1
|
Roston TM, Bezzerides VJ, Roberts JD, Abrams DJ. Management of ultrarare inherited arrhythmia syndromes. Heart Rhythm 2024:S1547-5271(24)03142-4. [PMID: 39154872 DOI: 10.1016/j.hrthm.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Ultrarare inherited arrhythmia syndromes are increasingly diagnosed as a result of increased awareness as well as increased availability and reduced cost of genetic testing. Yet by definition, their rarity and heterogeneous expression make development of evidence-based management strategies more challenging, typically employing strategies garnered from similar genetic cardiac disorders. For the most part, reliance on anecdotal experiences, expert opinion, and small retrospective cohort studies is the only means to diagnose and to treat these patients. Here we review the management of specific ultrarare inherited arrhythmic syndromes together with the genetic and molecular basis, which will become increasingly important with the development of targeted therapies to correct the biologic basis of these disorders.
Collapse
Affiliation(s)
- Thomas M Roston
- Division of Cardiology and Centre for Cardiovascular Innovation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Vassilios J Bezzerides
- Center for Cardiovascular Genetics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Dominic J Abrams
- Center for Cardiovascular Genetics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
2
|
Cipriano L, Piscopo R, Aiello C, Novelli A, Iolascon A, Piscopo C. Expanding the Phenotype of the CACNA1C-Associated Neurological Disorders in Children: Systematic Literature Review and Description of a Novel Mutation. CHILDREN (BASEL, SWITZERLAND) 2024; 11:541. [PMID: 38790536 PMCID: PMC11119747 DOI: 10.3390/children11050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Background: CACNA1C gene encodes the alpha 1 subunit of the CaV1.2 L-type Ca2+ channel. Pathogenic variants in this gene have been associated with cardiac rhythm disorders such as long QT syndrome, Brugada syndrome and Timothy syndrome. Recent evidence has suggested the possible association between CACNA1C mutations and neurologically-isolated (in absence of cardiac involvement) phenotypes in children, giving birth to a wider spectrum of CACNA1C-related clinical presentations. However, to date, little is known about the variety of both neurological and non-neurological signs/symptoms in the neurologically-predominant phenotypes. Methods and Results: We conducted a systematic review of neurologically-predominant presentations without cardiac conduction defects, associated with CACNA1C mutations. We also reported a novel de novo missense pathogenic variant in the CACNA1C gene of a children patient presenting with constructional, dressing and oro-buccal apraxia associated with behavioral abnormalities, mild intellectual disability, dental anomalies, gingival hyperplasia and mild musculoskeletal defects, without cardiac conduction defects. Conclusions: The present study highlights the importance of considering the investigation of the CACNA1C gene in children's neurological isolated syndromes, and expands the phenotype of the CACNA1C related conditions. In addition, the present study highlights that, even in absence of cardiac conduction defects, nuanced clinical manifestations of the Timothy syndrome (e.g., dental and gingival defects) could be found. These findings suggest the high variable expressivity of the CACNA1C gene and remark that the absence of cardiac involvement should not mislead the diagnosis of a CACNA1C related disorder.
Collapse
Affiliation(s)
- Lorenzo Cipriano
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy; (L.C.); (A.I.)
| | - Raffaele Piscopo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University Federico II, 80131 Naples, Italy;
| | - Chiara Aiello
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (C.A.); (A.N.)
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (C.A.); (A.N.)
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy; (L.C.); (A.I.)
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, A.O.R.N. “Antonio Cardarelli”, 80131 Naples, Italy
| |
Collapse
|
3
|
Jiang C, Zhang Y. Current updates on arrhythmia within Timothy syndrome: genetics, mechanisms and therapeutics. Expert Rev Mol Med 2023; 25:e17. [PMID: 37132248 PMCID: PMC10407238 DOI: 10.1017/erm.2023.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/04/2023]
Abstract
Timothy syndrome (TS), characterised by multiple system malfunction especially the prolonged corrected QT interval and synchronised appearance of hand/foot syndactyly, is an extremely rare disease affecting early life with devastating arrhythmia. In this work, firstly, the various mutations in causative gene CACNA1C encoding cardiac L-type voltage-gated calcium channel (LTCC), regard with the genetic pathogeny and nomenclature of TS are reviewed. Secondly, the expression profile and function of CACNA1C gene encoding Cav1.2 proteins, and its gain-of-function mutation in TS leading to multiple organ disease phenotypes especially arrhythmia are discussed. More importantly, we focus on the altered molecular mechanism underlying arrhythmia in TS, and discuss about how LTCC malfunction in TS can cause disorganised calcium handling with excessive intracellular calcium and its triggered dysregulated excitation-transcription coupling. In addition, current therapeutics for TS cardiac phenotypes including LTCC blockers, beta-adrenergic blocking agents, sodium channel blocker, multichannel inhibitors and pacemakers are summarised. Eventually, the research strategy using patient-specific induced pluripotent stem cells is recommended as one of the promising future directions for developing therapeutic approaches. This review updates our understanding on the research progress and future avenues to study the genetics and molecular mechanism underlying the pathogenesis of devastating arrhythmia within TS, and provides novel insights for developing therapeutic measures.
Collapse
Affiliation(s)
- Congshan Jiang
- National Regional Children's Medical Centre (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, China
| | - Yanmin Zhang
- National Regional Children's Medical Centre (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, China
- Department of Cardiology, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, China
| |
Collapse
|
4
|
Abstract
The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.
Collapse
Affiliation(s)
- Kevin G Herold
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John W Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivy E Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Ehtesham N, Mosallaei M, Beheshtian M, Khoshbakht S, Fadaee M, Vazehan R, Faraji Zonooz M, Karimzadeh P, Kahrizi K, Najmabadi H. Characterizing Genotypes and Phenotypes Associated with Dysfunction of Channel-Encoding Genes in a Cohort of Patients with Intellectual Disability. ARCHIVES OF IRANIAN MEDICINE 2022; 25:788-797. [PMID: 37543906 PMCID: PMC10685845 DOI: 10.34172/aim.2022.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/20/2021] [Indexed: 08/08/2023]
Abstract
BACKGROUND Ion channel dysfunction in the brain can lead to impairment of neuronal membranes and generate several neurological diseases, especially neurodevelopmental disorders. METHODS In this study, we set out to delineate the genotype and phenotype spectrums of 14 Iranian patients from 7 families with intellectual disability (ID) and/or developmental delay (DD) in whom genetic mutations were identified by next-generation sequencing (NGS) in 7 channel-encoding genes: KCNJ10, KCNQ3, KCNK6, CACNA1C, CACNA1G, SCN8A, and GRIN2B. Moreover, the data of 340 previously fully reported ID and/or DD cases with a mutation in any of these seven genes were combined with our patients to clarify the genotype and phenotype spectrum in this group. RESULTS In total, the most common phenotypes in 354 cases with ID/DD in whom mutation in any of these 7 channel-encoding genes was identified were as follows: ID (77.4%), seizure (69.8%), DD (59.8%), behavioral abnormality (29.9%), hypotonia (21.7%), speech disorder (21.5%), gait disturbance (20.9%), and ataxia (20.3%). Electroencephalography abnormality (33.9%) was the major brain imaging abnormality. CONCLUSION The results of this study broaden the molecular spectrum of channel pathogenic variants associated with different clinical presentations in individuals with ID and/or DD.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Meysam Mosallaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahrouz Khoshbakht
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahsa Fadaee
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Raheleh Vazehan
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Parvaneh Karimzadeh
- Department of Pediatric Neurology, School of Medicine, Pediatric Neurology Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| |
Collapse
|
6
|
Hermida A, Jedraszak G, Kubala M, Bourgain M, Bodeau S, Hermida JS. Use of ranolazine as rescue therapy in a patient with Timothy syndrome type 2. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2022; 75:447-448. [PMID: 34844894 DOI: 10.1016/j.rec.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Alexis Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France; EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens, France.
| | - Guillaume Jedraszak
- EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens, France; Molecular Genetics Laboratory, Amiens-Picardie University Hospital, Amiens, France
| | - Maciej Kubala
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France
| | - Marion Bourgain
- Pediatric Cardiology Department, Amiens-Picardie University Hospital, Amiens, France
| | - Sandra Bodeau
- Laboratory of Pharmacology and Toxicology, Amiens-Picardie University Hospital, Amiens, France
| | - Jean-Sylvain Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France
| |
Collapse
|
7
|
Hermida A, Jedraszak G, Kubala M, Bourgain M, Bodeau S, Hermida JS. Uso de ranolazina en paciente con síndrome de Timothy tipo 2. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2021.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|