1
|
Wang X, Li W, Cui S, Wu Y, Wei Y, Li J, Hu J. Impact of tps1 Deletion and Overexpression on Terpene Metabolites in Trichoderma atroviride. J Fungi (Basel) 2024; 10:485. [PMID: 39057372 PMCID: PMC11278490 DOI: 10.3390/jof10070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Terpenoids are structurally diverse natural products that have been widely used in the pharmaceutical, food, and cosmetic industries. Research has shown that fungi produce a variety of terpenoids, yet fungal terpene synthases remain not thoroughly explored. In this study, the tps1 gene, a crucial component of the terpene synthetic pathway, was isolated from Trichoderma atroviride HB20111 through genome mining. The function of this gene in the terpene synthetic pathway was investigated by constructing tps1-gene-deletion- and overexpression-engineered strains and evaluating the expression differences in the tps1 gene at the transcript level. HS-SPME-GC-MS analysis revealed significant variations in terpene metabolites among wild-type, tps1-deleted (Δtps1), and tps1-overexpressed (Otps1) strains; for instance, most sesquiterpene volatile organic compounds (VOCs) were notably reduced or absent in the Δtps1 strain, while nerolidol, β-acorenol, and guaiene were particularly produced by the Otps1 strain. However, both the Δtps1 and Otps1 strains produced new terpene metabolites compared to the wild-type, which indicated that the tps1 gene played an important role in terpene synthesis but was not the only gene involved in T. atroviride HB20111. The TPS1 protein encoded by the tps1 gene could function as a sesquiterpene cyclase through biological information and evolutionary tree analysis. Additionally, fungal inhibition assay and wheat growth promotion assay results suggested that the deletion or overexpression of the tps1 gene had a minimal impact on fungal inhibitory activity, plant growth promotion, and development, as well as stress response. This implies that these activities of T. atroviride HB20111 might result from a combination of multiple metabolites rather than being solely dependent on one specific metabolite. This study offers theoretical guidance for future investigations into the mechanism of terpenoid synthesis and serves as a foundation for related studies on terpenoid metabolic pathways in fungi.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jindong Hu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (X.W.)
| |
Collapse
|
2
|
Yang L, Yuan Y, Xiong L, Zhao Q, Yang M, Suo X, Hao Z. Study on the effects of toosendanin against Eimeria tenella and its impact on the apoptosis of cecal cells in chicks. Vet Parasitol 2024; 329:110194. [PMID: 38749123 DOI: 10.1016/j.vetpar.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/16/2024]
Abstract
To investigate the therapeutic effect of toosendanin (TSN) against Eimeria tenella (E. tenella) in chicks. In this experiment, a chick model of artificially induced E. tenella infection was established. The anti-coccidial effect was investigated by treating different doses of TSN. A preliminary mechanism of action was conducted, using cecal cell apoptosis as a starting point. TSN at the concentration of 5 mg/kg BW showed the best effect against E. tenella with the ACI value of 164.35. In addition, TSN reduced pathological damage to cecal tissue, increased the secretion of glycogen and mucus in cecal mucosa, and enhanced the mucosal protective effect. It also elevated the levels of IFN-γ, IL-2, and IgG in serum, and raised the sIgA content in cecal tissue of infected chicks, thereby improving overall immune function. TSN was observed to promote the apoptosis of cecum tissue cells by TUNEL staining analysis. Immunohistochemistry analysis revealed that in TSN-treated groups, the expression of Caspase-3 and Bax was elevated, while the expression of Bcl-2 was reduced. TSN induced apoptosis in host cells by dose-dependently decreasing the Bcl-2/Bax ratio and upregulating Caspase-3 expression. In summary, TSN exhibited significant anticoccidial efficacy by facilitating apoptosis in host cecal cells, with the most pronounced effect observed at a dosage of 5 mg/kg body weight.
Collapse
Affiliation(s)
- Li'nan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Yanyang Yuan
- College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100094, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China; Qingdao Animal Husbandry Workstation, Oingdao, Shandong 266100, China
| | - Lei Xiong
- College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Qingyu Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100094, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China; Qingdao Animal Husbandry Workstation, Oingdao, Shandong 266100, China
| | - Ming Yang
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100094, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China; Qingdao Animal Husbandry Workstation, Oingdao, Shandong 266100, China
| | - Xun Suo
- College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100094, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China; Qingdao Animal Husbandry Workstation, Oingdao, Shandong 266100, China
| |
Collapse
|
3
|
Luo L, Ni J, Zhang J, Lin J, Chen S, Shen F, Huang Z. Toosendanin induces hepatotoxicity by restraining autophagy and lysosomal function through inhibiting STAT3/CTSC axis. Toxicol Lett 2024; 394:102-113. [PMID: 38460807 DOI: 10.1016/j.toxlet.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Toosendanin (TSN) is the main active component in the traditional herb Melia toosendan Siebold & Zucc, which exhibits promising potential for development due to its diverse pharmacological properties. However, the hepatotoxicity associated with TSN needs further investigation. Previous research has implicated autophagy dysregulation in TSN-induced hepatotoxicity, yet the underlying mechanisms remain elusive. In this study, the mechanisms of signal transducer and activator of transcription 3 (STAT3) in TSN-induced autophagy inhibition and liver injury were explored using Stat3 knockout C57BL/6 mice and HepG2 cells. TSN decreased cell viability, increased lactate dehydrogenase (LDH) production in vitro, and elevated serum aspartate transaminase (AST) and alanine aminotransferase (ALT) levels as well as liver lesions in vivo, suggesting TSN had significant hepatotoxicity. TSN inhibited Janus kinase 2 (JAK2)/STAT3 pathway and the expression of cathepsin C (CTSC). Inhibition of STAT3 exacerbated TSN-induced autophagy inhibition and hepatic injury, whereas activation of STAT3 attenuated these effects of TSN. Mechanistically, STAT3 transcriptionally regulated the level of CTSC gene, which in turn affected autophagy and the process of liver injury. TSN-administered Stat3 knockout mice showed more severe hepatotoxicity, CTSC downregulation, and autophagy blockade than wildtype mice. In summary, TSN caused hepatotoxicity by inhibiting STAT3/CTSC axis-dependent autophagy and lysosomal function.
Collapse
Affiliation(s)
- Li Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiajie Ni
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiahui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jinxian Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sixin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Feihai Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|