1
|
Rivas LJ, Uribe RA. Fibroblast Growth Factor (FGF) 13. Differentiation 2024:100814. [PMID: 39332965 DOI: 10.1016/j.diff.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Fibroblast Growth Factor (FGF) 13, also referred to as FGF homologous factor (FHF) 2, is a member of the FGF11 subfamily that is characterized as having sequence similarities to classical FGF receptor (FGFR)-binding FGFs, but functionally do not bind FGFRs. In this primer mini-review, we summarize current knowledge regarding FGF13 expression, mutant analyses, and gene and protein structure. Similar to other FHFs, FGF13 has been considered a non-secreted protein that lacks an amino signal and is prominently expressed in developing and mature neurons of the central and peripheral nervous systems, as well as the heart. The expression of FGF13 is not limited to early embryonic stages and has been shown to persist in adult tissues. As well, FGF13 is known to localize subcellularly, both within the cytoplasm and the nucleus. FGF13 is extremely adaptable, as it interacts with MAPK scaffolding protein islet brain 2 (IB2), stabilizes microtubules, or binds to voltage-gated sodium channels. Fgf13 mutant mouse lines display various neurological pathologies. Through sequence mapping, FGF13 is considered a candidate causative gene that is mutated in multiple human X-linked neurological diseases.
Collapse
Affiliation(s)
- Lucia J Rivas
- Department of Biosciences, Rice University, Houston, TX, United States; Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, United States
| | - Rosa A Uribe
- Department of Biosciences, Rice University, Houston, TX, United States; Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, United States.
| |
Collapse
|
2
|
Abu Nahia K, Sulej A, Migdał M, Ochocka N, Ho R, Kamińska B, Zagorski M, Winata CL. scRNA-seq reveals the diversity of the developing cardiac cell lineage and molecular players in heart rhythm regulation. iScience 2024; 27:110083. [PMID: 38872974 PMCID: PMC11170199 DOI: 10.1016/j.isci.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
We utilized scRNA-seq to delineate the diversity of cell types in the zebrafish heart. Transcriptome profiling of over 50,000 cells at 48 and 72 hpf defined at least 18 discrete cell lineages of the developing heart. Utilizing well-established gene signatures, we identified a population of cells likely to be the primary pacemaker and characterized the transcriptome profile defining this critical cell type. Two previously uncharacterized genes, atp1b3b and colec10, were found to be enriched in the sinoatrial cardiomyocytes. CRISPR/Cas9-mediated knockout of these two genes significantly reduced heart rate, implicating their role in cardiac development and conduction. Additionally, we describe other cardiac cell lineages, including the endothelial and neural cells, providing their expression profiles as a resource. Our results established a detailed atlas of the developing heart, providing valuable insights into cellular and molecular mechanisms, and pinpointed potential new players in heart rhythm regulation.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Natalia Ochocka
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Richard Ho
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
- The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
| | - Bożena Kamińska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marcin Zagorski
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
3
|
Stoyek MR, Doane SE, Dallaire SE, Long ZD, Ramia JM, Cassidy-Nolan DL, Poon KL, Brand T, Quinn TA. POPDC1 Variants Cause Atrioventricular Node Dysfunction and Arrhythmogenic Changes in Cardiac Electrophysiology and Intracellular Calcium Handling in Zebrafish. Genes (Basel) 2024; 15:280. [PMID: 38540339 PMCID: PMC10969970 DOI: 10.3390/genes15030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 06/15/2024] Open
Abstract
Popeye domain-containing (POPDC) proteins selectively bind cAMP and mediate cellular responses to sympathetic nervous system (SNS) stimulation. The first discovered human genetic variant (POPDC1S201F) is associated with atrioventricular (AV) block, which is exacerbated by increased SNS activity. Zebrafish carrying the homologous mutation (popdc1S191F) display a similar phenotype to humans. To investigate the impact of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling, homozygous popdc1S191F and popdc1 knock-out (popdc1KO) zebrafish larvae and adult isolated popdc1S191F hearts were studied by functional fluorescent analysis. It was found that in popdc1S191F and popdc1KO larvae, heart rate (HR), AV delay, action potential (AP) and calcium transient (CaT) upstroke speed, and AP duration were less than in wild-type larvae, whereas CaT duration was greater. SNS stress by β-adrenergic receptor stimulation with isoproterenol increased HR, lengthened AV delay, slowed AP and CaT upstroke speed, and shortened AP and CaT duration, yet did not result in arrhythmias. In adult popdc1S191F zebrafish hearts, there was a higher incidence of AV block, slower AP upstroke speed, and longer AP duration compared to wild-type hearts, with no differences in CaT. SNS stress increased AV delay and led to further AV block in popdc1S191F hearts while decreasing AP and CaT duration. Overall, we have revealed that arrhythmogenic effects of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling in zebrafish are varied, but already present in early development, and that AV node dysfunction may underlie SNS-induced arrhythmogenesis associated with popdc1 mutation in adults.
Collapse
Affiliation(s)
- Matthew R. Stoyek
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Sarah E. Doane
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Shannon E. Dallaire
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Zachary D. Long
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Jessica M. Ramia
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Donovan L. Cassidy-Nolan
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
| | - Kar-Lai Poon
- National Heart & Lung Institute, Imperial College London, London W12 0NN, UK; (K.-L.P.); (T.B.)
| | - Thomas Brand
- National Heart & Lung Institute, Imperial College London, London W12 0NN, UK; (K.-L.P.); (T.B.)
| | - T. Alexander Quinn
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.S.); (S.E.D.); (S.E.D.); (Z.D.L.); (J.M.R.); (D.L.C.-N.)
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
4
|
Martin KE, Ravisankar P, Beerens M, MacRae CA, Waxman JS. Nr2f1a maintains atrial nkx2.5 expression to repress pacemaker identity within venous atrial cardiomyocytes of zebrafish. eLife 2023; 12:e77408. [PMID: 37184369 PMCID: PMC10185342 DOI: 10.7554/elife.77408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Maintenance of cardiomyocyte identity is vital for normal heart development and function. However, our understanding of cardiomyocyte plasticity remains incomplete. Here, we show that sustained expression of the zebrafish transcription factor Nr2f1a prevents the progressive acquisition of ventricular cardiomyocyte (VC) and pacemaker cardiomyocyte (PC) identities within distinct regions of the atrium. Transcriptomic analysis of flow-sorted atrial cardiomyocytes (ACs) from nr2f1a mutant zebrafish embryos showed increased VC marker gene expression and altered expression of core PC regulatory genes, including decreased expression of nkx2.5, a critical repressor of PC differentiation. At the arterial (outflow) pole of the atrium in nr2f1a mutants, cardiomyocytes resolve to VC identity within the expanded atrioventricular canal. However, at the venous (inflow) pole of the atrium, there is a progressive wave of AC transdifferentiation into PCs across the atrium toward the arterial pole. Restoring Nkx2.5 is sufficient to repress PC marker identity in nr2f1a mutant atria and analysis of chromatin accessibility identified an Nr2f1a-dependent nkx2.5 enhancer expressed in the atrial myocardium directly adjacent to PCs. CRISPR/Cas9-mediated deletion of the putative nkx2.5 enhancer leads to a loss of Nkx2.5-expressing ACs and expansion of a PC reporter, supporting that Nr2f1a limits PC differentiation within venous ACs via maintaining nkx2.5 expression. The Nr2f-dependent maintenance of AC identity within discrete atrial compartments may provide insights into the molecular etiology of concurrent structural congenital heart defects and associated arrhythmias.
Collapse
Affiliation(s)
- Kendall E Martin
- Molecular Genetics, Biochemistry, and Microbiology Graduate Program, University of Cincinnati College of MedicineCincinnatiUnited States
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Padmapriyadarshini Ravisankar
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Manu Beerens
- Divisions of Cardiovascular Medicine, Genetics and Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Calum A MacRae
- Divisions of Cardiovascular Medicine, Genetics and Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
5
|
Ding Y, Lang D, Yan J, Bu H, Li H, Jiao K, Yang J, Ni H, Morotti S, Le T, Clark KJ, Port J, Ekker SC, Cao H, Zhang Y, Wang J, Grandi E, Li Z, Shi Y, Li Y, Glukhov AV, Xu X. A phenotype-based forward genetic screen identifies Dnajb6 as a sick sinus syndrome gene. eLife 2022; 11:e77327. [PMID: 36255053 PMCID: PMC9642998 DOI: 10.7554/elife.77327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Previously we showed the generation of a protein trap library made with the gene-break transposon (GBT) in zebrafish (Danio rerio) that could be used to facilitate novel functional genome annotation towards understanding molecular underpinnings of human diseases (Ichino et al, 2020). Here, we report a significant application of this library for discovering essential genes for heart rhythm disorders such as sick sinus syndrome (SSS). SSS is a group of heart rhythm disorders caused by malfunction of the sinus node, the heart's primary pacemaker. Partially owing to its aging-associated phenotypic manifestation and low expressivity, molecular mechanisms of SSS remain difficult to decipher. From 609 GBT lines screened, we generated a collection of 35 zebrafish insertional cardiac (ZIC) mutants in which each mutant traps a gene with cardiac expression. We further employed electrocardiographic measurements to screen these 35 ZIC lines and identified three GBT mutants with SSS-like phenotypes. More detailed functional studies on one of the arrhythmogenic mutants, GBT411, in both zebrafish and mouse models unveiled Dnajb6 as a novel SSS causative gene with a unique expression pattern within the subpopulation of sinus node pacemaker cells that partially overlaps with the expression of hyperpolarization activated cyclic nucleotide gated channel 4 (HCN4), supporting heterogeneity of the cardiac pacemaker cells.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Di Lang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Jianhua Yan
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South UniversityChangshaChina
| | - Hongsong Li
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Cardiovascular Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health ScienceShanghaiChina
| | - Kunli Jiao
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Haibo Ni
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Stefano Morotti
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Tai Le
- Department of Biomedical Engineering, University of California, IrvineIrvineUnited States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Jenna Port
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Hung Cao
- Department of Biomedical Engineering, University of California, IrvineIrvineUnited States
- Department of Electrical Engineering and Computer Science, University of California, IrvineIrvineUnited States
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland School of MedicineBaltimoreUnited States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at HoustonHoustonUnited States
| | - Eleonora Grandi
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Yigang Li
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Alexey V Glukhov
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| |
Collapse
|
6
|
Korzh VP, Gasanov EV. Genetics of Atavism. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Atavisms have attracted people’s attention for a long time. First, atavisms excited their imagination and created fertile ground for myths and superstitions. With the development of science, atavisms became the subject of investigation, which soon provided evidence to support evolutionary theory. However, at the molecular level, the formation of atavisms remained insufficiently understood. Recent progress in comparative genomics and molecular developmental biology has helped in understanding the processes underlying the formation of one of the human atavisms: the vestigial tail.
Collapse
|
7
|
Minhas R, Loeffler-Wirth H, Siddiqui YH, Obrębski T, Vashisht S, Abu Nahia K, Paterek A, Brzozowska A, Bugajski L, Piwocka K, Korzh V, Binder H, Winata CL. Transcriptome profile of the sinoatrial ring reveals conserved and novel genetic programs of the zebrafish pacemaker. BMC Genomics 2021; 22:715. [PMID: 34600492 PMCID: PMC8487553 DOI: 10.1186/s12864-021-08016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sinoatrial Node (SAN) is part of the cardiac conduction system, which controls the rhythmic contraction of the vertebrate heart. The SAN consists of a specialized pacemaker cell population that has the potential to generate electrical impulses. Although the SAN pacemaker has been extensively studied in mammalian and teleost models, including the zebrafish, their molecular nature remains inadequately comprehended. RESULTS To characterize the molecular profile of the zebrafish sinoatrial ring (SAR) and elucidate the mechanism of pacemaker function, we utilized the transgenic line sqet33mi59BEt to isolate cells of the SAR of developing zebrafish embryos and profiled their transcriptome. Our analyses identified novel candidate genes and well-known conserved signaling pathways involved in pacemaker development. We show that, compared to the rest of the heart, the zebrafish SAR overexpresses several mammalian SAN pacemaker signature genes, which include hcn4 as well as those encoding calcium- and potassium-gated channels. Moreover, genes encoding components of the BMP and Wnt signaling pathways, as well as members of the Tbx family, which have previously been implicated in pacemaker development, were also overexpressed in the SAR. Among SAR-overexpressed genes, 24 had human homologues implicated in 104 different ClinVar phenotype entries related to various forms of congenital heart diseases, which suggest the relevance of our transcriptomics resource to studying human heart conditions. Finally, functional analyses of three SAR-overexpressed genes, pard6a, prom2, and atp1a1a.2, uncovered their novel role in heart development and physiology. CONCLUSION Our results established conserved aspects between zebrafish and mammalian pacemaker function and revealed novel factors implicated in maintaining cardiac rhythm. The transcriptome data generated in this study represents a unique and valuable resource for the study of pacemaker function and associated heart diseases.
Collapse
Affiliation(s)
- Rashid Minhas
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Yusra H Siddiqui
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- School of Human Sciences, College of Science and Engineering, University of Derby, Derby, UK
| | - Tomasz Obrębski
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Shikha Vashisht
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Alexandra Paterek
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Angelika Brzozowska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Lukasz Bugajski
- Nencki Institute of Experimental Biology, Laboratory of Cytometry, Warsaw, Poland
| | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Laboratory of Cytometry, Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
8
|
Abu Nahia K, Migdał M, Quinn TA, Poon KL, Łapiński M, Sulej A, Liu J, Mondal SS, Pawlak M, Bugajski Ł, Piwocka K, Brand T, Kohl P, Korzh V, Winata C. Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region. Cell Mol Life Sci 2021; 78:6669-6687. [PMID: 34557935 PMCID: PMC8558220 DOI: 10.1007/s00018-021-03939-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-β, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kar-Lai Poon
- Institute of Molecular and Cell Biology, 61 Biopolis Dr, Singapore , Singapore.,Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, USA
| | - Shamba S Mondal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Michał Pawlak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | | | - Thomas Brand
- Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre, Faculty of Medicine, and Faculty of Engineering, University of Freiburg, Freiburg im Breisgau, Germany
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
9
|
Zhang Q, He X, Yao S, Lin T, Zhang L, Chen D, Chen C, Yang Q, Li F, Zhu YM, Guan MX. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res 2021; 49:4689-4704. [PMID: 33836087 PMCID: PMC8096277 DOI: 10.1093/nar/gkab228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Deficient maturations of mitochondrial transcripts are linked to clinical abnormalities but their pathophysiology remains elusive. Previous investigations showed that pathogenic variants in MTO1 for the biosynthesis of τm5U of tRNAGlu, tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR) were associated with hypertrophic cardiomyopathy (HCM). Using mto1 knock-out(KO) zebrafish generated by CRISPR/Cas9 system, we demonstrated the pleiotropic effects of Mto1 deficiency on mitochondrial RNA maturations. The perturbed structure and stability of tRNAs caused by mto1 deletion were evidenced by conformation changes and sensitivity to S1-mediated digestion of tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR). Notably, mto1KO zebrafish exhibited the global decreases in the aminoacylation of mitochondrial tRNAs with the taurine modification. Strikingly, ablated mto1 mediated the expression of MTPAP and caused the altered polyadenylation of cox1, cox3, and nd1 mRNAs. Immunoprecipitation assay indicated the interaction of MTO1 with MTPAP related to mRNA polyadenylation. These alterations impaired mitochondrial translation and reduced activities of oxidative phosphorylation complexes. These mitochondria dysfunctions caused heart development defects and hypertrophy of cardiomyocytes and myocardial fiber disarray in ventricles. These cardiac defects in the mto1KO zebrafish recapitulated the clinical phenotypes in HCM patients carrying the MTO1 mutation(s). Our findings highlighted the critical role of MTO1 in mitochondrial transcript maturation and their pathological consequences in hypertrophic cardiomyopathy.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/physiopathology
- Gene Expression Profiling
- Heart/embryology
- Heart/physiopathology
- In Situ Hybridization
- Microscopy, Electron, Transmission
- Mitochondria/enzymology
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Phosphorylation
- Polyadenylation/genetics
- RNA, Mitochondrial/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Transfer RNA Aminoacylation/genetics
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Qinghai Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiao He
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tianxiang Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Luwen Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Danni Chen
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Chen
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingxian Yang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Feng Li
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yi-Min Zhu
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
10
|
Simpson KE, Venkateshappa R, Pang ZK, Faizi S, Tibbits GF, Claydon TW. Utility of Zebrafish Models of Acquired and Inherited Long QT Syndrome. Front Physiol 2021; 11:624129. [PMID: 33519527 PMCID: PMC7844309 DOI: 10.3389/fphys.2020.624129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Long-QT Syndrome (LQTS) is a cardiac electrical disorder, distinguished by irregular heart rates and sudden death. Accounting for ∼40% of cases, LQTS Type 2 (LQTS2), is caused by defects in the Kv11.1 (hERG) potassium channel that is critical for cardiac repolarization. Drug block of hERG channels or dysfunctional channel variants can result in acquired or inherited LQTS2, respectively, which are typified by delayed repolarization and predisposition to lethal arrhythmia. As such, there is significant interest in clear identification of drugs and channel variants that produce clinically meaningful perturbation of hERG channel function. While toxicological screening of hERG channels, and phenotypic assessment of inherited channel variants in heterologous systems is now commonplace, affordable, efficient, and insightful whole organ models for acquired and inherited LQTS2 are lacking. Recent work has shown that zebrafish provide a viable in vivo or whole organ model of cardiac electrophysiology. Characterization of cardiac ion currents and toxicological screening work in intact embryos, as well as adult whole hearts, has demonstrated the utility of the zebrafish model to contribute to the development of therapeutics that lack hERG-blocking off-target effects. Moreover, forward and reverse genetic approaches show zebrafish as a tractable model in which LQTS2 can be studied. With the development of new tools and technologies, zebrafish lines carrying precise channel variants associated with LQTS2 have recently begun to be generated and explored. In this review, we discuss the present knowledge and questions raised related to the use of zebrafish as models of acquired and inherited LQTS2. We focus discussion, in particular, on developments in precise gene-editing approaches in zebrafish to create whole heart inherited LQTS2 models and evidence that zebrafish hearts can be used to study arrhythmogenicity and to identify potential anti-arrhythmic compounds.
Collapse
Affiliation(s)
- Kyle E. Simpson
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Ravichandra Venkateshappa
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Zhao Kai Pang
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Shoaib Faizi
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Glen F. Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Cardiovascular Science, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Tom W. Claydon
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
11
|
Fedele L, Brand T. The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2020; 7:jcdd7040054. [PMID: 33255284 PMCID: PMC7712215 DOI: 10.3390/jcdd7040054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac nervous system (ICNS) includes the network of the intracardiac ganglia and interconnecting neurons. The cardiac ganglia contribute to the tight modulation of cardiac electrophysiology, working as a local hub integrating the inputs of the extrinsic innervation and the ICNS. A better understanding of the role of the ICNS for the modulation of the cardiac conduction system will be crucial for targeted therapies of various arrhythmias. We describe the embryonic development, anatomy, and physiology of the ICNS. By correlating the topography of the intracardiac neurons with what is known regarding their biophysical and neurochemical properties, we outline their physiological role in the control of pacemaker activity of the sinoatrial and atrioventricular nodes. We conclude by highlighting cardiac disorders with a putative involvement of the ICNS and outline open questions that need to be addressed in order to better understand the physiology and pathophysiology of the ICNS.
Collapse
Affiliation(s)
- Laura Fedele
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| | - Thomas Brand
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| |
Collapse
|
12
|
Chen D, Zhang Z, Chen C, Yao S, Yang Q, Li F, He X, Ai C, Wang M, Guan MX. Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism. Nucleic Acids Res 2019; 47:5341-5355. [PMID: 30916346 PMCID: PMC6547414 DOI: 10.1093/nar/gkz218] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
GTPBP3 is a highly conserved tRNA modifying enzyme for the biosynthesis of τm5U at the wobble position of mitochondrial tRNAGlu, tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR). The previous investigations showed that GTPBP3 mutations were associated with hypertrophic cardiomyopathy (HCM). However, the pathophysiology of GTPBP3 deficiency remains elusively. Using the gtpbp3 knockout zebrafish generated by CRISPR/Cas9 system, we demonstrated the aberrant mitochondrial tRNA metabolism in gtpbp3 knock-out zebrafish. The deletion of gtpbp3 may alter functional folding of tRNA, indicated by conformation changes and sensitivity to S1-mediated digestion of tRNAGlu, tRNALys, tRNATrp and tRNALeu(UUR). Strikingly, gtpbp3 knock-out zebrafish displayed the global increases in the aminoacylated efficiencies of mitochondrial tRNAs. The aberrant mitochondrial tRNA metabolisms impaired mitochondrial translation, produced proteostasis stress and altered activities of respiratory chain complexes. These mitochondria dysfunctions caused the alterations in the embryonic heart development and reduced fractional shortening of ventricles in mutant zebrafish. Notably, the gtpbp3 knock-out zebrafish exhibited hypertrophy of cardiomyocytes and myocardial fiber disarray in ventricles. These cardiac defects in the gtpbp3 knock-out zebrafish recapitulated the clinical phenotypes in HCM patients carrying the GTPBP3 mutation(s). Our findings highlight the fundamental role of defective nucleotide modifications of tRNAs in mitochondrial biogenesis and their pathological consequences in hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Danni Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zengming Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingxian Yang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Feng Li
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiao He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cheng Ai
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Park S, Lee JY, Park H, Song G, Lim W. Toxic effects of flufenoxuron on development and vascular formation during zebrafish embryogenesis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105307. [PMID: 31557631 DOI: 10.1016/j.aquatox.2019.105307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Flufenoxuron, a chitin synthesis inhibitor that is widely used in developed countries as an insecticide, is rarely degraded in the environment. In addition to that in insects, flufenoxuron-mediated non-targeted death in organisms such as lizards and bees has been reported. However, the toxic effects of this compound on vascular development during embryogenesis, as well as the underlying mechanism, have not yet been elucidated. In the present study, we assessed abnormal development and cardiovascular damage induced by flufenoxuron in zebrafish embryos. Exposed zebrafish had malformed eyes and pathological characteristics such as heart and yolk sac edema. In accordance with developmental inhibition, cell cycle regulatory genes were dysregulated in zebrafish embryos upon exposure to flufenoxuron. We also discovered that this agent can disrupt vascular formation by interfering with angiogenesis-associated genes including the genes encoding vascular endothelial growth factor Aa (vegfaa), vegfc, fms-related tyrosine kinase 1 (flt1), and flt4 in zebrafish embryos. These anti-angiogenic effects of flufenoxuron were further verified using a well-known angiogenesis model, namely human umbilical vein endothelial cells. In conclusion, our results suggest that flufenoxuron inhibits overall development and angiogenesis during embryogenesis.
Collapse
Affiliation(s)
- Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
14
|
Burczyk MS, Burkhalter MD, Tena TC, Grisanti LA, Kauk M, Matysik S, Donow C, Kustermann M, Rothe M, Cui Y, Raad F, Laue S, Moretti A, Zimmermann WH, Wess J, Kühl M, Hoffmann C, Tilley DG, Philipp M. Muscarinic receptors promote pacemaker fate at the expense of secondary conduction system tissue in zebrafish. JCI Insight 2019; 4:121971. [PMID: 31619590 PMCID: PMC6824298 DOI: 10.1172/jci.insight.121971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Deterioration or inborn malformations of the cardiac conduction system (CCS) interfere with proper impulse propagation in the heart and may lead to sudden cardiac death or heart failure. Patients afflicted with arrhythmia depend on antiarrhythmic medication or invasive therapy, such as pacemaker implantation. An ideal way to treat these patients would be CCS tissue restoration. This, however, requires precise knowledge regarding the molecular mechanisms underlying CCS development. Here, we aimed to identify regulators of CCS development. We performed a compound screen in zebrafish embryos and identified tolterodine, a muscarinic receptor antagonist, as a modifier of CCS development. Tolterodine provoked a lower heart rate, pericardiac edema, and arrhythmia. Blockade of muscarinic M3, but not M2, receptors induced transcriptional changes leading to amplification of sinoatrial cells and loss of atrioventricular identity. Transcriptome data from an engineered human heart muscle model provided additional evidence for the contribution of muscarinic M3 receptors during cardiac progenitor specification and differentiation. Taken together, we found that muscarinic M3 receptors control the CCS already before the heart becomes innervated. Our data indicate that muscarinic receptors maintain a delicate balance between the developing sinoatrial node and the atrioventricular canal, which is probably required to prevent the development of arrhythmia.
Collapse
Affiliation(s)
- Martina S. Burczyk
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Martin D. Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tuebingen, Tuebingen, Germany
| | - Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Laurel A. Grisanti
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Michael Kauk
- Institute for Molecular Cell Biology, University Hospital Jena, Friedrich-Schiller University of Jena, Jena, Germany
| | - Sabrina Matysik
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Monika Kustermann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Melanie Rothe
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Farah Raad
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Göttingen, Germany
| | - Svenja Laue
- Medical Department — Molecular Cardiology, Technical University Munich, Munich, Germany
| | - Allessandra Moretti
- Medical Department — Molecular Cardiology, Technical University Munich, Munich, Germany
| | - Wolfram-H. Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Göttingen, Germany
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, University Hospital Jena, Friedrich-Schiller University of Jena, Jena, Germany
| | - Douglas G. Tilley
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
15
|
Minhas R, Paterek A, Łapiński M, Bazała M, Korzh V, Winata CL. A novel conserved enhancer at zebrafish zic3 and zic6 loci drives neural expression. Dev Dyn 2019; 248:837-849. [PMID: 31194899 PMCID: PMC6771876 DOI: 10.1002/dvdy.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 01/15/2023] Open
Abstract
Background Identifying enhancers and deciphering their putative roles represent a major step to better understand the mechanism of metazoan gene regulation, development, and the role of regulatory elements in disease. Comparative genomics and transgenic assays have been used with some success to identify critical regions that are involved in regulating the spatiotemporal expression of genes during embryogenesis. Results We identified two novel tetrapod‐teleost conserved noncoding elements within the vicinity of the zic3 and zic6 loci in the zebrafish genome and demonstrated their ability to drive tissue‐specific expression in a transgenic zebrafish assay. The syntenic analysis and robust green fluorescent expression in the developing habenula in the stable transgenic line were correlated with known sites of endogenous zic3 and zic6 expression. Conclusion This transgenic line that expresses green fluorescent protein in the habenula is a valuable resource for studying a specific population of cells in the zebrafish central nervous system. Our observations indicate that a genomic sequence that is conserved between humans and zebrafish acts as an enhancer that likely controls zic3 and zic6 expression. Identified a novel enhancer near zebrafish zic3/zic6 locus. The novel enhancer drives tissue‐specific expression in the habenula. Zebrafish transgenic line generated in this study can be a useful resource for studying development of habenula.
Collapse
Affiliation(s)
- Rashid Minhas
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aleksandra Paterek
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michał Bazała
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
16
|
MacDonald EA, Stoyek MR, Rose RA, Quinn TA. Intrinsic regulation of sinoatrial node function and the zebrafish as a model of stretch effects on pacemaking. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:198-211. [PMID: 28743586 DOI: 10.1016/j.pbiomolbio.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022]
Abstract
Excitation of the heart occurs in a specialised region known as the sinoatrial node (SAN). Tight regulation of SAN function is essential for the maintenance of normal heart rhythm and the response to (patho-)physiological changes. The SAN is regulated by extrinsic (central nervous system) and intrinsic (neurons, peptides, mechanics) factors. The positive chronotropic response to stretch in particular is essential for beat-by-beat adaptation to changes in hemodynamic load. Yet, the mechanism of this stretch response is unknown, due in part to the lack of an appropriate experimental model for targeted investigations. We have been investigating the zebrafish as a model for the study of intrinsic regulation of SAN function. In this paper, we first briefly review current knowledge of the principal components of extrinsic and intrinsic SAN regulation, derived primarily from experiments in mammals, followed by a description of the zebrafish as a novel experimental model for studies of intrinsic SAN regulation. This mini-review is followed by an original investigation of the response of the zebrafish isolated SAN to controlled stretch. Stretch causes an immediate and continuous increase in beating rate in the zebrafish isolated SAN. This increase reaches a maximum part way through a period of sustained stretch, with the total change dependent on the magnitude and direction of stretch. This is comparable to what occurs in isolated SAN from most mammals (including human), suggesting that the zebrafish is a novel experimental model for the study of mechanisms involved in the intrinsic regulation of SAN function by mechanical effects.
Collapse
Affiliation(s)
- Eilidh A MacDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Matthew R Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Robert A Rose
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, Canada.
| |
Collapse
|