1
|
Li Y, Lin Y, Guo J, Huang D, Zuo H, Zhang H, Yuan G, Liu H, Chen Z. CREB3L1 deficiency impairs odontoblastic differentiation and molar dentin deposition partially through the TMEM30B. Int J Oral Sci 2024; 16:59. [PMID: 39384739 PMCID: PMC11464721 DOI: 10.1038/s41368-024-00322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 10/11/2024] Open
Abstract
Odontoblasts are primarily responsible for synthesizing and secreting extracellular matrix proteins, which are crucial for dentinogenesis. Our previous single-cell profile and RNAscope for odontoblast lineage revealed that cyclic adenosine monophosphate responsive element-binding protein 3 like 1 (Creb3l1) was specifically enriched in the terminal differentiated odontoblasts. In this study, deletion of Creb3l1 in the Wnt1+ lineage led to insufficient root elongation and dentin deposition. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing were performed to revealed that in CREB3L1-deficient mouse dental papilla cells (mDPCs), the genes near the closed chromatin regions were mainly associated with mesenchymal development and the downregulated genes were primarily related to biological processes including cell differentiation, protein biosynthesis and transport, all of which were evidenced by a diminished ability of odontoblastic differentiation, a significant reduction in intracellular proteins, and an even greater decline in extracellular supernatant proteins. Dentin matrix protein 1 (Dmp1), dentin sialophosphoprotein (Dspp), and transmembrane protein 30B (Tmem30b) were identified as direct transcriptional regulatory targets. TMEM30B was intensively expressed in the differentiated odontoblasts, and exhibited a significant decline in both CREB3L1-deficient odontoblasts in vivo and in vitro. Deletion of Tmem30b impaired the ability of odontoblastic differentiation, protein synthesis, and protein secretion in mDPCs. Moreover, overexpressing TMEM30B in CREB3L1-deficient mDPCs partially rescued the extracellular proteins secretion. Collectively, our findings suggest that CREB3L1 participates in dentinogenesis and facilitates odontoblastic differentiation by directly enhancing the transcription of Dmp1, Dspp, and other differentiation-related genes and indirectly promoting protein secretion partially via TMEM30B.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuxiu Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China
| | - Jinqiang Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Delan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hanshu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Amir M, Jeevithan L, Barkat M, Fatima SH, Khan M, Israr S, Naseer F, Fayyaz S, Elango J, Wu W, Maté Sánchez de Val JE, Rahman SU. Advances in Regenerative Dentistry: A Systematic Review of Harnessing Wnt/β-Catenin in Dentin-Pulp Regeneration. Cells 2024; 13:1153. [PMID: 38995004 PMCID: PMC11240772 DOI: 10.3390/cells13131153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Dentin pulp has a complex function as a major unit in maintaining the vitality of teeth. In this sense, the Wnt/β-Catenin pathway has a vital part in tooth development, maintenance, repair, and regeneration by controlling physiological activities such as growth, differentiation, and migration. This pathway consists of a network of proteins, such as Wnt signaling molecules, which interact with receptors of targeted cells and play a role in development and adult tissue homeostasis. The Wnt signals are specific spatiotemporally, suggesting its intricate mechanism in development, regulation, repair, and regeneration by the formation of tertiary dentin. This review provides an overview of the recent advances in the Wnt/β-Catenin signaling pathway in dentin and pulp regeneration, how different proteins, molecules, and ligands influence this pathway, either upregulating or silencing it, and how it may be used in the future for clinical dentistry, in vital pulp therapy as an effective treatment for dental caries, as an alternative approach for root canal therapy, and to provide a path for therapeutic and regenerative dentistry.
Collapse
Affiliation(s)
- Mariam Amir
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Lakshmi Jeevithan
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
| | - Maham Barkat
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Syeda Habib Fatima
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Malalai Khan
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Sara Israr
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Fatima Naseer
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Sarmad Fayyaz
- Department of Dental Materials Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
| | - José Eduardo Maté Sánchez de Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Saeed Ur Rahman
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| |
Collapse
|
3
|
Lavicky J, Kolouskova M, Prochazka D, Rakultsev V, Gonzalez-Lopez M, Steklikova K, Bartos M, Vijaykumar A, Kaiser J, Pořízka P, Hovorakova M, Mina M, Krivanek J. The Development of Dentin Microstructure Is Controlled by the Type of Adjacent Epithelium. J Bone Miner Res 2022; 37:323-339. [PMID: 34783080 PMCID: PMC9300090 DOI: 10.1002/jbmr.4471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Considerable amount of research has been focused on dentin mineralization, odontoblast differentiation, and their application in dental tissue engineering. However, very little is known about the differential role of functionally and spatially distinct types of dental epithelium during odontoblast development. Here we show morphological and functional differences in dentin located in the crown and roots of mouse molar and analogous parts of continuously growing incisors. Using a reporter (DSPP-cerulean/DMP1-cherry) mouse strain and mice with ectopic enamel (Spry2+/- ;Spry4-/- ), we show that the different microstructure of dentin is initiated in the very beginning of dentin matrix production and is maintained throughout the whole duration of dentin growth. This phenomenon is regulated by the different inductive role of the adjacent epithelium. Thus, based on the type of interacting epithelium, we introduce more generalized terms for two distinct types of dentins: cementum versus enamel-facing dentin. In the odontoblasts, which produce enamel-facing dentin, we identified uniquely expressed genes (Dkk1, Wisp1, and Sall1) that were either absent or downregulated in odontoblasts, which form cementum-facing dentin. This suggests the potential role of Wnt signalling on the dentin structure patterning. Finally, we show the distribution of calcium and magnesium composition in the two developmentally different types of dentins by utilizing spatial element composition analysis (LIBS). Therefore, variations in dentin inner structure and element composition are the outcome of different developmental history initiated from the very beginning of tooth development. Taken together, our results elucidate the different effects of dental epithelium, during crown and root formation on adjacent odontoblasts and the possible role of Wnt signalling which together results in formation of dentin of different quality. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Josef Lavicky
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Magdalena Kolouskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Prochazka
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Vladislav Rakultsev
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcos Gonzalez-Lopez
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Klara Steklikova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Bartos
- Institute of Dental Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jozef Kaiser
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Pavel Pořízka
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mina Mina
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Wang J, Ran S, Liu B, Gu S. Monitoring of canonical BMP and Wnt activities during postnatal stages of mouse first molar root formation. J Appl Oral Sci 2021; 29:e20210281. [PMID: 34910074 PMCID: PMC8687650 DOI: 10.1590/1678-7757-2021-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Objective This study aimed to explore the precise temporospatial distributions of bone morphogenetic protein (BMP) and Wnt signaling pathways during postnatal development of mammalian tooth roots after the termination of crown morphogenesis. Methodology A total of two transgenic mouse lines, BRE-LacZ mice and BAT-gal mice, were undertaken. The mice were sacrificed on every postnatal (PN) day from PN 3d up to PN 21d. Then, the first lower molars were extracted, and the dissected mandibles were stained with 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal) and fixed. Serial sections at 10 µm were prepared after decalcification, dehydration, and embedding in paraffin. Results We observed BMP/Smads and Wnt/β-catenin signaling activities in the dental sac, dental pulp, and apical papilla with a certain degree of variation. The position of activation of the BMP/Smad signaling pathway was located more coronally in the early stage, which then gradually expanded as root elongation proceeded and was associated with blood vessels in the pulp and developing complex apical tissues in the later stage. However, Wnt/β-catenin signaling was highly concentrated in the mesenchyme below the cusps in the early stage, gradually expanded to regions around the root in the transition/root stage, and then disappeared entirely in the later stage. Conclusions These results further confirmed the participation of both BMP and Wnt canonical signaling pathways in tooth root development, as well as formed the basis for future studies on how precisely integrated signaling pathways regulate root morphogenesis and regeneration.
Collapse
Affiliation(s)
- Jia Wang
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China.,Tulane University, Department of Cell and Molecular Biology, New Orleans, LA, USA
| | - Shujun Ran
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China
| | - Bin Liu
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China
| | - Shensheng Gu
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China
| |
Collapse
|
5
|
Tokavanich N, Wein MN, English JD, Ono N, Ono W. The Role of Wnt Signaling in Postnatal Tooth Root Development. FRONTIERS IN DENTAL MEDICINE 2021; 2:769134. [PMID: 35782525 PMCID: PMC9248717 DOI: 10.3389/fdmed.2021.769134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Appropriate tooth root formation and tooth eruption are critical for achieving and maintaining good oral health and quality of life. Tooth eruption is the process through which teeth emerge from their intraosseous position to their functional position in the oral cavity. This temporospatial process occurs simultaneously with tooth root formation through a cascade of interactions between the epithelial and adjoining mesenchymal cells. Here, we will review the role of the Wnt system in postnatal tooth root development. This signaling pathway orchestrates the process of tooth root formation and tooth eruption in conjunction with several other major signaling pathways. The Wnt signaling pathway is comprised of the canonical, or Wnt/β-catenin, and the non-Canonical signaling pathway. The expression of multiple Wnt ligands and their downstream transcription factors including β-catenin is found in the cells in the epithelia and mesenchyme starting from the initiation stage of tooth development. The inhibition of canonical Wnt signaling in an early stage arrests odontogenesis. Wnt transcription factors continue to be present in dental follicle cells, the progenitor cells responsible for differentiation into cells constituting the tooth root and the periodontal tissue apparatus. This expression occurs concurrently with osteogenesis and cementogenesis. The conditional ablation of β-catenin in osteoblast and odontoblast causes the malformation of the root dentin and cementum. On the contrary, the overexpression of β-catenin led to shorter molar roots with thin and hypo-mineralized dentin, along with the failure of tooth eruption. Therefore, the proper expression of Wnt signaling during dental development is crucial for regulating the proliferation, differentiation, as well as epithelial-mesenchymal interaction essential for tooth root formation and tooth eruption.
Collapse
Affiliation(s)
- Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
6
|
Xu C, Xie X, Zhao L, Wu Y, Wang J. The critical role of nuclear factor I-C in tooth development. Oral Dis 2021; 28:2093-2099. [PMID: 34637578 DOI: 10.1111/odi.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Nuclear factor I-C (NFIC) plays a critical role in regulating epithelial-mesenchymal crosstalk during tooth development. However, it remains largely unknown about how NFIC functions in dentin and enamel formation. In the present review, we aim to summarize the most recent discoveries in the field and gain a better understanding of the roles NFIC performs during tooth formation. SUBJECTS AND METHODS Nfic-/- mice exhibit human dentin dysplasia type I (DDI)-like phenotypes signified by enlarged pulp chambers, the presence of short-root anomaly, and failure of odontoblast differentiation. Although loss of NFIC has little effect on molar crown morphology, researchers have detected aberrant microstructures of enamel in the incisors. Recently, accumulating evidence has further uncovered the novel function of NFIC in the process of enamel and dentin formation. RESULTS During epithelial-mesenchyme crosstalk, the expression of NFIC is under the control of SHH-PTCH-SMO-GLI1 pathway. NFIC is closely involved in odontoblast lineage cells proliferation and differentiation, and the maintenance of NFIC protein level in cytoplasm is negatively regulated by TGF-β signaling pathway. In addition, NFIC has mild effect on ameloblast differentiation, enamel mineralization and cementum formation. CONCLUSIONS NFIC plays an important role in tooth development and is required for the formation of dentin, enamel as well as cementum.
Collapse
Affiliation(s)
- Chunmei Xu
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Deng S, Fan L, Wang Y, Zhang Q. Constitutive activation of β-catenin in odontoblasts induces aberrant pulp calcification in mouse incisors. J Mol Histol 2021; 52:567-576. [PMID: 33689044 DOI: 10.1007/s10735-021-09965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
During dentin formation, odontoblast polarization ensures that odontoblasts directionally secrete dentin matrix protein, leading to tubular dentin formation; however, little is known about the major features and regulatory mechanisms of odontoblast polarization. In a study of epithelial cell polarization, β-catenin was shown to serve as a structural component of cadherin-based adherens junctions to initiate cell polarity. However, the role of β-catenin in odontoblast polarization has not been well investigated. In this study, we explored whether β-catenin participated in odontoblast polarization to regulate the secretion of mineralization proteins. We established Col1-CreErt2; β-catenin exon3fl/fl (CA-β-catenin) mice, which constitutively activate β-catenin in odontoblasts. CA-β-catenin mice exhibited disorganization and depolarization of incisor odontoblasts. Moreover, the incisor dentin was hypomineralized, and ectopic calcification was found in mouse incisor pulp. In addition, by constitutive activation of β-catenin, the expression levels of the core polarity molecule Cdc42 and its downstream polarity protein complex Par3-Par6-aPKC were decreased in the incisors of CA-β-catenin mice. These findings suggest that β-catenin plays an essential role in dentin formation by regulating odontoblast polarization.
Collapse
Affiliation(s)
- Shijian Deng
- Department of Endodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Yanchang Road, Shanghai, 200072, China
| | - Linlin Fan
- Department of Endodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Yanchang Road, Shanghai, 200072, China
- Department of Pediatric Dentistry, Wuxi Stomatology Hospital, Jiangsu, China
| | - Yunfei Wang
- Department of Endodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Yanchang Road, Shanghai, 200072, China
- Department of Endodontics, Shanghai Xuhui District Dental Center, Shanghai, China
| | - Qi Zhang
- Department of Endodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
8
|
Driesen RB, Gervois P, Vangansewinkel T, Lambrichts I. Unraveling the Role of the Apical Papilla During Dental Root Maturation. Front Cell Dev Biol 2021; 9:665600. [PMID: 34026757 PMCID: PMC8134663 DOI: 10.3389/fcell.2021.665600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The apical papilla is a stem cell rich tissue located at the base of the developing dental root and is responsible for the progressive elongation and maturation of the root. The multipotent stem cells of the apical papilla (SCAP) are extensively studied in cell culture since they demonstrate a high capacity for osteogenic, adipogenic, and chondrogenic differentiation and are thus an attractive stem cell source for stem cell-based therapies. Currently, only few studies are dedicated to determining the role of the apical papilla in dental root development. In this review, we will focus on the architecture of the apical papilla and describe the specific SCAP signaling pathways involved in root maturation. Furthermore, we will explore the heterogeneity of the SCAP phenotype within the tissue and determine their micro-environmental interaction. Understanding the mechanism of postnatal dental root growth could further aid in developing novel strategies in dental root regeneration.
Collapse
Affiliation(s)
- Ronald B Driesen
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Pascal Gervois
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Tim Vangansewinkel
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Ivo Lambrichts
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| |
Collapse
|
9
|
Sheng R, Wang Y, Wu Y, Wang J, Zhang S, Li Q, Zhang D, Qi X, Xiao Q, Jiang S, Yuan Q. METTL3-Mediated m 6 A mRNA Methylation Modulates Tooth Root Formation by Affecting NFIC Translation. J Bone Miner Res 2021; 36:412-423. [PMID: 32936965 DOI: 10.1002/jbmr.4180] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine (m6 A), as a eukaryotic mRNA modification catalyzed by methyltransferase METTL3, is involved in various processes of development or diseases via regulating RNA metabolism. However, the effect of METTL3-mediated m6 A modification in tooth development has remained elusive. Here we show that METTL3 is prevalently expressed in odontoblasts, dental pulp cells, dental follicle cells, and epithelial cells in Hertwig's epithelial root sheath during tooth root formation. Depletion of METTL3 in human dental pulp cells (hDPCs) impairs proliferation, migration, and odontogenic differentiation. Furthermore, conditional knockout of Mettl3 in Osterix-expressing cells leads to short molar roots and thinner root dentin featured by decreased secretion of pre-dentin matrix and formation of the odontoblast process. Mechanistically, loss of METTL3 cripples the translational efficiency of the key root-forming regulator nuclear factor I-C (NFIC). The odontogenic capacity of METTL3-silenced hDPCs is partially rescued via overexpressing NFIC. Our findings suggest that m6 A methyltransferase METTL3 is crucial for tooth root development, uncovering a novel epigenetic mechanism in tooth root formation. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rui Sheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunshu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingyue Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Ma Y, Jing J, Feng J, Yuan Y, Wen Q, Han X, He J, Chen S, Ho TV, Chai Y. Ror2-mediated non-canonical Wnt signaling regulates Cdc42 and cell proliferation during tooth root development. Development 2021; 148:dev.196360. [PMID: 33323370 PMCID: PMC7847279 DOI: 10.1242/dev.196360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
The control of size and shape is an important part of regulatory process during organogenesis. Tooth formation is a highly complex process that fine-tunes the size and shape of the tooth, which are crucial for its physiological functions. Each tooth consists of a crown and one or more roots. Despite comprehensive knowledge of the mechanism that regulates early tooth crown development, we have limited understanding of the mechanism regulating root patterning and size during development. Here, we show that Ror2-mediated non-canonical Wnt signaling in the dental mesenchyme plays a crucial role in cell proliferation, and thereby regulates root development size in mouse molars. Furthermore, Cdc42 acts as a potential downstream mediator of Ror2 signaling in root formation. Importantly, activation of Cdc42 can restore cell proliferation and partially rescue the root development size defects in Ror2 mutant mice. Collectively, our findings provide novel insights into the function of Ror2-mediated non-canonical Wnt signaling in regulating tooth morphogenesis, and suggest potential avenues for dental tissue engineering. Summary: The function of Ror2-mediated non-canonical Wnt signaling and its effect on Cdc42 activation is crucial in regulating progenitor cell proliferation, odontoblast differentiation and Hertwig's epithelial root sheath formation during tooth root morphogenesis.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Guangdong Provincial Key Laboratory of Stomatology, Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
11
|
Wang J, Zhang W, Zhou L. A maxillary center incisor with three independent roots and three root canals: A case report. Medicine (Baltimore) 2020; 99:e21761. [PMID: 32872071 PMCID: PMC7437805 DOI: 10.1097/md.0000000000021761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 06/11/2020] [Accepted: 07/15/2020] [Indexed: 12/03/2022] Open
Abstract
RATIONALE Three root canals (mesiobuccal, distobuccal and palatal) are rarely found (frequency <1%) in the maxillary central incisor even though root canal morphology in maxillary premolars is highly variable. Therefore, research papers showed that dentists can easily miss the root canals in diagnosis and inflammatory diffusion; which could cause unsuccessful root canal treatment leading to various possible infections and no change in original inflammations. In this report, the diagnose and clinical management of an unusual case of a maxillary center incisor with three independent roots and three root canals is presented, along with a demonstration of using CBCT (Cone Beam Computed Tomography) and collaborate with other departments to successfully accomplish an accurate diagnosis of the morphology and quantity of the root canal system. PATIENT CONCERNS The patient was referred to clinic for his repeatedly abscessed in the gums of the left upper central incisor. DIAGNOSES Based on clinical and radiographic evidences, the patient was tentatively diagnosed with a chronic periapical periodontitis for #21 tooth. INTERVENTIONS The patient was performed with the conventional root canal treatment and then clinical observed. OUTCOMES At the second visit after 7 days, the patient was not sensitive to percussion. After operation for 3 months, and found that the sinus opening had not healed. Then, the patient was undergone with the periodontal flap surgery to remove root infection for 2 weeks. LESSONS From this clinical case, the lesson learned is that the previous clinical experiences cannot be used to make judgments or decisions; it requires specific analysis from the information gathered through CBCT(Cone Beam Computed Tomography)and the cooperation between different departments to come up with a responsible decision. In any stomatological hospitals, due to the large number of departments and the strong specialized focuses for each department; it is very important to encourage and support the cooperation between the departments, to limit any judgment bias due to lack of knowledge and maximize each department's strengths.
Collapse
Affiliation(s)
| | - Wenyi Zhang
- Department of Periodontology and Oral Mucosal Diseases
| | - Lei Zhou
- Department of Endodontic, Qingdao Stomatological Hospital, Qingdao, China
| |
Collapse
|
12
|
Pawlaczyk-Kamieńska T, Winiarska H, Kulczyk T, Cofta S. Dental Anomalies in Rare, Genetic Ciliopathic Disorder-A Case Report and Review of Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124337. [PMID: 32560490 PMCID: PMC7345725 DOI: 10.3390/ijerph17124337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022]
Abstract
Background: Primary ciliary dyskinesia (PCD) is a rare, ciliopathic disorder. In many ciliopathies, dental anomalies are observed alongside other symptoms of the disease. To date, there are no published reports concerning the dental developmental problems that are associated with ciliary defects in PCD patients. Methods: Patients suffering from PCD underwent dental clinical examination, which included the assessment of developmental disorders regarding the number and morphological structure of the teeth (size and shape) as well as developmental disorders of mineralised dental tissues. Then, three-dimensional radiographic examination was performed utilising Cone Beam Computed Tomography (CBCT). Results: Four PCD patients, aged 31-54, agreed to enter the study. Dental examinations showed the presence of dental developmental disorders in three of them. Additionally, CBCT showed abnormalities in those patients. Conclusions: 1. The dental phenotype in PCD patients seems to be heterogeneous. Tooth developmental disorders resulting from abnormal odontogenesis may be a symptom of PCD that is concomitant with other developmental abnormalities resulting from malfunctioning primary cilia. 2. Patients with ciliopathies are likely to develop dental developmental defects. Therefore, beginning in early childhood, they should be included in a targeted specialised dental programme to enable early diagnosis and to ensure dedicated preventive and therapeutic measures.
Collapse
Affiliation(s)
- Tamara Pawlaczyk-Kamieńska
- Department of Risk Group Dentistry, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznań, Poland
- Correspondence:
| | - Hanna Winiarska
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznań, Poland; (H.W.); (S.C.)
| | - Tomasz Kulczyk
- Section of Dental Radiology, Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznań, Poland;
| | - Szczepan Cofta
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznań, Poland; (H.W.); (S.C.)
| |
Collapse
|
13
|
Omi M, Kulkarni AK, Raichur A, Fox M, Uptergrove A, Zhang H, Mishina Y. BMP-Smad Signaling Regulates Postnatal Crown Dentinogenesis in Mouse Molar. JBMR Plus 2020; 4:e10249. [PMID: 32149267 PMCID: PMC7017888 DOI: 10.1002/jbm4.10249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Dentinogenesis, a formation of dentin by odontoblasts, is an essential process during tooth development. Bone morphogenetic proteins (BMPs) are one of the most crucial growth factors that contribute to dentin formation. However, it is still unclear how BMP signaling pathways regulate postnatal crown and root dentinogenesis. BMPs transduce signals through canonical Smad and non-Smad signaling pathways including p38 and ERK signaling pathways. To investigate the roles of Smad and non-Smad signaling pathways in dentinogenesis, we conditionally deleted Bmpr1a, which encodes the type 1A receptor for BMPs, to remove both Smad and non-Smad pathways in Osterix-expressing cells. We also expressed a constitutively activated form of Bmpr1a (caBmpr1a) to increase Smad1/5/9 signaling activity without altered non-Smad activity in odontoblasts. To understand the function of BMP signaling during postnatal dentin formation, Cre activity was induced at the day of birth. Our results showed that loss of BmpR1A in odontoblasts resulted in impaired dentin formation and short molar roots at postnatal day 21. Bmpr1a cKO mice displayed a reduction of dentin matrix production compared to controls associated with increased cell proliferation and reduced Osx and Dspp expression. In contrast, caBmpr1a mutant mice that show increased Smad1/5/9 signaling activity resulted in no overt tooth phenotype. To further dissect the functions of each signaling activity, we generated Bmpr1a cKO mice also expressing caBmpr1a to restore only Smad1/5/9 signaling activity. Restoring Smad activity in the compound mutant mice rescued impaired crown dentin formation in the Bmpr1a cKO mice; however, impaired root dentin formation and short roots were not changed. These results suggest that BMP-Smad signaling in odontoblasts is responsible for crown dentin formation, while non-Smad signaling may play a major role in root dentin formation and elongation. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Anshul K Kulkarni
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Anagha Raichur
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Mason Fox
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Amber Uptergrove
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Honghao Zhang
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| |
Collapse
|
14
|
Lu X, Yang J, Zhao S, Liu S. Advances of Wnt signalling pathway in dental development and potential clinical application. Organogenesis 2019; 15:101-110. [PMID: 31482738 DOI: 10.1080/15476278.2019.1656996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Wnt signalling pathway is widely studied in many processes of biological development, like embryogenesis, tissue homeostasis and wound repair. It is universally known that Wnt signalling pathway plays an important role in tooth development. Here, we summarized the function of Wnt signalling pathway during tooth initiation, crown morphogenesis, root formation, and discussed the therapeutic potential of Wnt modulators.
Collapse
Affiliation(s)
- Xi Lu
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Jun Yang
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Shangfeng Liu
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| |
Collapse
|
15
|
NFIC promotes the vitality and osteogenic differentiation of rat dental follicle cells. J Mol Histol 2019; 50:471-482. [PMID: 31432308 DOI: 10.1007/s10735-019-09841-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Nuclear factor I-C (NFIC) plays critical roles in the regulation of tooth development by influencing the biological behaviors of stem cells in the dental germ. This study aimed to investigate the effect of NFIC on the vitality and osteogenic/cementogenic differentiation of rat dental follicle cells (DFCs). DFCs were isolated from dental follicles in the first molars of neonatal rats. DFCs expressed mesenchymal stromal cell markers CD29, CD44 and CD90 and had capabilities for self-renewal and multipotent differentiation. Overexpression of NFIC promoted the proliferation of DFCs without markedly influencing the apoptosis of DFCs. Moreover, NFIC increased alkaline phosphatase (ALP) activity in DFCs and upregulated the mRNA levels of osteogenic-related markers, namely, collagen type I (Col I), Runt-related transcription factor 2 (Runx2) and ALP, as well as β-catenin. In contrast, silencing NFIC by siRNA increased the apoptosis of DFCs and downregulated the expression of osteogenic-related markers. In conclusion, these results suggested that upregulation of NFIC may promote the proliferation and osteogenic/cementogenic differentiation of DFCs.
Collapse
|
16
|
Brusevold IJ, Bie TMG, Baumgartner CS, Das R, Espelid I. Molar incisor malformation in six cases: description and diagnostic protocol. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 124:52-61. [DOI: 10.1016/j.oooo.2017.03.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/20/2017] [Accepted: 03/26/2017] [Indexed: 10/19/2022]
|
17
|
Osawa E, Shintani S, Yamamoto H. Histological and Immunohistochemical Observation of the Furcation Area Formation with the Subpulpal Lobus of Rat Molar. J HARD TISSUE BIOL 2017. [DOI: 10.2485/jhtb.26.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Eri Osawa
- Department of Pediatric Dentistry, Tokyo Dental College
| | | | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College
| |
Collapse
|
18
|
Ahn JI, Yoo JY, Kim TH, Kim YI, Ferguson SD, Fazleabas AT, Young SL, Lessey BA, Ahn JY, Lim JM, Jeong JW. cAMP-Response Element-Binding 3-Like Protein 1 (CREB3L1) is Required for Decidualization and its Expression is Decreased in Women with Endometriosis. Curr Mol Med 2016; 16:276-87. [PMID: 26917262 DOI: 10.2174/1566524016666160225153659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/10/2016] [Accepted: 02/19/2016] [Indexed: 11/22/2022]
Abstract
Endometriosis is a major cause of infertility and pelvic pain, affecting more than 10% of reproductive-aged women. Progesterone resistance has been observed in the endometrium of women with this disease, as evidenced by alterations in progesterone-responsive gene and protein expression. cAMPResponse Element-Binding 3-like protein 1 (Creb3l1) has previously been identified as a progesterone receptor (PR) target gene in mouse uterus via high density DNA microarray analysis. However, CREB3L1 function has not been studied in the context of endometriosis and uterine biology. In this study, we validated progesterone (P4) regulation of Creb3l1 in the uteri of wild-type and progesterone receptor knockout (PRKO) mice. Furthermore, we observed that CREB3L1 expression was significantly higher in secretory phase human endometrium compared to proliferative phase and that CREB3L1 expression was significantly decreased in the endometrium of women with endometriosis. Lastly, by transfecting CREB3L1 siRNA into cultured human endometrial stromal cells (hESCs) prior to hormonal induction of in vitro decidualization, we showed that CREB3L1 is required for the decidualization process. Interestingly, phosphorylation of ERK1/2, critical factor for decidualization, was also significantly reduced in CREB3L1-silenced hESCs. It is known that hESCs from patients with endometriosis show impaired decidualization and that dysregulation of the P4-PR signaling axis is linked to a variety of endometrial diseases including infertility and endometriosis. Therefore, these results suggest that CREB3L1 is required for decidualization in mice and humans and may be linked to the pathogenesis of endometriosis in a P4-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - J M Lim
- Laboratory of Stem Cell and Bioevaluation, Major in Biomodulation, Seoul National University, Seoul 151-921, Republic of Korea.
| | - J-W Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, College of Human Medicine, 333 Bostwick Avenue NE, Suite 4024, Grand Rapids, MI 49503, USA.
| |
Collapse
|
19
|
Multiple essential MT1-MMP functions in tooth root formation, dentinogenesis, and tooth eruption. Matrix Biol 2016; 52-54:266-283. [PMID: 26780723 DOI: 10.1016/j.matbio.2016.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 11/23/2022]
Abstract
Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a transmembrane zinc-endopeptidase that breaks down extracellular matrix components, including several collagens, during tissue development and physiological remodeling. MT1-MMP-deficient mice (MT1-MMP(-/-)) feature severe defects in connective tissues, such as impaired growth, osteopenia, fibrosis, and conspicuous loss of molar tooth eruption and root formation. In order to define the functions of MT1-MMP during root formation and tooth eruption, we analyzed the development of teeth and surrounding tissues in the absence of MT1-MMP. In situ hybridization showed that MT1-MMP was widely expressed in cells associated with teeth and surrounding connective tissues during development. Multiple defects in dentoalveolar tissues were associated with loss of MT1-MMP. Root formation was inhibited by defective structure and function of Hertwig's epithelial root sheath (HERS). However, no defect was found in creation of the eruption pathway, suggesting that tooth eruption was hampered by lack of alveolar bone modeling/remodeling coincident with reduced periodontal ligament (PDL) formation and integration with the alveolar bone. Additionally, we identified a significant defect in dentin formation and mineralization associated with the loss of MT1-MMP. To segregate these multiple defects and trace their cellular origin, conditional ablation of MT1-MMP was performed in epithelia and mesenchyme. Mice featuring selective loss of MT1-MMP activity in the epithelium were indistinguishable from wild type mice, and importantly, featured a normal HERS structure and molar eruption. In contrast, selective knock-out of MT1-MMP in Osterix-expressing mesenchymal cells, including osteoblasts and odontoblasts, recapitulated major defects from the global knock-out including altered HERS structure, short roots, defective dentin formation and mineralization, and reduced alveolar bone formation, although molars were able to erupt. These data indicate that MT1-MMP activity in the dental mesenchyme, and not in epithelial-derived HERS, is essential for proper tooth root formation and eruption. In summary, our studies point to an indispensable role for MT1-MMP-mediated matrix remodeling in tooth eruption through effects on bone formation, soft tissue remodeling and organization of the follicle/PDL region.
Collapse
|
20
|
He YD, Sui BD, Li M, Huang J, Chen S, Wu LA. Site-specific function and regulation of Osterix in tooth root formation. Int Endod J 2016; 49:1124-1131. [PMID: 26599722 DOI: 10.1111/iej.12585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023]
Abstract
Congenital diseases of tooth roots, in terms of developmental abnormalities of short and thin root phenotypes, can lead to loss of teeth. A more complete understanding of the genetic molecular pathways and biological processes controlling tooth root formation is required. Recent studies have revealed that Osterix (Osx), a key mesenchymal transcriptional factor participating in both the processes of osteogenesis and odontogenesis, plays a vital role underlying the mechanisms of developmental differences between root and crown. During tooth development, Osx expression has been identified from late embryonic to postnatal stages when the tooth root develops, particularly in odontoblasts and cementoblasts to promote their differentiation and mineralization. Furthermore, the site-specific function of Osx in tooth root formation has been confirmed, because odontoblastic Osx-conditional knockout mice demonstrate primarily short and thin root phenotypes with no apparent abnormalities in the crown (Journal of Bone and Mineral Research 30, 2014 and 742, Journal of Dental Research 94, 2015 and 430). These findings suggest that Osx functions to promote odontoblast and cementoblast differentiation and root elongation only in root, but not in crown formation. Mechanistic research shows regulatory networks of Osx expression, which can be controlled through manipulating the epithelial BMP signalling, mesenchymal Runx2 expression and cellular phosphorylation levels, indicating feasible routes of promoting Osx expression postnatally (Journal of Cellular Biochemistry 114, 2013 and 975). In this regard, a promising approach might be available to regenerate the congenitally diseased root and that regenerative therapy would be the best choice for patients with developmental tooth diseases.
Collapse
Affiliation(s)
- Y D He
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - B D Sui
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Research and Development Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - M Li
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - J Huang
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Anatomy, Histology & Embryology, Basic Medical College, The Fourth Military Medical University, Xi'an, China
| | - S Chen
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - L A Wu
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Kim TH, Bae CH, Yang S, Park JC, Cho ES. Nfic regulates tooth root patterning and growth. Anat Cell Biol 2015; 48:188-94. [PMID: 26417478 PMCID: PMC4582161 DOI: 10.5115/acb.2015.48.3.188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/31/2015] [Accepted: 08/19/2015] [Indexed: 12/01/2022] Open
Abstract
Molecular interactions between epithelium and mesenchyme are important for root formation. Nuclear factor I-C (Nfic) has been identified as a key regulator of root formation. However, the mechanisms of root formation and their interactions between Hertwig's epithelial root sheath (HERS) and mesenchyme remain unclear. In this study, we investigated the role of Nfic in root patterning and growth during molar root development. The molars of Nfic knockout mice exhibited an enlarged pulp chamber and apical displacement of the pulpal floor, characteristic features of taurodontism, due to delayed furcation formation. In developing molar roots of mutant mice at P14, BrdU positive cells decreased in the apical mesenchyme of the elongation region whereas those cells increased in the dental papilla of the furcation region. Whereas cytokeratin 14 and laminin were localized in HERS cells of mutant molars, Smoothened (Smo) and Gli1 were downregulated in preodontoblasts. In contrast, cytokeratin 14 and Smo were localized in the cells of the furcation region of mutant molars. These results indicate that Nfic regulates cell proliferation in the dental mesenchyme and affects the fate of HERS cells in a site-specific manner. From the results, it is suggested that Nfic is required for root patterning and growth during root morphogenesis.
Collapse
Affiliation(s)
- Tak-Heun Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Cheol-Hyeon Bae
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Siqin Yang
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
22
|
Liu Y, Feng J, Li J, Zhao H, Ho TV, Chai Y. An Nfic-hedgehog signaling cascade regulates tooth root development. Development 2015; 142:3374-82. [PMID: 26293299 DOI: 10.1242/dev.127068] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/31/2015] [Indexed: 01/09/2023]
Abstract
Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic(-/-) mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic(-/-) mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development.
Collapse
Affiliation(s)
- Yang Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA Department of Prosthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, People's Republic of China
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People's Republic of China
| | - Hu Zhao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
23
|
Kim TH, Bae CH, Lee JC, Kim JE, Yang X, de Crombrugghe B, Cho ES. Osterix regulates tooth root formation in a site-specific manner. J Dent Res 2015; 94:430-8. [PMID: 25568170 DOI: 10.1177/0022034514565647] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bone and dentin share similar biochemical compositions and physiological properties. Dentin, a major tooth component, is formed by odontoblasts; in contrast, bone is produced by osteoblasts. Osterix (Osx), a zinc finger-containing transcription factor, has been identified as an essential regulator of osteoblast differentiation and bone formation. However, it has been difficult to establish whether Osx functions in odontoblast differentiation and dentin formation. To understand the role of Osx in dentin formation, we analyzed mice in which Osx was subjected to tissue-specific ablation under the control of either the Col1a1 or the OC promoter. Two independent Osx conditional knockout mice exhibited similar molar abnormalities. Although no phenotype was found in the crowns of these teeth, both mutant lines exhibited short molar roots due to impaired root elongation. Furthermore, the interradicular dentin in these mice showed severe hypoplastic features, which were likely caused by disruptions in odontoblast differentiation and dentin formation. These phenotypes were closely related to the temporospatial expression pattern of Osx during tooth development. These findings indicate that Osx is required for root formation by regulating odontoblast differentiation, maturation, and root elongation. Cumulatively, our data strongly indicate that Osx is a site-specific regulator in tooth root formation.
Collapse
Affiliation(s)
- T H Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, South Korea
| | - C H Bae
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, South Korea
| | - J C Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, South Korea
| | - J E Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - X Yang
- Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing, China
| | - B de Crombrugghe
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - E S Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, South Korea
| |
Collapse
|
24
|
Microscopic analysis of molar--incisor malformation. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 119:544-52. [PMID: 25544405 DOI: 10.1016/j.oooo.2014.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/10/2014] [Accepted: 10/19/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Molar-incisor malformation (MIM) is a newly discovered type of dental anomaly that involves a characteristic root malformation of the permanent first molars. The aim of this study was to reveal the microstructure of MIM teeth in order to determine their origin. STUDY DESIGN Four MIM teeth were extracted from a 9-year-old girl due to severe mobility. The detailed microstructure of the teeth was determined by examinations with micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, immunohistochemical staining, and scanning electron microscopy to reveal the detailed microstructure. RESULTS Micro-CT and H&E staining revealed the pulpal floor comprising three layers: upper, middle, and lower. Amorphous hard tissues and hyperactive cells were observed in the middle layer of the pulpal floor, and the cells stained positively for dentin sialoprotein and osteocalcin, but not for collagen XII. CONCLUSION The results of the present study imply that MIM-affected molars probably result from inappropriate differentiation of the apical pulp and dental follicle.
Collapse
|
25
|
Chen X, Chen G, Feng L, Jiang Z, Guo W, Yu M, Tian W. Expression of Nfic during root formation in first mandibular molar of rat. J Mol Histol 2014; 45:619-26. [DOI: 10.1007/s10735-014-9588-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/23/2014] [Indexed: 02/01/2023]
|
26
|
Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 2014; 20:1342-51. [PMID: 24295512 DOI: 10.1089/ten.tea.2013.0386] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tooth-supporting periodontium forms a complex with multiple tissues, including cementum, periodontal ligament (PDL), and alveolar bone. In this study, we developed multiphase region-specific microscaffolds with spatiotemporal delivery of bioactive cues for integrated periodontium regeneration. Polycarprolactione-hydroxylapatite (90:10 wt%) scaffolds were fabricated using three-dimensional printing seamlessly in three phases: 100-μm microchannels in Phase A designed for cementum/dentin interface, 600-μm microchannels in Phase B designed for the PDL, and 300-μm microchannels in Phase C designed for alveolar bone. Recombinant human amelogenin, connective tissue growth factor, and bone morphogenetic protein-2 were spatially delivered and time-released in Phases A, B, and C, respectively. Upon 4-week in vitro incubation separately with dental pulp stem/progenitor cells (DPSCs), PDL stem/progenitor cells (PDLSCs), or alveolar bone stem/progenitor cells (ABSCs), distinctive tissue phenotypes were formed with collagen I-rich fibers especially by PDLSCs and mineralized tissues by DPSCs, PDLSCs, and ABSCs. DPSC-seeded multiphase scaffolds upon in vivo implantation yielded aligned PDL-like collagen fibers that inserted into bone sialoprotein-positive bone-like tissue and putative cementum matrix protein 1-positive/dentin sialophosphoprotein-positive dentin/cementum tissues. These findings illustrate a strategy for the regeneration of multiphase periodontal tissues by spatiotemporal delivery of multiple proteins. A single stem/progenitor cell population appears to differentiate into putative dentin/cementum, PDL, and alveolar bone complex by scaffold's biophysical properties and spatially released bioactive cues.
Collapse
Affiliation(s)
- Chang H Lee
- Center for Craniofacial Regeneration (CCR), Columbia University Medical Center , New York, New York
| | | | | | | | | | | |
Collapse
|