1
|
Wan Q, Lu Q, Luo S, Guan C, Zhang H. The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7273-7296. [PMID: 38709267 DOI: 10.1007/s00210-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.
Collapse
Affiliation(s)
- Qiang Wan
- Affiliated Hospital of Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
- Clinical Medical College, Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| |
Collapse
|
2
|
Li Y, Li X, Zheng M, Bu F, Xiang C, Zhang F. Puerarin inhibits HDAC1-induced oxidative stress disorder by activating JNK pathway and alleviates acrolein-induced atherosclerosis. Clinics (Sao Paulo) 2024; 79:100413. [PMID: 39024795 PMCID: PMC11304693 DOI: 10.1016/j.clinsp.2024.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE Atherosclerosis (AS) is a common pathogenesis of cardiovascular diseases. Puerarin (Pue) is a Chinese herbal remedy used to prevent and treat AS. Here, this research investigated the effect of Pue on AS progression. METHODS ApoE-/- mice were induced with acrolein. Body weight, blood lipid index, inflammatory factors, mitochondrial oxidative stress, and lipid deposition were detected. IL-6 and TNF-α were detected by ELISA. Oil red staining and H&E staining were used to observe the aortic sinus plaque lesions. Serum expressions of inflammatory factors IL-6, TNF-a, SOD, GSH and MDA were detected by ELISA, the mRNA expression levels of HDAC1 in the aorta were detected by RT-qPCR, and IL-6 and TNF-α in the aorta were detected by immunohistochemistry. JNK, p-JNK, OPA-1, and HDAC1 were detected by Western blotting. RESULTS Pue administration can effectively reduce lipid accumulation in AS mice induced by acrolein. Pue promoted the activity of SOD, GSH and MDA, and inhibited the formation of atherosclerotic plaques and the process of aortic histological changes. Pue reduced IL-6 and TNF-α. HDAC1 expression was down-regulated and p-JNK-1 and JNK protein expression was up-regulated. CONCLUSION Pue reduces inflammation and alleviates AS induced by acrolein by mediating the JNK pathway to inhibit HDAC1-mediated oxidative stress disorder.
Collapse
Affiliation(s)
- YeTing Li
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China.
| | - XiaoNing Li
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - Man Zheng
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - FanLi Bu
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - ChunYan Xiang
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - FengLei Zhang
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| |
Collapse
|
3
|
Mu Y, Yang Y, Jiang S, Liu C, Han Y, Jiang J, Wang Y. Benefits of Puerarin on Metabolic Syndrome and Its Associated Cardiovascular Diseases in Rats Fed a High-Fat/High-Sucrose Diet. Nutrients 2024; 16:1273. [PMID: 38732519 PMCID: PMC11085683 DOI: 10.3390/nu16091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Metabolic syndrome (MetS) is a cluster of risk factors for cardiovascular diseases (CVDs) that has become a global public health problem. Puerarin (PUE), the principal active compound of Pueraria lobata, has the effects of regulating glucose and lipid metabolism and protecting against cardiovascular damage. This study aimed to investigate whether dietary supplementation with PUE could ameliorate MetS and its associated cardiovascular damage. Rats were randomly divided into three groups: the normal diet group (NC), the high-fat/high-sucrose diet group (HFHS), and the HFHS plus PUE diet group (HFHS-PUE). The results showed that PUE-supplemented rats exhibited enhanced glucose tolerance, improved lipid parameters, and reduced blood pressure compared to those on the HFHS diet alone. Additionally, PUE reversed the HFHS-induced elevations in the atherogenic index (AI) and the activities of serum lactate dehydrogenase (LDH) and creatine kinase (CK). Ultrasonic evaluations indicated that PUE significantly ameliorated cardiac dysfunction and arterial stiffness. Histopathological assessments further confirmed that PUE significantly mitigated cardiac remodeling, arterial remodeling, and neuronal damage in the brain. Moreover, PUE lowered systemic inflammatory indices including C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and systemic immune-inflammation index (SII). In conclusion, dietary supplementation with PUE effectively moderated metabolic disorders, attenuated systemic inflammation, and minimized cardiovascular damage in rats with MetS induced by an HFHS diet. These results provide novel insights into the potential benefits of dietary PUE supplementation for the prevention and management of MetS and its related CVDs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuhong Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Meng F, Guo B, Ma YQ, Li KW, Niu FJ. Puerarin: A review of its mechanisms of action and clinical studies in ophthalmology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154465. [PMID: 36166943 DOI: 10.1016/j.phymed.2022.154465] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pueraria is the common name of the dried root of either Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) or Pueraria montana var. thomsonii (Benth.) M.R.Almeida (syn. Pueraria thomsonii Benth.). Puerarin is a C-glucoside of the isoflavone daidzein extracted from Pueraria. It has been widely investigated to explore its therapeutic role in eye diseases and the molecular mechanisms. PURPOSE To collect the available literature from 2000 to 2022 on puerarin in the treatment of ocular diseases and suggest the future required directions to improve its medicinal value. METHOD The content of this review was obtained from databases such as Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure (CNKI), and the Wanfang Database. RESULTS The search yielded 428 articles, of which 159 articles were included after excluding duplicate articles and articles related to puerarin but less relevant to the topic of the review. In eleven articles, the bioavailability of puerarin was discussed. Despite puerarin possesses diverse biological activities, its bioavailability on its own is poor. There are 95 articles in which the therapeutic mechanisms of puerarin in ocular diseases was reported. Of these, 54 articles discussed the various signalling pathways related to occular diseases affected by puerarin. The other 41 articles discussed specific biological activities of puerarin. It plays a therapeutic role in ophthalmopathy via regulating nuclear factor kappa-B (NF-ĸB), mitogen-activated protein kinases (MAPKs), PI3K/AKT, JAK/STAT, protein kinase C (PKC) and other related pathways, affecting the expression of tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), superoxide dismutase (SOD), B-cell lymphoma-2 (Bcl-2) and other cytokines resulting in anti-inflammatory, antioxidant and anti-apoptotic effects. The clinical applications of puerarin in ophthalmology were discussed in 25 articles. Eleven articles discussed the toxicity of puerarin. The literature suggests that puerarin has a good curative effect and can be used safely in clinical practice. CONCLUSION This review has illustrated the diverse applications of puerarin acting on ocular diseases and suggested that puerarin can be used for treating diabetic retinopathy, retinal vascular occlusion, glaucoma and other ocular diseases in the clinic. Some ocular diseases are the result of the combined action of multiple factors, and the effect of puerarin on different factors needs to be further studied to improve a more complete mechanism of action of puerarin. In addition, it is necessary to increase the number of subjects in clinical trials and conduct clinical trials for other ocular diseases. The information presented here will guide future research studies.
Collapse
Affiliation(s)
- Fan Meng
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Bin Guo
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Yi-Qing Ma
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Kun-Wei Li
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| | - Feng-Ju Niu
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| |
Collapse
|
5
|
Wang D, Bu T, Li Y, He Y, Yang F, Zou L. Pharmacological Activity, Pharmacokinetics, and Clinical Research Progress of Puerarin. Antioxidants (Basel) 2022; 11:2121. [PMID: 36358493 PMCID: PMC9686758 DOI: 10.3390/antiox11112121] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/01/2023] Open
Abstract
As a kind of medicine and food homologous plant, kudzu root (Pueraria lobata (Willd.) Ohwi) is called an "official medicine" in Chinese folk medicine. Puerarin is the main active component extracted from kudzu root, and its structural formula is 8-β-D-grapes pyranose-4, 7-dihydroxy isoflavone, with a white needle crystal; it is slightly soluble in water, and its aqueous solution is colorless or light yellow. Puerarin is a natural antioxidant with high health value and has a series of biological activities such as antioxidation, anti-inflammation, anti-tumor effects, immunity improvement, and cardio-cerebrovascular and nerve cell protection. In particular, for the past few years, it has also been extensively used in clinical study. This review focuses on the antioxidant activity of puerarin, the therapy of diverse types of inflammatory diseases, various new drug delivery systems of puerarin, the "structure-activity relationship" of puerarin and its derivatives, and pharmacokinetic and clinical studies, which can provide a new perspective for the puerarin-related drug research and development, clinical application, and further development and utilization.
Collapse
Affiliation(s)
- Di Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tong Bu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yangqian Li
- Asset and Laboratory Management Department, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yueyue He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fan Yang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Yan J, Honglei Y, Yun W, Sheng D, Yun H, Anhua Z, Na F, Min L, Dandan S, Jing W, Junming T, Wenjun Z, Xiju H. Puerarin ameliorates myocardial remodeling of spontaneously hypertensive rats through inhibiting TRPC6-CaN-NFATc3 pathway. Eur J Pharmacol 2022; 933:175254. [PMID: 36087696 DOI: 10.1016/j.ejphar.2022.175254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Puerarin (Pue) has been widely used in the treatment of hypertension and cardiovascular diseases, but the basic mechanism of Pue on myocardial remodeling (MR) of hypertension is not clear. The purpose of this study was to investigate the effect and mechanism of Pue on MR and provide the basis for the clinical application. Thirty male spontaneously hypertensive rats (SHR) and six male Wistar Kyoto rats (WKY) aged 3 months were used in this study, SHR rats were randomly divided into 5 groups, Pue (40 or 80 mg/kg/d, ip) and telmisartan (TELMI) (30 mg/kg/d, ig) were administrated for 12 weeks. We used Echocardiography to detect the cardiac function. Morphology and structure of myocardium were observed. H9C2 cells were subjected to 1 μM Ang Ⅱ in vitro, 100 μM Pue, 0.5 μM Calmodulin-dependent calcineurin (CaN) inhibitor Cyclosporin A (CsA) and 1 μM specific transient receptor potential channel 6 (TRPC6) inhibitor SAR7334 were used in H9C2 cells. Long-term administration of Pue could significantly improve cardiac function, improve morphology and structure of myocardium in vivo. Pue could reduce MR related proteins expression (ACTC1, TGF-β1, CTGF, β-MHC and BNP), attenuate ROS, restore MMP and decrease Ca2+-overload in vitro. Further study indicated that Pue could decrease TRPC6 expression and inhibit nuclear factor of activated T cells 3 (NFATc3) nuclear translocation in vitro. These results suggested that puerarin could ameliorate myocardial remodeling through inhibiting TRPC6-CaN-NFATc3 in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Jiang Yan
- Department of Ultrasound, Taihe Hospital, Jinzhou Medicical University Union Training Base, Shiyan, 442000, China
| | - Yu Honglei
- Department of Ultrasound, Taihe Hospital, Jinzhou Medicical University Union Training Base, Shiyan, 442000, China
| | - Wu Yun
- Department of Ultrasound, Wuhan Asia General Hospital, Wuhan, 430000, China
| | - Dong Sheng
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - He Yun
- Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhang Anhua
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Feng Na
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Lu Min
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Shi Dandan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Wang Jing
- School of Public Health and Health, Hubei University of Medicine, Shiyan, 442000, China
| | - Tang Junming
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhang Wenjun
- Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - He Xiju
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China; Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
7
|
Gao M, Zhang Z, Lai K, Deng Y, Zhao C, Lu Z, Geng Q. Puerarin: A protective drug against ischemia-reperfusion injury. Front Pharmacol 2022; 13:927611. [PMID: 36091830 PMCID: PMC9449408 DOI: 10.3389/fphar.2022.927611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Ischemia-reperfusion (I/R) is a pathological process that occurs in numerous organs throughout the human body and is frequently associated with severe cellular damage and death. Puerarin is an isoflavone compound extracted from the root of Pueraria lobata and has pharmacological effects such as dilating cerebral vessels and anti-free radical generation in cerebral ischemic tissues. With the deepening of experimental research and clinical research on puerarin, it has been found that puerarin has a protective effect on ischemia-reperfusion injury (IRI) of the heart, brain, spinal cord, lung, intestine and other organs. In summary, puerarin has a vast range of pharmacological effects and significant protective effects, and it also has obvious advantages in the clinical protection of patients with organ IRI. With the deepening of experimental pharmacological research and clinical research, it is expected to be an effective drug for IRI treatment. In this review, we summarize the current knowledge of the protective effect of puerarin on I/R organ injury and its possible underlying molecular mechanisms.
Collapse
Affiliation(s)
- Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziyao Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuanbing Zhao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Weighted Gene Coexpression Network Analysis Identifies Crucial Genes Involved in Coronary Atherosclerotic Heart Disease. DISEASE MARKERS 2022; 2022:6971238. [PMID: 35958279 PMCID: PMC9363224 DOI: 10.1155/2022/6971238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Background Coronary atherosclerotic heart disease (CHD) is a lethal disease with an unstated pathogenic mechanism. Therefore, it is urgent to develop innovative strategies to ameliorate the outcome of CHD patients and explore novel biomarkers connected to the pathogenicity of CHD. Methods The weighted gene coexpression network analysis (WGCNA) was carried out on a coronary atherosclerosis dataset GSE90074 to determine the crucial modules and hub genes for their prospective relationship to CHD. After the different modules associated with CHD have been identified, the Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched pathway analyses were conducted. The protein-protein interaction (PPI) network was thereafter performed for the critical module using STRING and Cytoscape. Results The yellow module was recognized as the most critical module associated with CHD. The enriched pathways in the yellow module included those related to inflammatory response, positive regulation of extracellular signal-regulated kinase1/2 (ERK1/2) cascade, lipid catabolic process, cellular response to oxidative stress, apoptotic pathway, and NF-kappa B pathway. Further CytoHubba analysis revealed the top five hub genes (MMP14, CD28, CaMK4, RGS1, and DDAH1) associated with CHD development. Conclusions The current study provides the prognosis, novel hub genes, and signaling pathways for treating coronary atherosclerosis. However, their potential biological roles require deeper investigation.
Collapse
|
9
|
Huang S, Huang M, Tian S, Meng Z, Yan S, Teng M, Zhou Z, Diao J, Zhu W. Imazalil and its metabolite imazalil-M caused developmental toxicity in zebrafish (Danio rerio) embryos via cell apoptosis mediated by metabolic disorders. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105113. [PMID: 35715052 DOI: 10.1016/j.pestbp.2022.105113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Imazalil (IMZ) is a highly effective fungicide employed in crop production. It has been consistently detected in aquatic environments. The main environmental metabolite of IMZ is imazalil-M (IMZ-M). Limited studies have focused on the toxicity of IMZ and IMZ-M in aquatic organisms. This study systematically evaluated the developmental toxicity of IMZ and IMZ-M on zebrafish (Danio rerio) embryos and explored the potential mechanisms involved. The results showed that IMZ and IMZ-M caused developmental toxicity, characterized by decreased heart rate, hatching inhibition, and pericardial cyst in zebrafish embryos. Subsequently, acridine orange (AO) staining revealed cell apoptosis in the area around the heart regions of zebrafish larvae. Besides, the expression levels of apoptosis-related genes also varied significantly. Furthermore, 1H NMR-based metabolomics analysis showed that IMZ and IMZ-M exposure could induce metabolic profiles disorder in zebrafish larvae. Importantly, zebrafish exposure to IMZ and IMZ-M significantly affected the metabolism of branched - chain amino acids, energy, and ketone bodies, which are related to cell apoptosis. Overall, the toxicity of IMZ and IMZ-M in zebrafish embryos and larvae was characterized, suggesting a theoretical basis for the potential environmental risks of IMZ and its metabolite IMZ-M on non-target organisms.
Collapse
Affiliation(s)
- Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ming Huang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Wang B, Teng Y, Li Y, Lai S, Wu Y, Chen S, Li T, Han X, Zhou H, Wang Y, Lu Z, Li H, Ding Y, Ma L, Zhao M, Wang X. Evidence and Characteristics of Traditional Chinese Medicine for Coronary Heart Disease Patients With Anxiety or Depression: A Meta-Analysis and Systematic Review. Front Pharmacol 2022; 13:854292. [PMID: 35600859 PMCID: PMC9117623 DOI: 10.3389/fphar.2022.854292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Aims: The objective of this study was to assess the efficacy and potential mechanisms of Chinese herbal medicine (CHM) for treating coronary heart disease (CHD) patients with anxiety or depression.Methods: A systematic literature search was performed. Screening studies, extracting data, and assessing article quality were carried out independently by two researchers. The active ingredients of CHM for the treatment of CHD with anxiety or depression were analyzed by the network pharmacology, and the main potential mechanisms were summarized by the database of Web of Science.Results: A total of 32 studies were included. The results showed that compared with the blank control groups, CHM was more beneficial in treating anxiety or depression in patients with CHD [anxiety: OR = 3.22, 95% CI (1.94, 5.35), p < 0.00001, I2 = 0%; depression: OR = 3.27, 95% CI (1.67, 6.40), p = 0.0005, I2 = 0%], and the efficacy of CHM was not inferior to that of Western medicine (WM) [anxiety: OR = 1.58, 95%CI (0.39, 6.35), p = 0.52, I2 = 67%; depression: OR = 1.97, 95%CI (0.73, 5.28), p = 0.18, I2 = 33%,]. Additionally, CHM also showed a significant advantage in improving angina stability (AS) in CHD patients with anxiety or depression compared with blank groups [anxiety: SMD = 0.55, 95%CI (0.32, 0.79), p < 0.00001, I2 = 0%; depression: p = 0.004] and WM groups [anxiety: SMD = 1.14, 95%CI (0.80, 1.47), p < 0.00001, I2 = 0%; depression: SMD = 12.15, 95%CI (6.07, 18.23), p < 0.0001, I2 = 0%]. Angina frequency (AF) and electrocardiogram (ECG) analysis after using CHM demonstrated similar trends. Based on the network pharmacology, quercetin, kaempferol, luteolin, beta-sitosterol, puerarin, stigmasterol, isorhamnetin, baicalein, tanshinone IIa, and nobiletin were most closely and simultaneously related to the pathological targets of CHD, anxiety, and depression. The main underlying mechanisms might involve anti-damage/apoptosis, anti-inflammation, antioxidative stress, and maintaining neurotransmitter homeostasis.Conclusion: CHM exhibited an obvious efficacy in treating CHD patients with anxiety or depression, especially for improving the symptom of angina pectoris. The most active compounds of CHM could simultaneously act on the pathological targets of CHD, anxiety, and depression. Multiple effective components and multiple targets were the advantages of CHM compared with WM.
Collapse
Affiliation(s)
- Baofu Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Teng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sijia Lai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shiqi Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowan Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hufang Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziwen Lu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yukun Ding
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Ma
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Cardiovascular Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Mingjing Zhao, ; Xian Wang,
| | - Xian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Cardiovascular Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Mingjing Zhao, ; Xian Wang,
| |
Collapse
|
11
|
Gao Y, Yu XA, Wang B, Gu L, Ge Y, Zhu G, Sun K, Lu Y, Wang T, Bi K. Comparative pharmacokinetic study of twelve phenolic acids and flavonoids from red wine between control and coronary heart disease model rats by UFLC–MS/MS. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Jiang Z, Cui X, Qu P, Shang C, Xiang M, Wang J. Roles and mechanisms of puerarin on cardiovascular disease:A review. Biomed Pharmacother 2022; 147:112655. [DOI: 10.1016/j.biopha.2022.112655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
|
13
|
Mechanism of miR-378a-3p enriched in M2 macrophage-derived extracellular vesicles in cardiomyocyte pyroptosis after MI. Hypertens Res 2022; 45:650-664. [DOI: 10.1038/s41440-022-00851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/09/2022]
|
14
|
Zhang L, Liu L, Wang M. Effects of puerarin on chronic inflammation: Focus on the heart, brain, and arteries. Aging Med (Milton) 2021; 4:317-324. [PMID: 34964013 PMCID: PMC8711227 DOI: 10.1002/agm2.12189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 11/23/2022] Open
Abstract
Age-associated increases in physical and mental stress, known as allostatic load, could lead to a chronic low-grade inflammation in the heart, brain, and arteries. This low-grade inflammation potentially contributes to adverse structural and functional remodeling, such as intimal medial thickening, endothelial dysfunction, arterial stiffening, cardiac hypertrophy and ischemia, and cognitive decline. These cellular and tissue remodeling is the fertile soil for the development of age-associated structural and functional disorders in the cardiovascular and cerebrovascular systems in the pathogenesis of obesity, type II diabetes, hypertension, atherosclerosis, heart dysfunction, and cognitive decline. Growing evidence indicates that puerarin, a polyphenol, extracted from Puerara Labota, efficiently alleviates the initiation and progression of obesity, type II diabetes, hypertension, atherosclerosis, cardiac ischemia, cardiac arrythmia, cardiac hypertrophy, ischemic stroke, and cognition decline via suppression of oxidative stress and inflammation. This mini review focuses on recent advances in the effects of puerarin on the oxidative and inflammatory molecular, cellular, tissue events in the heart, brain, and arteries.
Collapse
Affiliation(s)
- Li Zhang
- Department of CardiologyThe First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Lisheng Liu
- National Centre for Cardiovascular DiseaseThe Beijing Hypertension League InstituteBeijingChina
| | - Mingyi Wang
- Laboratory of Cardiovascular ScienceIntramural Research ProgramNational Institute on AgingNational Institutes of HealthBRCBaltimoreMarylandUSA
| |
Collapse
|
15
|
Zeng XP, Zeng JH, Lin X, Ni YH, Jiang CS, Li DZ, He XJ, Wang R, Wang W. Puerarin Ameliorates Caerulein-Induced Chronic Pancreatitis via Inhibition of MAPK Signaling Pathway. Front Pharmacol 2021; 12:686992. [PMID: 34149430 PMCID: PMC8207514 DOI: 10.3389/fphar.2021.686992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic fibrosis is one of the most important pathological features of chronic pancreatitis (CP), and pancreatic stellate cells (PSCs) are considered to be the key cells. Puerarin is the most important flavonoid active component in Chinese herb Radix Puerariae, and it exhibited anti-fibrotic effect in various fibrous diseases recently. However, the impact and molecular mechanism of puerarin on CP and pancreatic fibrosis remain unknown. This study systematically investigated the effect of puerarin on CP and pancreatic fibrosis in vivo and in vitro. H&E staining, Sirius Red staining, qRT-PCR and Western blotting analysis of fibrosis and inflammation related genes of pancreatic tissues showed that puerarin notably ameliorated pancreatic atrophy, inflammation and fibrosis in a model of caerulein-induced murine CP. Western blotting analysis of pancreatic tissues showed the phosphorylation level of MAPK family proteins (JNK1/2, ERK1/2 and p38 MAPK) significantly increased after modeling of cerulein, while puerarin could inhibit their phosphorylation levels to a certain extent. We found that puerarin exerted a marked inhibition on the proliferation, migration and activation of PSCs, determined by CCK-8 assay, transwell migration assay, scratch wound-healing assay and expression levels of α-SMA, Fibronectin, Col1α1 and GFAP. Western blotting result demonstrated that puerarin markedly inhibited the phosphorylation of MAPK family proteins (JNK1/2, ERK1/2 and p38 MAPK) of PSCs in a dose-dependent manner whether or not stimulated by platelet-activating factor. In conclusion, the present study showed that puerarin could be a potential therapeutic candidate in the treatment of CP, and the MAPK pathway might be its important target.
Collapse
Affiliation(s)
- Xiang-Peng Zeng
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Jing-Hui Zeng
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xia Lin
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Yan-Hong Ni
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Chuan-Shen Jiang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Da-Zhou Li
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xiao-Jian He
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Rong Wang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Wen Wang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| |
Collapse
|
16
|
Guo D, He L, Gao Y, Jin C, Lin H, Zhang L, Wang L, Zhou Y, Yao J, Duan Y, Yang R, Qiu W, Jiang W. Obeticholic Acid Derivative, T-2054 Suppresses Osteoarthritis via Inhibiting NF-κB-Signaling Pathway. Int J Mol Sci 2021; 22:ijms22083807. [PMID: 33916928 PMCID: PMC8067620 DOI: 10.3390/ijms22083807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA), a degenerative joint disorder, has been reported as the most common cause of disability worldwide. The production of inflammatory cytokines is the main factor in OA. Previous studies have been reported that obeticholic acid (OCA) and OCA derivatives inhibited the release of proinflammatory cytokines in acute liver failure, but they have not been studied in the progression of OA. In our study, we screened our small synthetic library of OCA derivatives and found T-2054 had anti-inflammatory properties. Meanwhile, the proliferation of RAW 264.7 cells and ATDC5 cells were not affected by T-2054. T-2054 treatment significantly relieved the release of NO, as well as mRNA and protein expression levels of inflammatory cytokines (IL-6, IL-8 and TNF-α) in LPS-induced RAW 264.7 cells. Moreover, T-2054 promoted extracellular matrix (ECM) synthesis in TNF-α-treated ATDC5 chondrocytes. Moreover, T-2054 could relieve the infiltration of inflammatory cells and degeneration of the cartilage matrix and decrease the levels of serum IL-6, IL-8 and TNF-α in DMM-induced C57BL/6 mice models. At the same time, T-2054 showed no obvious toxicity to mice. Mechanistically, T-2054 decreased the extent of p-p65 expression in LPS-induced RAW 264.7 cells and TNF-α-treated ATDC5 chondrocytes. In summary, we showed for the first time that T-2054 effectively reduced the release of inflammatory mediators, as well as promoted extracellular matrix (ECM) synthesis via the NF-κB-signaling pathway. Our findings support the potential use of T-2054 as an effective therapeutic agent for the treatment of OA.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China; (D.G.); (Y.G.); (C.J.); (H.L.); (L.Z.); (Y.Z.); (J.Y.); (Y.D.); (R.Y.)
| | - Liming He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (L.H.); (L.W.)
| | - Yaoxin Gao
- Department of Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China; (D.G.); (Y.G.); (C.J.); (H.L.); (L.Z.); (Y.Z.); (J.Y.); (Y.D.); (R.Y.)
| | - Chenxu Jin
- Department of Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China; (D.G.); (Y.G.); (C.J.); (H.L.); (L.Z.); (Y.Z.); (J.Y.); (Y.D.); (R.Y.)
| | - Haizhen Lin
- Department of Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China; (D.G.); (Y.G.); (C.J.); (H.L.); (L.Z.); (Y.Z.); (J.Y.); (Y.D.); (R.Y.)
| | - Li Zhang
- Department of Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China; (D.G.); (Y.G.); (C.J.); (H.L.); (L.Z.); (Y.Z.); (J.Y.); (Y.D.); (R.Y.)
| | - Liting Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (L.H.); (L.W.)
| | - Ying Zhou
- Department of Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China; (D.G.); (Y.G.); (C.J.); (H.L.); (L.Z.); (Y.Z.); (J.Y.); (Y.D.); (R.Y.)
| | - Jie Yao
- Department of Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China; (D.G.); (Y.G.); (C.J.); (H.L.); (L.Z.); (Y.Z.); (J.Y.); (Y.D.); (R.Y.)
| | - Yixin Duan
- Department of Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China; (D.G.); (Y.G.); (C.J.); (H.L.); (L.Z.); (Y.Z.); (J.Y.); (Y.D.); (R.Y.)
| | - Renzheng Yang
- Department of Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China; (D.G.); (Y.G.); (C.J.); (H.L.); (L.Z.); (Y.Z.); (J.Y.); (Y.D.); (R.Y.)
| | - Wenwei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (L.H.); (L.W.)
- Correspondence: (W.Q.); (W.J.)
| | - Wenzheng Jiang
- Department of Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China; (D.G.); (Y.G.); (C.J.); (H.L.); (L.Z.); (Y.Z.); (J.Y.); (Y.D.); (R.Y.)
- Correspondence: (W.Q.); (W.J.)
| |
Collapse
|