Presence of an O6-Alkylguanine Adductome. Chem Res Toxicol 2023; 36:1921-1929. [PMID: 37983188 PMCID: PMC10731659 DOI: 10.1021/acs.chemrestox.3c00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Human exposure to DNA alkylating agents is poorly characterized, partly because only a limited range of specific alkyl DNA adducts have been quantified. The human DNA repair protein, O6-methylguanine O6-methyltransferase (MGMT), irreversibly transfers the alkyl group from DNA O6-alkylguanines (O6-alkGs) to an acceptor cysteine, allowing the simultaneous detection of multiple O6-alkG modifications in DNA by mass spectrometric analysis of the MGMT active site peptide (ASP). Recombinant MGMT was incubated with oligodeoxyribonucleotides (ODNs) containing different O6-alkGs, Temozolomide-methylated calf thymus DNA (Me-CT-DNA), or human colorectal DNA of known O6-MethylG (O6-MeG) levels. It was digested with trypsin, and ASPs were detected and quantified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. ASPs containing S-methyl, S-ethyl, S-propyl, S-hydroxyethyl, S-carboxymethyl, S-benzyl, and S-pyridyloxobutyl cysteine groups were detected by incubating MGMT with ODNs containing the corresponding O6-alkGs. The LOQ of ASPs containing S-methylcysteine detected after MGMT incubation with Me-CT-DNA was <0.05 pmol O6-MeG per mg CT-DNA. Incubation of MGMT with human colorectal DNA produced ASPs containing S-methylcysteine at levels that correlated with those of O6-MeG determined previously by HPLC-radioimmunoassay (r2 = 0.74; p = 0.014). O6-CMG, a putative O6-hydroxyethylG adduct, and other potential unidentified MGMT substrates were also detected in human DNA samples. This novel approach to the identification and quantitation of O6-alkGs in human DNA has revealed the existence of a human DNA alkyl adductome that remains to be fully characterized. The methodology establishes a platform for characterizing the human DNA O6-alkG adductome and, given the mutagenic potential of O6-alkGs, can provide mechanistic information about cancer pathogenesis.
Collapse
Affiliation(s)
- Rasha Abdelhady
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - Pattama Senthong
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - Claire E. Eyers
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Onrapak Reamtong
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Elizabeth Cowley
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - Luca Cannizzaro
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Joanna Stimpson
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Kathleen Cain
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Oliver J. Wilkinson
- Centre
for Chemical Biology, Department of Chemistry, Sheffield Institute
for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Nicholas H. Williams
- Centre
for Chemical Biology, Department of Chemistry, Sheffield Institute
for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Perdita E. Barran
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Geoffrey P. Margison
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - David M. Williams
- Centre
for Chemical Biology, Department of Chemistry, Sheffield Institute
for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Andrew C. Povey
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
16
|
Choi B, Na Y, Whang MY, Ho JY, Han MR, Park SW, Song H, Hur SY, Choi YJ. MGMT Methylation Is Associated with Human Papillomavirus Infection in Cervical Dysplasia: A Longitudinal Study. J Clin Med 2023; 12:6188. [PMID: 37834832 PMCID: PMC10573962 DOI: 10.3390/jcm12196188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Cervical premalignancy/malignancy, as detected by cervical cytology or biopsy, can develop as a result of human papillomavirus (HPV) infection. Meanwhile, DNA methylation is known to be associated with carcinogenesis. In this study, we thus attempted to identify the association between MGMT methylation and persistent HPV infection using an Epi-TOP MPP assay. Integrative analysis of DNA methylation was carried out here using longitudinal cervical cytology samples of seven patients with atypical squamous cells of undetermined significance/low-grade squamous intraepithelial lesion (ASC-US/LSIL). Then, a gene expression analysis using the longitudinal cervical cytology samples and a public database (The Cancer Genome Atlas (TCGA)) was performed. Upon comparing the ASC-US or LSIL samples at the 1st collection and the paired samples at the 2nd collection more than 6 months later, we found that they became hypermethylated over time. Then, using the longitudinal data, we found that the MGMT methylation was associated with HPV infection. Moreover, TCGA dataset revealed an association between downregulated MGMT mRNA expression and poor overall survival. This decreased MGMT mRNA expression was observed to have an inverse relationship with MGMT methylation levels. In this study, we found that the MGMT methylation level could potentially serve as a valuable prognostic indicator for the transition from ASC-US/LSIL to cervical cancer.
Collapse
Affiliation(s)
- Boram Choi
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (B.C.); (Y.N.); (M.Y.W.); (J.Y.H.)
| | - Yoojin Na
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (B.C.); (Y.N.); (M.Y.W.); (J.Y.H.)
| | - Min Yeop Whang
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (B.C.); (Y.N.); (M.Y.W.); (J.Y.H.)
| | - Jung Yoon Ho
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (B.C.); (Y.N.); (M.Y.W.); (J.Y.H.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.-R.H.); (S.-W.P.)
| | - Seong-Woo Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.-R.H.); (S.-W.P.)
| | - Heekyoung Song
- Department of Obstetrics and Gynecology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea;
| | - Soo Young Hur
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (B.C.); (Y.N.); (M.Y.W.); (J.Y.H.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Youn Jin Choi
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (B.C.); (Y.N.); (M.Y.W.); (J.Y.H.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
17
|
Koukourikis P, Papaioannou M, Georgopoulos P, Apostolidis I, Pervana S, Apostolidis A. A Study of DNA Methylation of Bladder Cancer Biomarkers in the Urine of Patients with Neurogenic Lower Urinary Tract Dysfunction. BIOLOGY 2023; 12:1126. [PMID: 37627010 PMCID: PMC10452268 DOI: 10.3390/biology12081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Background: Bladder cancer (BCa) in patients suffering from neurogenic lower urinary tract dysfunction (NLUTD) is a significant concern due to its advanced stage at diagnosis and high mortality rate. Currently, there is a scarcity of specific guidelines for BCa screening in these patients. The development of urine biomarkers for BCa seems to be an attractive non-invasive method of screening or risk stratification in this patient population. DNA methylation is an epigenetic modification, resulting in the transcriptional silencing of tumor suppression genes, that is frequently detected in the urine of BCa patients. Objectives: We aimed to investigate DNA hypermethylation in five gene promoters, previously associated with BCa, in the urine of NLUTD patients, and in comparison with healthy controls. Design, setting and participants: This was a prospective case-control study that recruited neurourology outpatients from a public teaching hospital who had suffered from NLUTD for at least 5 years. They all underwent cystoscopy combined with biopsy for BCa screening following written informed consent. DNA was extracted and DNA methylation was assessed for the RASSF1, RARβ, DAPK, TERT and APC gene promoters via quantitative methylation-specific PCR in urine specimens from the patients and controls. Results: Forty-one patients of mixed NLUTD etiology and 35 controls were enrolled. DNA was detected in 36 patients' urine specimens and in those of 22 controls. In the urine specimens, DNA was hypermethylated in at least one of five gene promoters in 17/36 patients and in 3/22 controls (47.22% vs. 13.64%, respectively, p = 0.009). RASSF1 was hypermethylated in 10/17 (58.82%) specimens with detected methylation, APC in 7/17 (41.18%), DAPK in 4/17 (23.53%), RAR-β2 in 3/17 (17.56%) and TERT in none. According to a multivariate logistic regression analysis, NLUTD and male gender were significantly associated with hypermethylation (OR = 7.43, p = 0.007 and OR = 4.21; p = 0.04, respectively). In the tissue specimens, histology revealed TaLG BCa in two patients and urothelial squamous metaplasia in five patients. Chronic bladder inflammation was present in 35/41 bladder biopsies. Conclusions: DNA hypermethylation in a panel of five BCa-associated genes in the urine was significantly more frequent in NLUTD patients than in the controls. Our results warrant further evaluation in longitudinal studies assessing the clinical implications and possible associations between DNA hypermethylation, chronic inflammation and BCa in the NLUTD population.
Collapse
Affiliation(s)
- Periklis Koukourikis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| | - Maria Papaioannou
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Petros Georgopoulos
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
- Pelvic Floor Unit, Department of Urology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Ioannis Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| | - Stavroula Pervana
- Department of Pathology, General Hospital Papageorgiou, 56429 Thessaloniki, Greece;
| | - Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| |
Collapse
|
18
|
Tram VTN, Khoa Ta HD, Anuraga G, Dung PVT, Xuan DTM, Dey S, Wang CY, Liu YN. Dysbindin Domain-Containing 1 in Prostate Cancer: New Insights into Bioinformatic Validation of Molecular and Immunological Features. Int J Mol Sci 2023; 24:11930. [PMID: 37569304 PMCID: PMC10418609 DOI: 10.3390/ijms241511930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men, yet its pathogenic pathways remain poorly understood. Transcriptomics and high-throughput sequencing can help uncover cancer diagnostic targets and understand biological circuits. Using prostate adenocarcinoma (PRAD) datasets of various web-based applications (GEPIA, UALCAN, cBioPortal, SR Plot, hTFtarget, Genome Browser, and MetaCore), we found that upregulated dysbindin domain-containing 1 (DBNDD1) expression in primary prostate tumors was strongly correlated with pathways involving the cell cycle, mitotic in KEGG, WIKI, and REACTOME database, and transcription factor-binding sites with the DBNDD1 gene in prostate samples. DBNDD1 gene expression was influenced by sample type, cancer stage, and promoter methylation levels of different cancers, such as PRAD, liver hepatocellular carcinoma (LIHC), and lung adenocarcinoma (LUAD). Regulation of glycogen synthase kinase (GSK)-3β in bipolar disorder and ATP/ITP/GTP/XTP/TTP/CTP/UTP metabolic pathways was closely correlated with the DBNDD1 gene and its co-expressed genes in PCa. DBNDD1 gene expression was positively associated with immune infiltration of B cells, Myeloid-derived suppressor cell (MDSC), M2 macrophages, andneutrophil, whereas negatively correlated with CD8+ T cells, T follicular helper cells, M1 macrophages, and NK cells in PCa. These findings suggest that DBNDD1 may serve as a viable prognostic marker not only for early-stage PCa but also for immunotherapies.
Collapse
Affiliation(s)
- Van Thi Ngoc Tram
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Laboratory, University Medical Center Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
19
|
Massimino M, Martorana F, Stella S, Vitale SR, Tomarchio C, Manzella L, Vigneri P. Single-Cell Analysis in the Omics Era: Technologies and Applications in Cancer. Genes (Basel) 2023; 14:1330. [PMID: 37510235 PMCID: PMC10380065 DOI: 10.3390/genes14071330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer molecular profiling obtained with conventional bulk sequencing describes average alterations obtained from the entire cellular population analyzed. In the era of precision medicine, this approach is unable to track tumor heterogeneity and cannot be exploited to unravel the biological processes behind clonal evolution. In the last few years, functional single-cell omics has improved our understanding of cancer heterogeneity. This approach requires isolation and identification of single cells starting from an entire population. A cell suspension obtained by tumor tissue dissociation or hematological material can be manipulated using different techniques to separate individual cells, employed for single-cell downstream analysis. Single-cell data can then be used to analyze cell-cell diversity, thus mapping evolving cancer biological processes. Despite its unquestionable advantages, single-cell analysis produces massive amounts of data with several potential biases, stemming from cell manipulation and pre-amplification steps. To overcome these limitations, several bioinformatic approaches have been developed and explored. In this work, we provide an overview of this entire process while discussing the most recent advances in the field of functional omics at single-cell resolution.
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Cristina Tomarchio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
- Humanitas Istituto Clinico Catanese, University Oncology Department, 95045 Catania, Italy
| |
Collapse
|
20
|
Carrasco Pro S, Hook H, Bray D, Berenzy D, Moyer D, Yin M, Labadorf AT, Tewhey R, Siggers T, Fuxman Bass JI. Widespread perturbation of ETS factor binding sites in cancer. Nat Commun 2023; 14:913. [PMID: 36808133 PMCID: PMC9938127 DOI: 10.1038/s41467-023-36535-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Although >90% of somatic mutations reside in non-coding regions, few have been reported as cancer drivers. To predict driver non-coding variants (NCVs), we present a transcription factor (TF)-aware burden test based on a model of coherent TF function in promoters. We apply this test to NCVs from the Pan-Cancer Analysis of Whole Genomes cohort and predict 2555 driver NCVs in the promoters of 813 genes across 20 cancer types. These genes are enriched in cancer-related gene ontologies, essential genes, and genes associated with cancer prognosis. We find that 765 candidate driver NCVs alter transcriptional activity, 510 lead to differential binding of TF-cofactor regulatory complexes, and that they primarily impact the binding of ETS factors. Finally, we show that different NCVs within a promoter often affect transcriptional activity through shared mechanisms. Our integrated computational and experimental approach shows that cancer NCVs are widespread and that ETS factors are commonly disrupted.
Collapse
Affiliation(s)
| | - Heather Hook
- Department of Biology, Boston University, Boston, MA, USA
| | - David Bray
- Bioinformatics Program, Boston University, Boston, MA, USA
| | | | - Devlin Moyer
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Meimei Yin
- Department of Biology, Boston University, Boston, MA, USA
| | - Adam Thomas Labadorf
- Bioinformatics Hub, Boston University, Boston, MA, USA
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA
| | | | - Trevor Siggers
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
| | - Juan Ignacio Fuxman Bass
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
21
|
Sehgal P, Chaturvedi P. Chromatin and Cancer: Implications of Disrupted Chromatin Organization in Tumorigenesis and Its Diversification. Cancers (Basel) 2023; 15:cancers15020466. [PMID: 36672415 PMCID: PMC9856863 DOI: 10.3390/cancers15020466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
A hallmark of cancers is uncontrolled cell proliferation, frequently associated with an underlying imbalance in gene expression. This transcriptional dysregulation observed in cancers is multifaceted and involves chromosomal rearrangements, chimeric transcription factors, or altered epigenetic marks. Traditionally, chromatin dysregulation in cancers has been considered a downstream effect of driver mutations. However, here we present a broader perspective on the alteration of chromatin organization in the establishment, diversification, and therapeutic resistance of cancers. We hypothesize that the chromatin organization controls the accessibility of the transcriptional machinery to regulate gene expression in cancerous cells and preserves the structural integrity of the nucleus by regulating nuclear volume. Disruption of this large-scale chromatin in proliferating cancerous cells in conventional chemotherapies induces DNA damage and provides a positive feedback loop for chromatin rearrangements and tumor diversification. Consequently, the surviving cells from these chemotherapies become tolerant to higher doses of the therapeutic reagents, which are significantly toxic to normal cells. Furthermore, the disorganization of chromatin induced by these therapies accentuates nuclear fragility, thereby increasing the invasive potential of these tumors. Therefore, we believe that understanding the changes in chromatin organization in cancerous cells is expected to deliver more effective pharmacological interventions with minimal effects on non-cancerous cells.
Collapse
|
22
|
Mashayekhi M, Asadi M, Hashemzadeh S, Vahedi A, Shanehbandi D, Al-Omar AF, Akbari M, Raeisi M. Promoter methylation levels of RASSF1 and ATIC genes are associated with lung cancer in Iranian patients. Horm Mol Biol Clin Investig 2023:hmbci-2022-0007. [PMID: 36584330 DOI: 10.1515/hmbci-2022-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Epigenetic alterations like methylation of tumor suppressor genes or oncogenes, in respiratory epithelium have been associated with lung cancer. Hypermethylation of genes promoter is an epigenetic event, and is responsible to tumor suppressor genes inactivation as well as oncogenes activation. This study aimed to assess the role of methylation status in promoter of RASSF1 and ATIC genes their potential implication in the pathogenesis of lung tumor in Iranian patients. METHODS In this study, we collected 100 tissue samples (50 lung cancer tissues and 50 adjacent non-cancerous lung tissues) from Iranian lung cancer patients. The genomic DNA was extracted, and methylation status of both RASSF1 and ATIC genes was investigated by methylation-sensitive high-resolution melting (MS-HRM) assay technique and Real-Time PCR. Cancer Genome Atlas (TCGA) dataset was also analyzed for further validation of the gene's methylation. RESULTS Methylation of RASSF1 gene promoter was significantly higher in lung tumor tissues. However, promoter methylation levels of ATIC gene was significantly lower in lung tumor tissues. These results were additionally confirmed by TCGA analysis. Promoter methylation of both RASSF1 and ATIC genes was significantly associated with lymph node metastasis, and clinical stage of lung cancer. The receiver operating characteristic (ROC) curve analysis indicated a high accuracy of promoter methylation in these genes as a diagnostic biomarker for lung cancer. CONCLUSIONS Methylation levels of both RASSF1 and ATIC genes promoters were associated with lung cancer pathogenesis in Iranian population, and may be a suitable biomarker for diagnosis and prognosis of lung cancer in early stage of tumorigenesis.
Collapse
Affiliation(s)
- Mahsa Mashayekhi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Shahriar Hashemzadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Vahedi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Faris Al-Omar
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Identification and Validation of a Necroptosis-Related Prognostic Signature for Kidney Renal Clear Cell Carcinoma. Stem Cells Int 2023; 2023:8446765. [PMID: 36910333 PMCID: PMC10005877 DOI: 10.1155/2023/8446765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 03/06/2023] Open
Abstract
Background Necroptosis is progressively becoming an important focus of research because of its role in the pathogenesis of cancer and other inflammatory diseases. Our study is designed to anticipate the survival time of kidney renal clear cell carcinoma (KIRC) by constructing a prognostic signature of necroptosis-related genes. Materials Clinical information and RNA-seq data were acquired from Renal Cell Cancer-European Union (RECA-EU) and The Cancer Genome Atlas- (TCGA-) KIRC, respectively. ConsensusClusterPlus was used to identify molecular subtypes, and the distribution of immune cell infiltration, anticancer drug sensitivity, and somatic gene mutations was studied in these subtypes. Subsequently, LASSO-Cox regression and univariate Cox regression were also carried out to construct a necroptosis-related signature. Cox regression, survival analysis, clinicopathological characteristic correlation analysis, nomogram, cancer stem cell analysis, and receiver operating characteristic (ROC) curve were some tools employed to study the prognostic power of the signature. Results Based on the expression patterns of 66 survival-related necroptosis genes, we classified the KIRC into three subtypes (C1, C2, and C3) that are associated with necroptosis, which had significantly different tumor stem cell components. Among these, C2 patients had a longer survival time and enhanced immune status and were more sensitive to conventional chemotherapeutic drugs. Moreover, in order to predict the prognosis of KIRC patients, five genes (BMP8A, TLCD1, CLGN, GDF7, and RARB) were used to develop a necroptosis-related prognostic signature, which had an acceptable predictive potency. The results from Cox regression and stratified survival analysis revealed that the signature was an independent prognostic factor, whereas the nomogram and calibration curve demonstrated satisfactory survival time prediction based on the risk score. Conclusions Three molecular subtypes and five necroptosis-related genes were discovered in KIRC using data from TCGA-KIRC and RECA-EU. Thus, a new biomarker and a potentially effective therapeutic approach for KIRC patients were provided in the current study.
Collapse
|
24
|
Nikolic N, Carkic J, Jacimovic J, Jakovljevic A, Anicic B, Jezdic Z, Milasin J. Methylation of tumour suppressor genes in benign and malignant salivary gland tumours: a systematic review and meta-analysis. Epigenetics 2022; 17:1661-1676. [PMID: 35287544 PMCID: PMC9620987 DOI: 10.1080/15592294.2022.2052426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The aim of the present systematic review was to critically analyse the relationship between tumour suppressor genes (TSGs) promoter methylation, a potent mechanism of gene silencing, and the development of salivary gland tumours, as well as the possible effect on clinical/histological characteristics. Review protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (registration ID CRD42020218511). A comprehensive search of Web of Science, Scopus, PubMed, and Cochrane Central Register of Controlled Trials was performed utilizing relevant key terms, supplemented by a search of grey literature. Newcastle-Ottawa Quality Assessment Scale (NOQAS) was used for the quality assessment of included studies. Sixteen cross-sectional and 12 case-control studies were included in the review, predominantly dealing with methylation in TSGs related to DNA repair, cell cycle, and cell growth regulation and differentiation. Quantitative synthesis could be performed on P16 (inhibitor of cyclin-dependent kinase 4a), RASSF1A (Ras association domain family 1 isoform A) and MGMT (O6-methylguanine DNA methyltransferase) genes only. It showed that P16 and RASSF1A genes were more frequently methylated in salivary gland tumours compared to controls (P = .0002 and P < .0001, respectively), while no significant difference was observed for MGMT. Additionally, P16 did not appear to be related to malignant transformation of pleomorphic adenomas (P = .330). In conclusion, TSG methylation is involved in salivary gland tumour pathogenesis and several genes might play a considerable role. Further studies are needed for a better understanding of complex epigenetic deregulation during salivary gland tumour development and progression.
Collapse
Affiliation(s)
- Nadja Nikolic
- University of Belgrade, School of Dental Medicine, Department of Human Genetics, Belgrade, Serbia
- CONTACT Nadja Nikolic University of Belgrade, School of Dental Medicine, Department of Human Genetics, Dr Subotica 1, Belgrade 11 000, Serbia
| | - Jelena Carkic
- University of Belgrade, School of Dental Medicine, Department of Human Genetics, Belgrade, Serbia
| | - Jelena Jacimovic
- University of Belgrade, School of Dental Medicine, Central Library, Belgrade, Serbia
| | - Aleksandar Jakovljevic
- University of Belgrade, School of Dental Medicine, Department of Pathophysiology, Belgrade, Serbia
| | - Boban Anicic
- University of Belgrade, School of Dental Medicine, Clinic for Maxillofacial Surgery, Belgrade, Serbia
| | - Zoran Jezdic
- University of Belgrade, School of Dental Medicine, Clinic for Maxillofacial Surgery, Belgrade, Serbia
| | - Jelena Milasin
- University of Belgrade, School of Dental Medicine, Department of Human Genetics, Belgrade, Serbia
| |
Collapse
|
25
|
Non-coding genome in small cell lung cancer between theoretical view and clinical applications. Semin Cancer Biol 2022; 86:237-250. [PMID: 35367369 DOI: 10.1016/j.semcancer.2022.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive cancer of the neuroendocrine system, characterized by poor differentiation, rapid growth, and poor overall survival (OS) of patients. Despite the recent advances in the treatment of SCLC recently, the 2-year survival rate of patients with the cancer is only 14-15%, occasioned by the acquired resistance to drugs and serious off-target effects. In humans, the coding region is only 2% of the total genome, and 20% of that is associated with human diseases. Beyond the coding genome are RNAs, promoters, enhancers, and other intricate elements. The non-coding regulatory regions, mainly the non-coding RNAs (ncRNAs), regulate numerous biological activities including cell proliferation, metastasis, and drug resistance. As such, they are potential diagnostic or prognostic biomarkers, and also potential therapeutic targets for SCLC. Therefore, understanding how non-coding elements regulate SCLC development and progression holds significant clinical implications. Herein, we summarized the recent discoveries on the relationship between the non-coding elements including long non-coding RNAs (lncRNA), microRNAs (miRNAs), circular RNA (circRNA), enhancers as well as promotors, and the pathogenesis of SCLC and their potential clinical applications.
Collapse
|
26
|
Durmus S, Gelisgen R, Uzun H. DNA Methylation Biomarkers in Cancer: Current Clinical Utility and Future Perspectives. Biomark Med 2022. [DOI: 10.2174/9789815040463122010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epigenetic alterations are related to inherited but reversible changes in
modifications that regulate gene activity beyond the DNA sequence. DNA methylation
is the best characterized epigenetic modification, controlling DNA stability, DNA
structure, transcription, and regulation, contributing to normal development and
differentiation. In this section, we first discuss the cellular functions of DNA
methylation and focus on how this fundamental biological process is impaired in
cancer. Changes in DNA methylation status in cancer have been heralded as promising
targets for the development of diagnostic, prognostic, and predictive biomarkers due to
their noninvasive accessibility in bodily fluids (such as blood, urine, stool),
reversibility, stability, and frequency. The absence of markers for definitive diagnosis
of most types of cancer and, in some cases, DNA methylation biomarkers being more
specific and sensitive than commonly used protein biomarkers indicate a strong need
for continued research to expand DNA methylation markers. Although the information
on changes in DNA methylation status in cancer and research on its clinical relevance
is rapidly increasing, the number of DNA methylation biomarkers currently available
as commercial tests is very small. Here, we focus on the importance of DNA
methylation location and target genes likely to be developed in the future for the
development of biomarkers in addition to existing commercial tests. Following a
detailed study of possible target genes, we summarize the current clinical application
status of the most studied and validated DNA methylation biomarkers, including
SEPT9, SDC2, BMP3, NDRG4, SFRP2, TFPI2, VIM and MGMT.
Collapse
Affiliation(s)
- Sinem Durmus
- Cerrahpasa Faculty of Medicine, Istanbul University,Department of Biochemistry,Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul,Turkey
| | - Remise Gelisgen
- Cerrahpasa Faculty of Medicine, Istanbul University,Department of Biochemistry,Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul,Turkey
| | - Hafize Uzun
- Department of Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul,Turkey
| |
Collapse
|
27
|
ACBD3 Bioinformatic Analysis and Protein Expression in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23168881. [PMID: 36012147 PMCID: PMC9408326 DOI: 10.3390/ijms23168881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
ACBD3 overexpression has previously been found to correlate with worse prognosis for breast cancer patients and, as an incredibly diverse protein in both function and cellular localisation, ACBD3 may have a larger role in breast cancer than previously thought. This study further investigated ACBD3′s role in breast cancer. Bioinformatic databases were queried to characterise ACBD3 expression and mutation in breast cancer and to investigate how overexpression affects breast cancer patient outcomes. Immunohistochemistry was carried out to examine ACBD3 location within cells and tissue structures. ACBD3 was more highly expressed in breast cancer than in any other cancer or matched normal tissue, and expression over the median level resulted in reduced relapse-free, overall, and distant metastasis-free survival for breast cancer patients as a whole, with some differences observed between subtypes. IHC analysis found that ACBD3 levels varied based on hormone receptor status, indicating that ACBD3 could be a candidate biomarker for poor patient prognosis in breast cancer and may possibly be a biomarker for ER signal reprogramming of precancerous breast tissue.
Collapse
|
28
|
Hussain S, Tulsyan S, Dar SA, Sisodiya S, Abiha U, Kumar R, Mishra BN, Haque S. Role of epigenetics in carcinogenesis: Recent advancements in anticancer therapy. Semin Cancer Biol 2022; 83:441-451. [PMID: 34182144 DOI: 10.1016/j.semcancer.2021.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023]
Abstract
The role of epigenetics in the etiology of cancer progression is being emphasized for the past two decades to check the impact of chromatin modifiers and remodelers. Histone modifications, DNA methylation, chromatin remodeling, nucleosome positioning, regulation by non-coding RNAs and precisely microRNAs are influential epigenetic marks in the field of progressive cancer sub-types. Furthermore, constant epigenetic changes due to hyper or hypomethylation could efficiently serve as effective biomarkers of cancer diagnosis and therapeutic development. Ongoing research in the field of epigenetics has resulted in the resolutory role of various epigenetic markers and their inhibition using specific inhibitors to arrest their key cellular functions in in-vitro and pre-clinical studies. Although, the mechanism of epigenetics in cancer largely remains unexplored. Nevertheless, various advancements in the field of epigenetics have been made through transcriptome analysis and in-vitro genome targeting technologies to unravel the applicability of epigenetic markers for future cancer therapeutics and management. Therefore, this review emphasizes on recent advances in epigenetic landscapes that could be targeted/explored using novel approaches as personalized treatment modalities for cancer containment.
Collapse
Affiliation(s)
- Showket Hussain
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sonam Tulsyan
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sandeep Sisodiya
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Noida, India; Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Umme Abiha
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rakesh Kumar
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Lucknow, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer, Bursa, Turkey.
| |
Collapse
|
29
|
Sadoyu S, Tanni KA, Punrum N, Paengtrai S, Kategaew W, Promchit N, Lai NM, Thakkinstian A, Ngorsuraches S, Bangpan M, Veettil S, Chaiyakunapruk N. Methodological approaches for assessing certainty of the evidence in umbrella reviews: A scoping review. PLoS One 2022; 17:e0269009. [PMID: 35675337 PMCID: PMC9176806 DOI: 10.1371/journal.pone.0269009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/12/2022] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The number of umbrella reviews (URs) that compiled systematic reviews and meta-analysis (SR-MAs) has increased dramatically over recent years. No formal guidance for assessing the certainty of evidence in URs of meta-analyses exists nowadays. URs of non-interventional studies help establish evidence linking exposure to certain health outcomes in a population. This study aims to identify and describe the methodological approaches for assessing the certainty of the evidence in published URs of non-interventions. METHODS We searched from 3 databases including PubMed, Embase, and The Cochrane Library from May 2010 to September 2021. We included URs that included SR-MAs of studies with non-interventions. Two independent reviewers screened and extracted data. We compared URs characteristics stratified by publication year, journal ranking, journal impact factor using Chi-square test. RESULTS Ninety-nine URs have been included. Most were SR-MAs of observational studies evaluating association of non-modifiable risk factors with some outcomes. Only half (56.6%) of the included URs assessed the certainty of the evidence. The most frequently used criteria is credibility assessment (80.4%), followed by GRADE approach (14.3%). URs published in journals with higher journal impact factor assessed certainty of evidence than URs published in lower impact group (77.1 versus 37.2% respectively, p < 0.05). However, criteria for credibility assessment used in four of the seven URs that were published in top ranking journals were slightly varied. CONCLUSIONS Half of URs of MAs of non-interventional studies have assessed the certainty of the evidence, in which criteria for credibility assessment was the commonly used method. Guidance and standards are required to ensure the methodological rigor and consistency of certainty of evidence assessment for URs.
Collapse
Affiliation(s)
| | - Kaniz Afroz Tanni
- Department of Health Outcomes Research and Policy, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, United States of America
| | | | | | - Warittakorn Kategaew
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, Utah, United States of America
| | | | - Nai Ming Lai
- School of Medicine, Taylor’s University, Subang Jaya, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ammarin Thakkinstian
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Mahidol University Health Technology Assessment Graduate Program, Bangkok, Thailand
| | - Surachat Ngorsuraches
- Department of Health Outcomes Research and Policy, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, United States of America
| | - Mukdarut Bangpan
- The Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre), Social Research Institute, University College London, London, United Kingdom
| | - Sajesh Veettil
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, Utah, United States of America
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, Utah, United States of America
- IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah, United States of America
| |
Collapse
|
30
|
Wang Z, Huang R, Wang H, Peng Y, Fan Y, Feng Z, Zeng Z, Ji Y, Wang Y, Lu J. Prognostic and Immunological Role of PPP1R14A as a Pan-Cancer Analysis Candidate. Front Genet 2022; 13:842975. [PMID: 35656324 PMCID: PMC9152294 DOI: 10.3389/fgene.2022.842975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Despite emerging evidence revealing the remarkable roles of protein phosphatase 1 regulatory inhibitor subunit 14A (PPP1R14A) in cancer tumorigenesis and progression, no pan-cancer analysis is available. A comprehensive investigation of the potential carcinogenic mechanism of PPP1R14A across 33 tumors using bioinformatic techniques is reported for the first time. PPP1R14A is downregulated in major malignancies, and there is a significant correlation between the PPP1R14A expression and the prognosis of patients. The high expression of PPP1R14A in most cases was associated with poor overall survival (OS), disease-specific survival (DSS), and progress-free interval (PFI) across patients with various malignant tumors, including adrenocortical carcinoma (ACC) and bladder urothelial carcinoma (BLCA), indicated through pan-cancer survival analysis. Receiver operating characteristic (ROC) analysis subsequently exhibited that the molecule has high reference significance in diagnosing a variety of cancers. The frequency of PPP1R14A genetic changes including genetic mutations and copy number alterations (CNAs) in uterine carcinosarcoma reached 16.07%, and these alterations brought misfortune to the survival and prognosis of cancer patients. In addition, methylation within the promoter region of PPP1R14A DNA was enhanced in a majority of cancers. Downregulated phosphorylation levels of phosphorylation sites including S26, T38, and others in most cases took place in several tumors, such as breast cancer and colon cancer. PPP1R14A remarkably correlated with the levels of infiltrating cells and immune checkpoint genes. Our research on the carcinogenic effect of PPP1R14A in different tumors is comprehensively summarized and analyzed and provides a theoretical basis for future therapeutic and immunotherapy strategies.
Collapse
Affiliation(s)
- Zhaotao Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rihong Huang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Haojian Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuecheng Peng
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yongyang Fan
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Zejia Feng
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Zhaorong Zeng
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yunxiang Ji
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yezhong Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiajie Lu
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Wen SWC, Wen J, Hansen TF, Jakobsen A, Hilberg O. Cell Free Methylated Tumor DNA in Bronchial Lavage as an Additional Tool for Diagnosing Lung Cancer-A Systematic Review. Cancers (Basel) 2022; 14:2254. [PMID: 35565384 PMCID: PMC9099950 DOI: 10.3390/cancers14092254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
This systematic review investigated circulating methylated tumor DNA in bronchial lavage fluid for diagnosing lung cancer. PROSPERO registration CRD42022309470. PubMed, Embase, Medline, and Web of Science were searched on 9 March 2022. Studies of adults with lung cancer or undergoing diagnostic workup for suspected lung cancer were included if they used bronchial lavage fluid, analyzed methylated circulating tumor DNA, and reported the diagnostic properties. Sensitivity, specificity, and lung cancer prevalence were summarized in forest plots. Risk of bias was assessed using the QUADAS-2 tool. A total of 25 studies were included. All were case-control studies, most studies used cell pellet for analysis by quantitative PCR. Diagnostic sensitivity ranged from 0% for a single gene to 97% for a four-gene panel. Specificity ranged from 8% for a single gene to 100%. The studies employing a gene panel decreased the specificity, and no gene panel had a perfect specificity of 100%. In conclusion, methylated circulating tumor DNA can be detected in bronchial lavage, and by employing a gene panel the sensitivity can be increased to clinically relevant levels. The available evidence regarding applicability in routine clinical practice is limited. Prospective, randomized clinical trials are needed to determine the further usefulness of this biomarker.
Collapse
Affiliation(s)
- Sara Witting Christensen Wen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (T.F.H.); (A.J.)
- Department of Regional Health Research, J.B. Winsloews Vej 19, 3rd Floor, 5000 Odense C, Denmark;
| | - Jan Wen
- General Practice, Region of Southern Denmark, Damhaven 12, 7100 Vejle, Denmark;
| | - Torben Frøstrup Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (T.F.H.); (A.J.)
- Department of Regional Health Research, J.B. Winsloews Vej 19, 3rd Floor, 5000 Odense C, Denmark;
| | - Anders Jakobsen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (T.F.H.); (A.J.)
- Department of Regional Health Research, J.B. Winsloews Vej 19, 3rd Floor, 5000 Odense C, Denmark;
| | - Ole Hilberg
- Department of Regional Health Research, J.B. Winsloews Vej 19, 3rd Floor, 5000 Odense C, Denmark;
| |
Collapse
|
32
|
Falco M, Tammaro C, Takeuchi T, Cossu AM, Scafuro G, Zappavigna S, Itro A, Addeo R, Scrima M, Lombardi A, Ricciardiello F, Irace C, Caraglia M, Misso G. Overview on Molecular Biomarkers for Laryngeal Cancer: Looking for New Answers to an Old Problem. Cancers (Basel) 2022; 14:1716. [PMID: 35406495 PMCID: PMC8997012 DOI: 10.3390/cancers14071716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Laryngeal squamous cell cancer (LSCC) accounts for almost 25-30% of all head and neck squamous cell cancers and is clustered according to the affected districts, as this determines distinct tendency to recur and metastasize. A major role for numerous genetic alterations in driving the onset and progression of this neoplasm is emerging. However, major efforts are still required for the identification of molecular markers useful for both early diagnosis and prognostic definition of LSCC that is still characterized by significant morbidity and mortality. Non-coding RNAs appear the most promising as they circulate in all the biological fluids allowing liquid biopsy determination, as well as due to their quick and characteristic modulation useful for non-invasive detection and monitoring of cancer. Other critical aspects are related to recent progress in circulating tumor cells and DNA detection, in metastatic status and chemo-refractoriness prediction, and in the functional interaction of LSCC with chronic inflammation and innate immunity. We review all these aspects taking into account the progress of the technologies in the field of next generation sequencing.
Collapse
Affiliation(s)
- Michela Falco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | - Chiara Tammaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | - Takashi Takeuchi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
- Molecular Diagnostics Division, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Giuseppe Scafuro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | - Annalisa Itro
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA-2NORD, 80020 Naples, Italy;
| | - Marianna Scrima
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | | | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| |
Collapse
|
33
|
Chen YX, He LL, Xiang XP, Shen J, Qi HY. O 6-methylguanine DNA methyltransferase is upregulated in malignant transformation of gastric epithelial cells via its gene promoter DNA hypomethylation. World J Gastrointest Oncol 2022; 14:664-677. [PMID: 35321285 PMCID: PMC8919019 DOI: 10.4251/wjgo.v14.i3.664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/10/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND O6-methylguanine-DNA methyltransferase (MGMT) is a suicide enzyme that repairs the mispairing base O6-methyl-guanine induced by environmental and experimental carcinogens. It can transfer the alkyl group to a cysteine residue in its active site and became inactive. The chemical carcinogen N-nitroso compounds (NOCs) can directly bind to the DNA and induce the O6-methylguanine adducts, which is an important cause of gene mutation and tumorigenesis. However, the underlying regulatory mechanism of MGMT involved in NOCs-induced tumorigenesis, especially in the initiation phase, remains largely unclear.
AIM To investigate the molecular regulatory mechanism of MGMT in NOCs-induced gastric cell malignant transformation and tumorigenesis.
METHODS We established a gastric epithelial cell malignant transformation model induced by N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) or N-methyl-N-nitroso-urea (MNU) treatment. Cell proliferation, colony formation, soft agar, cell migration, and xenograft assays were used to verify the malignant phenotype. By using quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis, we detected the MGMT expression in malignant transformed cells. We also confirmed the MGMT expression in early stage gastric tumor tissues by qPCR and immunohistochemistry. MGMT gene promoter DNA methylation level was analyzed by methylation-specific PCR and bisulfite sequencing PCR. The role of MGMT in cell malignant transformation was analyzed by colony formation and soft agar assays.
RESULTS We observed a constant increase in MGMT mRNA and protein expression in gastric epithelial cell malignant transformation induced by MNNG or MNU treatment. Moreover, we found a reduction of MGMT gene promoter methylation level by methylation-specific PCR and bisulfite sequencing PCR in MNNG/MNU-treated cells. Inhibition of the MGMT expression by O6-benzylguanine promoted the MNNG/MNU-induced malignant phenotypes. Overexpression of MGMT partially reversed the cell malignant transformation process induced by MNNG/MNU. Clinical gastric tissue analysis showed that MGMT was upregulated in the precancerous lesions and metaplasia tissues, but downregulated in the gastric cancer tissues.
CONCLUSION Our finding indicated that MGMT upregulation is induced via its DNA promoter hypomethylation. The highly expressed MGMT prevents the NOCs-induced cell malignant transformation and tumorigenesis, which suggests a potential novel approach for chemical carcinogenesis intervention by regulating aberrant epigenetic mechanisms.
Collapse
Affiliation(s)
- Yue-Xia Chen
- Department of Pathology and Pathophysiology and Department of Radiation Oncology of the Second Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
- Department of Pathology, Third Hospital of Nanchang, Nanchang 330000, Jiangxi Province, China
| | - Lu-Lu He
- Department of Pathology and Pathophysiology and Department of Radiation Oncology of the Second Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xue-Ping Xiang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing Shen
- Department of Pathology and Pathophysiology andDepartment of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Hong-Yan Qi
- Department of Pathology and Pathophysiology and Department of Radiation Oncology of the Second Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
34
|
The Immunogenetics of Lichen Planus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:119-135. [DOI: 10.1007/978-3-030-92616-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Klein Kranenbarg RAM, Vali AH, IJzermans JNM, Pisanic TR, Wang TH, Azad N, Sukumar S, Fackler MJ. High performance methylated DNA markers for detection of colon adenocarcinoma. Clin Epigenetics 2021; 13:218. [PMID: 34903270 PMCID: PMC8670296 DOI: 10.1186/s13148-021-01206-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colon cancer (CC) is treatable if detected in its early stages. Improved CC detection assays that are highly sensitive, specific, and available at point of care are needed. In this study, we systematically selected and tested methylated markers that demonstrate high sensitivity and specificity for detection of CC in tissue and circulating cell-free DNA. METHODS Hierarchical analysis of 22 candidate CpG loci was conducted using The Cancer Genome Atlas (TCGA) COAD 450K HumanMethylation database. Methylation of 13 loci was analyzed using quantitative multiplex methylation-specific PCR (QM-MSP) in a training set of fresh frozen colon tissues (N = 53). Hypermethylated markers were identified that were highest in cancer and lowest in normal colon tissue using the 75th percentile in Mann-Whitney analyses and the receiver operating characteristic (ROC) statistic. The cumulative methylation status of the marker panel was assayed in an independent test set of fresh frozen colon tissues (N = 52) using conditions defined and locked in the training set. A minimal marker panel of 6 genes was defined based on ROC area under the curve (AUC). Plasma samples (N = 20 colorectal cancers, stage IV and N = 20 normal) were tested by cMethDNA assay to evaluate marker performance in liquid biopsy. RESULTS In the test set of samples, compared to normal tissue, a 6-gene panel showed 100% sensitivity and 90% specificity for detection of CC, and an AUC of 1.00 (95% CI 1.00, 1.00). In stage IV colorectal cancer plasma versus normal, an 8-gene panel showed 95% sensitivity, 100% specificity, and an AUC of 0.996 (95% CI 0.986, 1.00) while a 5-gene subset showed 100% sensitivity, 100% specificity, and an AUC of 1.00 (95% CI 1.00, 1.00), highly concordant with our observations in tissue. CONCLUSIONS We identified high performance methylated DNA marker panels for detection of CC. This knowledge has set the stage for development and implementation of novel, automated, self-contained CC detection assays in tissue and blood which can expeditiously and accurately detect colon cancer in both developed and underdeveloped regions of the world, enabling optimal use of limited resources in low- and middle-income countries.
Collapse
Affiliation(s)
- Romy A M Klein Kranenbarg
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Abdul Hussain Vali
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thomas R Pisanic
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Tza-Huei Wang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Nilofer Azad
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Breast and Ovarian Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, CRB 1-Rm 144, Baltimore, MD, 21231, USA.
| | - Mary Jo Fackler
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Breast and Ovarian Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, CRB 1-Rm 144, Baltimore, MD, 21231, USA.
| |
Collapse
|
36
|
Zhou R, Chen Z, Xiao ZR, Wang SL, Rong C. HPV-Related Promoter Methylation-Based Gene Signature Predicts Clinical Prognosis of Patients With Cervical Cancer. Front Oncol 2021; 11:753102. [PMID: 34745985 PMCID: PMC8566918 DOI: 10.3389/fonc.2021.753102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 01/16/2023] Open
Abstract
Persistent high-risk HPV infection drives tumorigenesis in various human malignancies, including cervical, oropharyngeal, anal, and vulvar carcinomas. Although HPV-related tumors arise in several different sites, they share many common genetic and epigenetic events. Complex and heterogeneous genomic aberrations and mutations induced by high-risk HPV contribute to the initiation and progression of cervical cancer (CC). However, the associations between high-risk HPV infection and DNA methylation have not been clearly investigated. In the present study, HPV-related gene promoter methylation signature was comprehensively analyzed using multiple interactive platforms. CC patients were successfully classified into high-risk and low-risk groups with significant differences in clinical outcomes based on the HPV-related gene promoter methylation signature. Moreover, the protein levels of ALDH1A2 and clinical prognostic value were confirmed in the CC patients cohort. In summary, our study provides compelling evidence that HPV-related gene promoter methylation signature serves as a strong prognostic signature for CC patients. Clinical investigations in large CC patient cohorts are greatly needed to pave the way to implement epigenetic biomarkers into better clinical management.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuo Chen
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zuo-Run Xiao
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shou-Li Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chao Rong
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
37
|
Ghantous A, Novoloaca A, Bouaoun L, Cuenin C, Cros MP, Xu Y, Hernandez-Vargas H, Darboe MK, Prentice AM, Moore SE, Gong YY, Herceg Z, Routledge MN. Aflatoxin Exposure during Early Life Is Associated with Differential DNA Methylation in Two-Year-Old Gambian Children. Int J Mol Sci 2021; 22:8967. [PMID: 34445674 PMCID: PMC8396526 DOI: 10.3390/ijms22168967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background: DNA methylation is an epigenetic control mechanism that may be altered by environmental exposures. We have previously reported that in utero exposure to the mycotoxin and liver carcinogen aflatoxin B1 from the maternal diet, as measured using biomarkers in the mothers' blood, was associated with differential DNA methylation in white blood cells of 6-month-old infants from The Gambia. Methods: Here we examined aflatoxin B1-associated differential DNA methylation in white blood cells of 24-month-old children from the same population (n = 244), in relation to the child's dietary exposure assessed using aflatoxin albumin biomarkers in blood samples collected at 6, 12 and 18 months of age. HM450 BeadChip arrays were used to assess DNA methylation, with data compared to aflatoxin albumin adduct levels using two approaches; a continuous model comparing aflatoxin adducts measured in samples collected at 18 months to DNA methylation at 24 months, and a categorical time-dose model that took into account aflatoxin adduct levels at 6, 12 and 18 months, for comparison to DNA methylation at 24 months. Results: Geometric mean (95% confidence intervals) for aflatoxin albumin levels were 3.78 (3.29, 4.34) at 6 months, 25.1 (21.67, 29.13) at 12 months and 49.48 (43.34, 56.49) at 18 months of age. A number of differentially methylated CpG positions and regions were associated with aflatoxin exposure, some of which affected gene expression. Pathway analysis highlighted effects on genes involved with with inflammatory, signalling and growth pathways. Conclusions: This study provides further evidence that exposure to aflatoxin in early childhood may impact on DNA methylation.
Collapse
Affiliation(s)
- Akram Ghantous
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
| | - Alexei Novoloaca
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
| | - Liacine Bouaoun
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
| | - Cyrille Cuenin
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
| | - Marie-Pierre Cros
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
| | - Ya Xu
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun-Yat Sen University, Guangzhou 510006, China
| | - Hector Hernandez-Vargas
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
- Cancer Research Centre of Lyon (CRCL), Université de Lyon, 69008 Lyon, France
| | - Momodou K. Darboe
- MRC Unit the Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul P.O. Box 273, The Gambia; (M.K.D.); (A.M.P.); (S.E.M.)
| | - Andrew M. Prentice
- MRC Unit the Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul P.O. Box 273, The Gambia; (M.K.D.); (A.M.P.); (S.E.M.)
| | - Sophie E. Moore
- MRC Unit the Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul P.O. Box 273, The Gambia; (M.K.D.); (A.M.P.); (S.E.M.)
- Department of Women and Children’s Health, King’s College London, St Thomas’ Hospital, London SE1 7EH, UK
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
| | - Zdenko Herceg
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
| | - Michael N. Routledge
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
38
|
Xu LW, Gou X, Yang JY, Jiang R, Jiang X, Chen GG, Liu ZM. Methylation of ERβ 5'-untranslated region attenuates its inhibitory effect on ERα gene transcription and promotes the initiation and progression of papillary thyroid cancer. FASEB J 2021; 35:e21516. [PMID: 33710697 DOI: 10.1096/fj.202001467r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/23/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022]
Abstract
Normal thyroid tissue displays a prevalent expression of ERβ than ERα, which drastically turns upside down in the initiation and progression of papillary thyroid cancer (PTC). The underlying molecular mechanism of this phenomenon remains unclear. Here, we demonstrated that ERα and ERβ were coexpressed in human thyroid tissues and cells. ERα mRNA (A-1) and ERβ mRNA (0N-1), transcribed from Promoter A of ERα gene and Promoter 0N of ERβ gene, respectively, were the major mRNA isoforms which mainly contributed to total ERα mRNA and total ERβ mRNA in human thyroid-derived cell lines and tissues. The expression levels of ERα mRNA (A-1) and total ERα mRNA were gradually increased, and those of ERβ mRNA (0N-1) and total ERβ mRNA were decreased by degree in the initiation and progression of PTC. No aberrant DNA methylation of ERα 5'-untranslated region was involved in its up-regulation; however, aberrant DNA methylation in Promoter 0N and Exon 0N of ERβ gene was found to be involved in its down-regulation in the initiation and progression of PTC. ERβ can repress ERα gene transcription via recruitment of NCoR and displacement of RNA polymerase II at the Sp1 site in ERα Promoter A-specific region in thyroid-derived cells. It is suggested that DNA methylation of CpG islands in Promoter 0N and Exon 0N of ERβ gene leads to a decreased ERβ gene expression, which attenuates its inhibitory effect on ERα gene transcription and results in an increased ERα gene expression, cell proliferation, initiation, and progression of PTC.
Collapse
Affiliation(s)
- Lin-Wan Xu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xi Gou
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jun-Yan Yang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xue Jiang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - George G Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Min Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Shan L, Liu W, Zhan Y. LncRNA HAND2-AS1 exerts anti-oncogenic effects on bladder cancer via restoration of RARB as a sponge of microRNA-146. Cancer Cell Int 2021; 21:361. [PMID: 34238300 PMCID: PMC8268400 DOI: 10.1186/s12935-021-02063-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/29/2021] [Indexed: 02/08/2023] Open
Abstract
Background Growing evidence has shown that long noncoding RNA: microRNA: mRNA is implicated in tumor initiation, development, and progression. Long noncoding RNA HAND2-AS1 exhibits anti-cancer effects in diverse cancers. However, the knowledge of HAND-AS1 in bladder cancer development remains unknown. Methods LncRNA and miRNA microarray was conducted to explore different expressed RNA in primary bladder cancer specimens. RNA-RNA interaction prediction tools miRcode (http://www.mircode.org/), DIANA-lncBase v2 (https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-experimental), DIANA-TarBase v.8 (https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex) and miRDB (http://www.mirdb.org/) were employed to predict the interactions between RNA. Bladder cancer cell lines were used to perform cell proliferation and apoptosis assays. Western blot and quantitative Real-time Polymerase Chain Reaction were used to determine the expression of protein and RNA separately. Dual-luciferase assay was conducted to determine the activity of three prime untranslated region of retinoic acid receptor beta (RARB). Furthermore, 5637 human bladder cancer mouse models were established to investigate the interactions of lncRNA: miRNA: mRNA in vivo. Results Based on the RT2 lncRNA PCR Arrays analysis, we validated HAND2-AS1 declined in bladder cancer and negatively correlated with the depth of invasion and grades. The overexpression of HAND2-AS1 in human bladder cancer cells 5637 and RT4 hampered cell proliferation by provoking Caspase 3-triggered cell apoptosis. Besides, one of the HAND2-AS1 sponges, miR-146, elevated in bladder cancer and targeted the tumor suppressor, retinoic acid receptor beta (RARB). We further demonstrated that the HAND2-AS1: miR-146: RARB complex promoted Caspase 3-mediated apoptosis by suppressing COX-2 expression. Finally, the results gained in mouse xenografts suggested that HAND2-AS1 diminished miR-146 expression, thereby reversing the suppression of miR-146 on RARB-mediated apoptosis and contributing to bladder cancer regression. Conclusion The present study sheds light on the fact that lncRNA HAND2-AS1 exerted as a tumor suppressor by releasing RARB from miR-146, leading to tumor proliferation and invasion inhibition. The findings expanded HAND2-AS-mediated regulatory networks' knowledge and provided novel insights to improve the RARB-targeted regimens against bladder cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02063-y.
Collapse
Affiliation(s)
- Liping Shan
- Department of Urology, Shengjing Hospital, China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Wei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital, China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
40
|
Recent Advances in Understanding the Role of Autophagy in Paediatric Brain Tumours. Diagnostics (Basel) 2021; 11:diagnostics11030481. [PMID: 33803216 PMCID: PMC8000899 DOI: 10.3390/diagnostics11030481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a degradative process occurring in eukaryotic cells to maintain homeostasis and cell survival. After stressful conditions including nutrient deprivation, hypoxia or drugs administration, autophagy is induced to counteract pathways that could lead to cell death. In cancer, autophagy plays a paradoxical role, acting both as tumour suppressor—by cleaning cells from damaged organelles and inhibiting inflammation or, alternatively, by promoting genomic stability and tumour adaptive response—or as a pro-survival mechanism to protect cells from stresses such as chemotherapy. Neural-derived paediatric solid tumours represent a variety of childhood cancers with unique anatomical location, cellular origins, and clinical presentation. These tumours are a leading cause of morbidity and mortality among children and new molecular diagnostics and therapies are necessary for longer survival and reduced morbidity. Here, we review advances in our understanding of how autophagy modulation exhibits antitumor properties in experimental models of paediatric brain tumours, i.e., medulloblastoma (MB), ependymoma (EPN), paediatric low-grade and high-grade gliomas (LGGs, HGGs), atypical teratoid/rhabdoid tumours (ATRTs), and retinoblastoma (RB). We also discuss clinical perspectives to consider how targeting autophagy may be relevant in these specific paediatric tumours.
Collapse
|
41
|
Ferrer AI, Trinidad JR, Sandiford O, Etchegaray JP, Rameshwar P. Epigenetic dynamics in cancer stem cell dormancy. Cancer Metastasis Rev 2021; 39:721-738. [PMID: 32394305 DOI: 10.1007/s10555-020-09882-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer remains one of the most challenging diseases despite significant advances of early diagnosis and therapeutic treatments. Cancerous tumors are composed of various cell types including cancer stem cells capable of self-renewal, proliferation, differentiation, and invasion of distal tumor sites. Most notably, these cells can enter a dormant cellular state that is resistant to conventional therapies. Thereby, cancer stem cells have the intrinsic potential for tumor initiation, tumor growth, metastasis, and tumor relapse after therapy. Both genetic and epigenetic alterations are attributed to the formation of multiple tumor types. This review is focused on how epigenetic dynamics involving DNA methylation and DNA oxidations are implicated in breast cancer and glioblastoma multiforme. The emergence and progression of these cancer types rely on cancer stem cells with the capacity to enter quiescence also known as a dormant cellular state, which dictates the distinct tumorigenic aggressiveness between breast cancer and glioblastomas.
Collapse
Affiliation(s)
- Alejandra I Ferrer
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jonathan R Trinidad
- Department of Biological Sciences, Rutgers University, Newark, NJ, 07102, USA
| | - Oleta Sandiford
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | | | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
42
|
Alshareef A, Peters AC, Gélébart P, Chen W, Lai R. Gene Methylation and Silencing of WIF1 Is a Frequent Genetic Abnormality in Mantle Cell Lymphoma. Int J Mol Sci 2021; 22:ijms22020893. [PMID: 33477402 PMCID: PMC7830226 DOI: 10.3390/ijms22020893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
We have previously shown that the Wnt canonical pathway (WCP) is constitutively active in most cases of mantle cell lymphoma (MCL). Here, we aimed to elucidate the mechanisms underlying this biochemical deregulation. We hypothesized that gene methylation/silencing of WIF1 (Wnt inhibitory factor-1), a physiologic inhibitor of WCP, contributes to the deregulation of WCP and promotes cell growth in MCL. In support of this hypothesis, we found that the expression of WIF1 was detectable in none of the 4 MCL cell lines, and in only 2 of 5 tumors (40%) examined. Using methylation-specific PCR, we found evidence of gene methylation of WIF1 in 4 of 5 cell lines (80%) and in 24 of 29 (82%) tumors. The addition of the demethylation agent 5-aza-2′-deoxycytidine to Mino and JeKo-1, two WIF1-negative cell lines, restored the expression of WIF1 mRNA in these cells. Gene transfection of WIF1 into JeKo-1 and Mino cells significantly reduced cell growth, and this finding correlated with substantial downregulations of various proteins in WCP, such as β-catenin and pGSK-3β. In conclusion, our results support the concept that gene methylation/silencing of WIF1 is a frequent event in MCL, and this abnormality contributes to the aberrant activation of WCP. These results have provided further evidence that aberrant Wnt signaling is pathogenetically important in MCL and it may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Abdulraheem Alshareef
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Madinah, P.O. Box 41477, Saudi Arabia;
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.G.); (W.C.)
| | - Anthea C. Peters
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Pascal Gélébart
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.G.); (W.C.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Will Chen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.G.); (W.C.)
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.G.); (W.C.)
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence:
| |
Collapse
|
43
|
Wen SWC, Andersen RF, Petersen LMS, Hager H, Hilberg O, Jakobsen A, Hansen TF. Comparison of Mutated KRAS and Methylated HOXA9 Tumor-Specific DNA in Advanced Lung Adenocarcinoma. Cancers (Basel) 2020; 12:E3728. [PMID: 33322500 PMCID: PMC7763990 DOI: 10.3390/cancers12123728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor DNA (ctDNA) has been suggested as a biomarker in non-small cell lung cancer. The optimal target for measuring ctDNA has not yet been established. This study aimed to investigate methylated Homeobox A9 (meth-HOXA9) as an approach to detect ctDNA in advanced lung adenocarcinoma and compare it with mutated Kirsten rat sarcoma viral oncogene homolog (mut-KRAS) in order to determine the mutual agreement. DNA was purified from formalin-fixed, paraffin-embedded non-malignant lung tissue and lung adenocarcinoma tissue, and plasma from healthy donors and lung adenocarcinoma patients, respectively. KRAS mutations in tumor tissue were identified by next-generation sequencing and quantified in tumor and plasma by droplet digital polymerase chain reaction (ddPCR). The meth-HOXA9 analysis was based on bisulfite-converted DNA from tumor and plasma and quantified by ddPCR. Samples consisted of 20 archival non-malignant lung tissues, 48 advanced lung adenocarcinomas with matched plasma samples, and 100 plasma samples from healthy donors. A KRAS mutation was found in the tumor in 34/48 (70.8%) adenocarcinoma patients. All tumors were positive for meth-HOXA9, while none of the non-malignant lung tissues were. Meth-HOXA9 was detected in 36/48 (75%) of plasma samples, and the median level was 0.7% (range of 0-46.6%, n = 48). Mut-KRAS was detected in 29/34 (85.3%) of the plasma samples, and the median level was 1.2% (range of 0-46.1%, n = 34). There was a good correlation between meth-HOXA9 and mut-KRAS in plasma (Spearman's rho 0.83, p < 0.001). Meth-HOXA9 is present in tissue from incurable lung adenocarcinoma but not in non-malignant lung tissue. It may be used as an approach for detecting ctDNA. The results demonstrated a high agreement between meth-HOXA9 and mut-KRAS in patients with advanced lung adenocarcinoma.
Collapse
Affiliation(s)
- Sara W. C. Wen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (A.J.); (T.F.H.)
- Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Rikke F. Andersen
- Department of Clinical Biochemistry, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark;
| | - Lena Marie S. Petersen
- Department of Pathology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.M.S.P.); (H.H.)
| | - Henrik Hager
- Department of Pathology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.M.S.P.); (H.H.)
| | - Ole Hilberg
- Department of Medicine, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark;
| | - Anders Jakobsen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (A.J.); (T.F.H.)
- Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Torben F. Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (A.J.); (T.F.H.)
- Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
44
|
Nemtsova MV, Mikhaylenko DS, Kuznetsova EB, Bykov II, Zamyatnin AA. Inactivation of Epigenetic Regulators due to Mutations in Solid Tumors. BIOCHEMISTRY (MOSCOW) 2020; 85:735-748. [PMID: 33040718 DOI: 10.1134/s0006297920070020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Main factors involved in carcinogenesis are associated with somatic mutations in oncogenes and tumor suppressor genes representing changes in the DNA nucleotide sequence. Epigenetic changes, such as aberrant DNA methylation, modifications of histone proteins, and chromatin remodeling, are equally important in the development of human neoplasms. From this perspective, mutations in the genes encoding key participants of epigenetic regulation are of particular interest including enzymes that methylate/demethylate DNA, enzymes that covalently attach or remove regulatory signals from histones, components of nucleosome remodeling multiprotein complexes, auxiliary proteins and cofactors of the above-mentioned molecules. This review describes both germline and somatic mutations in the key epigenetic regulators with emphasis on the latter ones in the solid human tumors, as well as considers functional consequences of these mutations on the cellular level. In addition, clinical associations of the somatic mutations in epigenetic regulators are presented, as well as DNA diagnostics of hereditary cancer syndromes due to germline mutations in the SMARC proteins and chemotherapy drugs directly affecting the altered epigenetic mechanisms for treatment of patients with solid neoplasms. The review is intended for a wide range of molecular biologists, geneticists, oncologists, and associated specialists.
Collapse
Affiliation(s)
- M V Nemtsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia.,Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - D S Mikhaylenko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia. .,Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - E B Kuznetsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - I I Bykov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - A A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
45
|
Aberrant Methylation of LINE-1 Transposable Elements: A Search for Cancer Biomarkers. Cells 2020; 9:cells9092017. [PMID: 32887319 PMCID: PMC7563416 DOI: 10.3390/cells9092017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer remains one of the main causes of human mortality despite significant progress in its diagnostics and therapy achieved in the past decade. Massive hypomethylation of retrotransposons, in particular LINE-1, is considered a hallmark of most malignant transformations as it results in the reactivation of retroelements and subsequent genomic instability. Accumulating data on LINE-1 aberrant methylation in different tumor types indicates its significant role in cancer initiation and progression. However, direct evidence that LINE-1 activation can be used as a cancer biomarker is still limited. The objective of this review was to critically evaluate the published results regarding the diagnostic/prognostic potential of the LINE-1 methylation status in cancer. Our analysis indicates that LINE-1 hypomethylation is a promising candidate biomarker of cancer development, which, however, needs validation in both clinical and laboratory studies to confirm its applicability to different cancer types and/or stages. As LINE-1 is present in multiple cell-free copies in blood, it has advantages over single-copy genes regarding perspectives of using its methylation status as an epigenetic cancer biomarker for cell-free DNA liquid biopsy.
Collapse
|
46
|
Havusha-Laufer S, Kosenko A, Kisliouk T, Barash I. H2AX Promoter Demethylation at Specific Sites Plays a Role in STAT5-Induced Tumorigenesis. J Mammary Gland Biol Neoplasia 2020; 25:205-218. [PMID: 32748326 DOI: 10.1007/s10911-020-09455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022] Open
Abstract
Deregulated STAT5 activity in the mammary gland of transgenic mice results in parity-dependent latent tumorigenesis. The trigger for cell transformation was previously associated with hyperactivation of the H2AX proximal promoter in a small basal cell population during pregnancy. The current study focuses on the latent activation of tumor development. H2AX was highly expressed in carcinoma and adenocarcinoma as compared to the multiparous mammary gland, whereas pSTAT5 expression decreased in a tumor type-dependent manner. In contrast to the pregnant gland, no positive correlation between H2AX and pSTAT5 expression could be defined in carcinoma and adenocarcinoma. Using targeted methylation analysis, the methylation profile of the H2AX promoter was characterized in the intact gland and tumors. Average H2AX promoter methylation in the tumors was relatively high (~90%), but did not exceed that of the multiparous gland; 5mC methylation was higher in the differentiated tumors and negatively correlated with its oxidative product 5hmC and H2AX expression. Individual analysis of 25 H2AX promoter-methylation sites revealed two consecutive CpGs at positions -77 and - 54 that were actively demethylated in the multiparous gland, but not in their age-matched virgin counterpart. The different methylation profiles at these sites distinguished tumor types and may assume a prognostic role. In-silico and ChIP analyses revealed overlapping methylation-independent SP1-binding and methylation-dependent p53-binding to these sites. We propose that interference with SP1-assisted p53-binding to these sites abrogates H2AX's ability to arrest the cell cycle upon DNA damage, and contributes to triggering latent development of STAT5-induced tumors in estrapausal multiparous mice.
Collapse
Affiliation(s)
- Sharon Havusha-Laufer
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Ana Kosenko
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Itamar Barash
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
47
|
Renal Cell Carcinoma: Predicting DNA Methylation Subtyping and Its Consequences on Overall Survival With Computed Tomography Imaging Characteristics. J Comput Assist Tomogr 2020; 44:737-743. [PMID: 32842065 DOI: 10.1097/rct.0000000000001077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of the study was to investigate associations between computed tomography (CT) imaging characteristics, DNA methylation subtyping, and overall survival in renal cell carcinomas. METHODS Survival curves were calculated using the Kaplan-Meier analysis. The CT data from 212 patients generated with The Cancer Imaging Archive (TCIA) were reviewed. Identified were 70 (33.0%) M1 subtype, 17 (8.0%) M2 subtype, and 125 (59.0%) M3 subtype. Univariate and multivariate analyses were performed using the logistic regression model. RESULTS Patients with M1 subtype had the shortest median overall survival (P < 0.001). On univariate analysis, long axis of 70 mm, intratumoral calcifications, enhancement, long axis > median, short axis > median, and intratumoral vascularity were associated with a significantly higher incidence of M1 subtype (P < 0.05). Short axis ≤ median, absence of necrosis, absence of intratumoral vascularity, and nodular enhancement were associated with M2 subtype (P < 0.05). Short axis ≤ median, long axis ≤ median, long axis of less than 70 mm, and necrosis were associated with a significantly higher incidence of M3 subtype (P < 0.05). On multivariate logistic regression analysis, long axis of greater than 70 mm (odds ratio [OR] = 2.452, P = 0.004; 95% confidence interval [CI] = 1.332-4.514) and necrosis (OR = 4.758, P = 0.041, 95% CI = 1.065-21.250) were associated with M1 subtype (area under the curve [AUC] = 0. 664). Necrosis (OR = 0.047, P < 0.001, 95% CI = 0.012-0.178) and enhancement (OR = 0.083, P = 0.024, 95% CI = 0.010-0.716) were associated with M2 subtype (AUC = 0.909). Long axis > median (OR = 0.303, P < 0.001, 95% CI = 0.164-0.561) and necrosis (OR = 3.256, P = 0.003, 95% CI = 1.617-10.303) were associated with M3 subtype (AUC = 0. 664). CONCLUSIONS The shortest survival was observed in patients with M1 subtype. This preliminary radiogenomics analysis of renal cell carcinoma demonstrated associations between CT imaging characteristic and DNA methylation subtyping.
Collapse
|
48
|
Wu J, Meng X, Gao R, Jia Y, Chai J, Zhou Y, Wang J, Xue X, Dang T. Long non-coding RNA LINC00858 inhibits colon cancer cell apoptosis, autophagy, and senescence by activating WNK2 promoter methylation. Exp Cell Res 2020; 396:112214. [PMID: 32768499 DOI: 10.1016/j.yexcr.2020.112214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/09/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Accumulating evidence shows the involvement of long non-coding RNAs (lncRNAs) in tumorigenesis of many types of human cancers. However, the role of LINC00858 in colon cancer has not been fully elucidated. Therefore, we investigated the involvement of LINC00858 in the progression of colon cancer and identified its downstream targets. After examining the expression of LINC00858 in colon cancer tissues and cell lines, we then identified the possible interaction between LINC00858 and WNK lysine deficient protein kinase 2 (WNK2) by fluorescence in situ hybridization, RNA immunoprecipitation, chromatin immunoprecipitation, and RNA pull-down assays. Next, the role of the LINC00858/WNK2 axis was explored by evaluating the apoptosis, autophagy, and senescence of colon cancer cells in vitro after ectopic expression and depletion experiments in HCT116 cells. Moreover, a mouse xenograft model of HCT116 cells was established to verify the function of the LINC00858/WNK2 axis in vivo. There was high expression of LINC00858 and low expression of WNK2 in colon cancer tissues and cell lines. Silencing of LINC00858 promoted apoptosis, senescence, and autophagy in colon cancer cells. Additionally, the enrichment of WNK2 was promoted when LINC00858 bound to DNA methyltransferases. Furthermore, in vivo assays demonstrated that silencing of LINC00858 resulted in inhibited tumor growth by upregulating WNK2. In summary, LINC00858 acts as a tumor-promoting lncRNA in colon cancer by downregulating WNK2. Our results may provide novel targets for the treatment for colon cancer.
Collapse
Affiliation(s)
- Jinbao Wu
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Xianmei Meng
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Rui Gao
- Anesthesiology Department, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Yanbin Jia
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China; Nursing College of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Yi Zhou
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Jing Wang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Xiaohui Xue
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China
| | - Tong Dang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014030, PR China.
| |
Collapse
|
49
|
Mungamuri SK, Mavuduru VA. Role of epigenetic alterations in aflatoxin‐induced hepatocellular carcinoma. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/lci2.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sathish Kumar Mungamuri
- Division of Food Safety Indian Council of Medical Research (ICMR) ‐ National Institute of Nutrition (NIN) Hyderabad Telangana India
| | | |
Collapse
|
50
|
Lapthanasupkul P, Klongnoi B, Mutirangura A, Kitkumthorn N. Investigation of PTEN promoter methylation in ameloblastoma. Med Oral Patol Oral Cir Bucal 2020; 25:e481-e487. [PMID: 32134893 PMCID: PMC7338066 DOI: 10.4317/medoral.23498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Phosphatase and tensin homolog (PTEN) acts as a tumor suppressor gene. Inactivation of PTEN has been reported in various types of cancers. PTEN promoter methylation possibly underlies PTEN inactivation, which results in tumorigenesis. The aim of this study was to investigate whether PTEN promoter methylation contributes to PTEN inactivation in ameloblastoma and its associated protein expression.
Material and Methods In total, 20 fresh-frozen ameloblastoma samples were evaluated for PTEN promoter methylation using methylation-specific polymerase chain reaction (MS-PCR). A subset of 10 paraffin-embedded ameloblastoma samples was examined for PTEN expression through immunohistochemistry. Four primary cultured ameloblastoma cells were investigated for PTEN promoter methylation and PTEN transcriptional expression via reverse transcription PCR.
Results PTEN promoter methylation was detected in 65% (13/20) of the ameloblastoma samples. Of 10 ameloblastoma samples, 4 exhibited reduced PTEN expression. Of 5 samples with methylated PTEN, 3 (60%) were associated with loss of PTEN expression. However, PTEN expression was detected in 4 (80%) of 5 samples with unmethylated PTEN. In addition, 3 (75%) of 4 primary ameloblastoma cell cultures exhibited an inverse correlation between PTEN promoter methylation and PTEN transcription level.
Conclusions PTEN promoter methylation is found in a number of ameloblastomas but not significantly correlated with loss of PTEN expression. Genetic or epigenetic mechanisms other than PTEN promoter methylation may contribute to PTEN inactivation in ameloblastoma tumor cells. Key words:PTEN, promoter methylation, ameloblastoma.
Collapse
Affiliation(s)
- P Lapthanasupkul
- Department of Oral Biology Faculty of Dentistry, Mahidol University 6 Yothi Street, Bangkok, Thailand
| | | | | | | |
Collapse
|