1
|
Maffei P, Dassie F, Wennberg A, Parolin M, Vettor R. The Endothelium in Acromegaly. Front Endocrinol (Lausanne) 2019; 10:437. [PMID: 31396153 PMCID: PMC6667653 DOI: 10.3389/fendo.2019.00437] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Growth hormone (GH) and insulin like growth factor-1 (IGF-1) excess induce well-known deleterious effects on the cardiovascular system, especially after long-term exposition. Acromegaly, a condition of chronic GH and IGF-1 hypersecretion, is frequently associated to cardiovascular complications, although recent studies have shown a reduction in the prevalence of these comorbidities in well-controlled patients and a mortality risk similar to normal aging population. Many factors could contribute to the increased cardiovascular risk of acromegaly patients. Among these factors, the endothelium plays a key role in the pathogenesis of atherosclerotic plaques and could be considered an early marker of atherosclerosis and cardiovascular dysfunction. In this review we examined the relationship between GH/IGF-1 excess and the endothelium, from basic studies to clinical evidence. Many studies involving various arterial districts (microvascular arteries of retina, kidney and brain, and major vessels as carotid and aorta) showed that GH/IGF-1 excess promotes endothelial dysfunction via several different mechanisms. Increased endothelial proliferation, dysfunction of endothelial progenitor cells, increased oxidative stress, and compromised oxidative defenses are the main factors that are associated with endothelial dysfunction. In the general population, these alterations are associated with the development of atherosclerosis with an increased incidence of coronary artery disease and cerebrovascular complications. However, in acromegaly this is still a debated issue, despite the presence of many pro-atherogenic factors and comorbidities, such as hypertension, diabetes, sleep apnoea, and metabolic syndrome. Preclinical markers of atherosclerosis as arterial intima media thickness, pulse wave velocity and flow mediated dilation seem to be impaired in acromegaly and partly mediated by the endothelium dysfunction. In conclusion, the pathophysiology of endothelial dysfunction in the condition of GH and IGF-1 excess remains a crucial area of investigation to fully dissect the association of acromegaly with cardiovascular disease complications.
Collapse
Affiliation(s)
- Pietro Maffei
- Clinica Medica 3, Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
- *Correspondence: Pietro Maffei
| | - Francesca Dassie
- Clinica Medica 3, Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
| | - Alexandra Wennberg
- Clinica Neurologica, Department of Neurosciences (DNS), Padua University Hospital, Padua, Italy
| | - Matteo Parolin
- Clinica Medica 3, Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
| | - Roberto Vettor
- Clinica Medica 3, Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
| |
Collapse
|
2
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Jara A, Liu X, Sim D, Benner CM, Duran-Ortiz S, Qian Y, List EO, Berryman DE, Kim JK, Kopchick JJ. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice. Endocrinology 2016; 157:1929-41. [PMID: 27035649 PMCID: PMC4870885 DOI: 10.1210/en.2015-1686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1.
Collapse
Affiliation(s)
- Adam Jara
- Edison Biotechnology Institute (A.J., X.L., D.S., C.M.B., S.D.-O., Y.Q., E.O.L., D.E.B., J.J.K.), Departments of Biomedical Sciences (A.J., D.E.B., J.J.K.) and Specialty Medicine (E.O.L.), Heritage College of Osteopathic Medicine, Department of Biological Sciences (S.D.-O., J.J.K.), School of Applied Health Sciences and Wellness (X.L., C.M.B., D.E.B.), College of Health Sciences and Professions, Department of Social and Public Health (D.S.), Ohio University, Athens, Ohio 45701; and Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Xingbo Liu
- Edison Biotechnology Institute (A.J., X.L., D.S., C.M.B., S.D.-O., Y.Q., E.O.L., D.E.B., J.J.K.), Departments of Biomedical Sciences (A.J., D.E.B., J.J.K.) and Specialty Medicine (E.O.L.), Heritage College of Osteopathic Medicine, Department of Biological Sciences (S.D.-O., J.J.K.), School of Applied Health Sciences and Wellness (X.L., C.M.B., D.E.B.), College of Health Sciences and Professions, Department of Social and Public Health (D.S.), Ohio University, Athens, Ohio 45701; and Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Don Sim
- Edison Biotechnology Institute (A.J., X.L., D.S., C.M.B., S.D.-O., Y.Q., E.O.L., D.E.B., J.J.K.), Departments of Biomedical Sciences (A.J., D.E.B., J.J.K.) and Specialty Medicine (E.O.L.), Heritage College of Osteopathic Medicine, Department of Biological Sciences (S.D.-O., J.J.K.), School of Applied Health Sciences and Wellness (X.L., C.M.B., D.E.B.), College of Health Sciences and Professions, Department of Social and Public Health (D.S.), Ohio University, Athens, Ohio 45701; and Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Chance M Benner
- Edison Biotechnology Institute (A.J., X.L., D.S., C.M.B., S.D.-O., Y.Q., E.O.L., D.E.B., J.J.K.), Departments of Biomedical Sciences (A.J., D.E.B., J.J.K.) and Specialty Medicine (E.O.L.), Heritage College of Osteopathic Medicine, Department of Biological Sciences (S.D.-O., J.J.K.), School of Applied Health Sciences and Wellness (X.L., C.M.B., D.E.B.), College of Health Sciences and Professions, Department of Social and Public Health (D.S.), Ohio University, Athens, Ohio 45701; and Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute (A.J., X.L., D.S., C.M.B., S.D.-O., Y.Q., E.O.L., D.E.B., J.J.K.), Departments of Biomedical Sciences (A.J., D.E.B., J.J.K.) and Specialty Medicine (E.O.L.), Heritage College of Osteopathic Medicine, Department of Biological Sciences (S.D.-O., J.J.K.), School of Applied Health Sciences and Wellness (X.L., C.M.B., D.E.B.), College of Health Sciences and Professions, Department of Social and Public Health (D.S.), Ohio University, Athens, Ohio 45701; and Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Yanrong Qian
- Edison Biotechnology Institute (A.J., X.L., D.S., C.M.B., S.D.-O., Y.Q., E.O.L., D.E.B., J.J.K.), Departments of Biomedical Sciences (A.J., D.E.B., J.J.K.) and Specialty Medicine (E.O.L.), Heritage College of Osteopathic Medicine, Department of Biological Sciences (S.D.-O., J.J.K.), School of Applied Health Sciences and Wellness (X.L., C.M.B., D.E.B.), College of Health Sciences and Professions, Department of Social and Public Health (D.S.), Ohio University, Athens, Ohio 45701; and Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Edward O List
- Edison Biotechnology Institute (A.J., X.L., D.S., C.M.B., S.D.-O., Y.Q., E.O.L., D.E.B., J.J.K.), Departments of Biomedical Sciences (A.J., D.E.B., J.J.K.) and Specialty Medicine (E.O.L.), Heritage College of Osteopathic Medicine, Department of Biological Sciences (S.D.-O., J.J.K.), School of Applied Health Sciences and Wellness (X.L., C.M.B., D.E.B.), College of Health Sciences and Professions, Department of Social and Public Health (D.S.), Ohio University, Athens, Ohio 45701; and Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Darlene E Berryman
- Edison Biotechnology Institute (A.J., X.L., D.S., C.M.B., S.D.-O., Y.Q., E.O.L., D.E.B., J.J.K.), Departments of Biomedical Sciences (A.J., D.E.B., J.J.K.) and Specialty Medicine (E.O.L.), Heritage College of Osteopathic Medicine, Department of Biological Sciences (S.D.-O., J.J.K.), School of Applied Health Sciences and Wellness (X.L., C.M.B., D.E.B.), College of Health Sciences and Professions, Department of Social and Public Health (D.S.), Ohio University, Athens, Ohio 45701; and Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jason K Kim
- Edison Biotechnology Institute (A.J., X.L., D.S., C.M.B., S.D.-O., Y.Q., E.O.L., D.E.B., J.J.K.), Departments of Biomedical Sciences (A.J., D.E.B., J.J.K.) and Specialty Medicine (E.O.L.), Heritage College of Osteopathic Medicine, Department of Biological Sciences (S.D.-O., J.J.K.), School of Applied Health Sciences and Wellness (X.L., C.M.B., D.E.B.), College of Health Sciences and Professions, Department of Social and Public Health (D.S.), Ohio University, Athens, Ohio 45701; and Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - John J Kopchick
- Edison Biotechnology Institute (A.J., X.L., D.S., C.M.B., S.D.-O., Y.Q., E.O.L., D.E.B., J.J.K.), Departments of Biomedical Sciences (A.J., D.E.B., J.J.K.) and Specialty Medicine (E.O.L.), Heritage College of Osteopathic Medicine, Department of Biological Sciences (S.D.-O., J.J.K.), School of Applied Health Sciences and Wellness (X.L., C.M.B., D.E.B.), College of Health Sciences and Professions, Department of Social and Public Health (D.S.), Ohio University, Athens, Ohio 45701; and Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
4
|
Dal J, List EO, Jørgensen JOL, Berryman DE. Glucose and Fat Metabolism in Acromegaly: From Mice Models to Patient Care. Neuroendocrinology 2016; 103:96-105. [PMID: 25925240 DOI: 10.1159/000430819] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022]
Abstract
Patients with active acromegaly are frequently insulin resistant, glucose intolerant, and at risk for developing overt type 2 diabetes. At the same time, these patients have a relatively lean phenotype associated with mobilization and oxidation of free fatty acids. These features are reversed by curative surgical removal of the growth hormone (GH)-producing adenoma. Mouse models of acromegaly share many of these characteristics, including a lean phenotype and proneness to type 2 diabetes. There are, however, also species differences with respect to oxidation rates of glucose and fat as well as the specific mechanisms underlying GH-induced insulin resistance. The impact of acromegaly treatment on insulin sensitivity and glucose tolerance depends on the treatment modality (e.g. somatostatin analogs also suppress insulin secretion, whereas the GH antagonist restores insulin sensitivity). The interplay between animal research and clinical studies has proven useful in the field of acromegaly and should be continued in order to understand the metabolic actions of GH.
Collapse
Affiliation(s)
- Jakob Dal
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | |
Collapse
|
5
|
Benencia F, Harshman S, Duran-Ortiz S, Lubbers ER, List EO, Householder L, Al-Naeeli M, Liang X, Welch L, Kopchick JJ, Berryman DE. Male bovine GH transgenic mice have decreased adiposity with an adipose depot-specific increase in immune cell populations. Endocrinology 2015; 156:1794-803. [PMID: 25521584 PMCID: PMC4398765 DOI: 10.1210/en.2014-1794] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied. Bovine GH transgenic (bGH) mice are commonly used to study the in vivo effects of GH. These giant mice have an excess of GH action, impaired glucose metabolism, decreased adiposity, increased lean mass, and a shortened lifespan. Therefore, the purpose of this study was to characterize the WAT depot-specific differences in immune cell populations in the presence of excess GH in vivo. Three WAT depots were assessed: inguinal (sc), epididymal (EPI), and mesenteric (MES). Subcutaneous and MES bGH WAT depots showed a significantly higher number of total SVF cells, yet only MES bGH WAT had higher leukocyte counts compared with control samples. By means of flow cytometry analysis of the SVF, we detected greater macrophage and regulatory T-cell infiltration in sc and MES bGH WAT depots compared with controls. However, no differences were observed in the EPI WAT depot. RNA-sequencing confirmed significant alterations in pathways related to T-cell infiltration and activation in the sc depot with fewer significant changes in the EPI bGH WAT depot. These findings collectively point to a previously unrecognized role for GH in influencing the distribution of WAT immune cell populations in a depot-specific manner.
Collapse
Affiliation(s)
- Fabian Benencia
- Department of Biomedical Sciences (F.B., J.J.K., D.E.B.), Heritage College of Osteopathic Medicine; Russ College of Engineering and Technology (F.B.); Diabetes Institute (F.B., E.O.L., M.A.-N., J.J.K., D.E.B.); Edison Biotechnology Institute (S.H., S.D.-O., E.R.L., E.O.L., L.H., J.J.K., D.E.B.); School of Applied Health Sciences and Wellness (S.H., S.D.-O., D.E.B.), College of Health Sciences and Professions; Department of Biological Sciences (M.A.-N.), Ohio University Zanesville; School of Electrical Engineering and Computer Science (X.L., L.W.); and Biomedical Engineering Program (L.W.), Ohio University, Athens, Ohio 45701
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kopchick JJ, List EO, Kelder B, Gosney ES, Berryman DE. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications. Mol Cell Endocrinol 2014; 386:34-45. [PMID: 24035867 PMCID: PMC3943600 DOI: 10.1016/j.mce.2013.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022]
Abstract
The discovery of a growth hormone receptor antagonist (GHA) was initially established via expression of mutated GH genes in transgenic mice. Following this discovery, development of the compound resulted in a drug termed pegvisomant, which has been approved for use in patients with acromegaly. Pegvisomant treatment in a dose dependent manner results in normalization of IGF-1 levels in most patients. Thus, it is a very efficacious and safe drug. Since the GH/IGF-1 axis has been implicated in the progression of several types of cancers, many have suggested the use of pegvisomant as an anti-cancer therapeutic. In this manuscript, we will review the use of mouse strains that possess elevated or depressed levels of GH action for unraveling many of GH actions. Additionally, we will describe experiments in which the GHA was discovered, review results of pegvisomant's preclinical and clinical trials, and provide data suggesting pegvisomant's therapeutic value in selected types of cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Bruce Kelder
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Elahu S Gosney
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; School of Applied Health Sciences and Wellness, Ohio University, Athens, OH 45701, United States
| |
Collapse
|
7
|
Jara A, Benner CM, Sim D, Liu X, List EO, Householder LA, Berryman DE, Kopchick JJ. Elevated systolic blood pressure in male GH transgenic mice is age dependent. Endocrinology 2014; 155:975-86. [PMID: 24424040 PMCID: PMC3929738 DOI: 10.1210/en.2013-1899] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Acromegaly is associated with an increased incidence of cardiovascular disease. Transgenic mice expressing bovine GH (bGH) gene have previously been used to examine the effects of chronic GH stimulation on cardiovascular function. Results concerning systolic blood pressure (SBP) in bGH mice are conflicting. We hypothesized that these discrepancies may be the result of the various ages of the mice used in previous studies. In the current study, SBP was assessed monthly in male bGH mice from 3-12 months of age. Factors known to alter blood pressure were assessed during this time and included: levels of brain natriuretic peptide (BNP) and glucose homeostasis markers, and renal levels of angiotensin-converting enzyme 2 and endothelial nitric oxide synthase. Beginning at 6 months of age bGH had increased SBP compared with wild-type controls, which remained elevated through 12 months of age. Despite having increased blood pressure and cardiac BNP mRNA, bGH mice had decreased circulating levels of BNP. Additionally, bGH mice had an age-dependent decline in insulin levels. For example, they were hyperinsulinemic at 3 months, but by 11 months of age were hypoinsulinemic relative to wild-type controls. This decrease in insulin was accompanied by improved glucose tolerance at 11 months. Finally, both angiotensin-converting enzyme 2 and endothelial nitric oxide synthase expression were severely depressed in kidneys of 11-month-old bGH mice. These results indicate that elevated SBP in bGH mice is dependent on age, independent of insulin resistance, and related to alterations in both the natriuretic peptide and renin-angiotensin systems.
Collapse
Affiliation(s)
- Adam Jara
- Edison Biotechnology Institute (A.J., C.M.B., D.S., X.L., E.O.L., L.A.H., D.E.B., J.J.K.) Ohio University, Athens, Ohio 45701; Department of Biomedical Sciences (A.J., D.E.B., J.J.K.) and Department of Specialty Medicine (E.O.L.), Heritage College of Osteopathic Medicine, Athens, Ohio 45701; School of Applied Health Sciences and Wellness (C.M.B., X.L., D.E.B.) College of Health Sciences and Professions, Ohio University, Athens, Ohio 45701; and Department of Biological Sciences (A.J., J.J.K.) and Department of Social and Public Health (D.S.), Ohio University, Athens, Ohio 45701
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Wu H, Roks AJ. Genomic instability and vascular aging: A focus on nucleotide excision repair. Trends Cardiovasc Med 2014; 24:61-8. [DOI: 10.1016/j.tcm.2013.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 11/26/2022]
|
9
|
ZHAO RENPING, SUN LI, LIN SENSEN, BAI XIANSHU, YU BOYANG, YUAN SHENGTAO, ZHANG LUYONG. The saponin monomer of dwarf lilyturf tuber, DT-13, inhibits angiogenesis under hypoxia and normoxia via multi-targeting activity. Oncol Rep 2013; 29:1379-86. [DOI: 10.3892/or.2013.2272] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/26/2012] [Indexed: 11/05/2022] Open
|
10
|
Giani JF, Miquet JG, Muñoz MC, Burghi V, Toblli JE, Masternak MM, Kopchick JJ, Bartke A, Turyn D, Dominici FP. Upregulation of the angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor axis in the heart and the kidney of growth hormone receptor knock-out mice. Growth Horm IGF Res 2012; 22:224-233. [PMID: 22947377 PMCID: PMC3698955 DOI: 10.1016/j.ghir.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Growth hormone (GH) resistance leads to enhanced insulin sensitivity, decreased systolic blood pressure and increased lifespan. The aim of this study was to determine if there is a shift in the balance of the renin-angiotensin system (RAS) towards the ACE2/Ang-(1-7)/Mas receptor axis in the heart and the kidney of a model of GH resistance and retarded aging, the GH receptor knockout (GHR-/-) mouse. DESIGN RAS components were evaluated in the heart and the kidney of GHR-/- and control mice by immunohistochemistry and Western blotting (n=12 for both groups). RESULTS The immunostaining of Ang-(1-7) was increased in both the heart and the kidney of GHR-/- mice. These changes were concomitant with an increased immunostaining of the Mas receptor and ACE2 in both tissues. The immunostaining of AT1 receptor was reduced in heart and kidney of GHR-/- mice while that of AT2 receptor was increased in the heart and unaltered in the kidney. Ang II, ACE and angiotensinogen levels remained unaltered in the heart and the kidney of GH resistant mice. These results were confirmed by Western blotting and correlated with a significant increase in the abundance of the endothelial nitric oxide synthase in both tissues. CONCLUSIONS The shift within the RAS towards an exacerbation of the ACE2/Ang-(1-7)/Mas receptor axis observed in GHR-/- mice could be related to a protective role in cardiac and renal function; and thus, possibly contribute to the decreased incidence of cardiovascular diseases displayed by this animal model of longevity.
Collapse
Affiliation(s)
- Jorge F Giani
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Miquet JG, Giani JF, Martinez CS, Muñoz MC, González L, Sotelo AI, Boparai RK, Masternak MM, Bartke A, Dominici FP, Turyn D. Prolonged exposure to GH impairs insulin signaling in the heart. J Mol Endocrinol 2011; 47:167-77. [PMID: 21727153 PMCID: PMC3746341 DOI: 10.1530/jme-11-0066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Acromegaly is associated with cardiac hypertrophy, which is believed to be a direct consequence of chronically elevated GH and IGF1. Given that insulin is important for cardiac growth and function, and considering that GH excess induces hyperinsulinemia, insulin resistance, and cardiac alterations, it is of interest to study insulin sensitivity in this tissue under chronic conditions of elevated GH. Transgenic mice overexpressing GH present cardiomegaly and perivascular and interstitial fibrosis in the heart. Mice received an insulin injection, the heart was removed after 2 min, and immunoblotting assays of tissue extracts were performed to evaluate the activation and abundance of insulin-signaling mediators. Insulin-induced tyrosine phosphorylation of the insulin receptor (IR) was conserved in transgenic mice, but the phosphorylation of IR substrate 1 (IRS1), its association with the regulatory subunit of the phosphatidylinositol 3-kinase (PI3K), and the phosphorylation of AKT were decreased. In addition, total content of the glucose transporter GLUT4 was reduced in transgenic mice. Insulin failed to induce the phosphorylation of the mammalian target of rapamycin (mTOR). However, transgenic mice displayed increased basal activation of the IR/IRS1/PI3K/AKT/mTOR and p38 signaling pathways along with higher serine phosphorylation of IRS1, which is recognized as an inhibitory modification. We conclude that GH-overexpressing mice exhibit basal activation of insulin signaling but decreased sensitivity to acute insulin stimulation at several signaling steps downstream of the IR in the heart. These alterations may be associated with the cardiac pathology observed in these animals.
Collapse
Affiliation(s)
- J G Miquet
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956 (1113) Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
List EO, Sackmann-Sala L, Berryman DE, Funk K, Kelder B, Gosney ES, Okada S, Ding J, Cruz-Topete D, Kopchick JJ. Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR-/-) mouse. Endocr Rev 2011; 32:356-86. [PMID: 21123740 PMCID: PMC3365798 DOI: 10.1210/er.2010-0009] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Disruption of the GH receptor (GHR) gene eliminates GH-induced intracellular signaling and, thus, its biological actions. Therefore, the GHR gene disrupted mouse (GHR-/-) has been and is a valuable tool for helping to define various parameters of GH physiology. Since its creation in 1995, this mouse strain has been used by our laboratory and others for numerous studies ranging from growth to aging. Some of the most notable discoveries are their extreme insulin sensitivity in the presence of obesity. Also, the animals have an extended lifespan, which has generated a large number of investigations into the roles of GH and IGF-I in the aging process. This review summarizes the many results derived from the GHR-/- mice. We have attempted to present the findings in the context of current knowledge regarding GH action and, where applicable, to discuss how these mice compare to GH insensitivity syndrome in humans.
Collapse
Affiliation(s)
- Edward O List
- The Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Takahara K, Tearle H, Ghaffari M, Gleave ME, Pollak M, Cox ME. Human prostate cancer xenografts in lit/lit mice exhibit reduced growth and androgen-independent progression. Prostate 2011; 71:525-37. [PMID: 20878948 DOI: 10.1002/pros.21268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 08/16/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The growth hormone/insulin-like growth factor I (GH/IGF-I) axis has been linked to prostate cancer (PCa) risk. Although previous studies indicate that human breast cancers and a murine PCa model develop more slowly in murine hosts homozygous for a missense mutation in the GH-releasing hormone receptor (lit/lit) whose "little" dwarfed phenotype is caused by suppressed GH and IGF-I production, the role of these two hormones remains controversial. METHODS To assess how the GH/IGF-I axis influences androgen-responsive, castration-resistant (CR), and androgen-independent (AI) growth of human PCa, we compared xenograft growth of the androgen-responsive human PCa cells, LNCaP, and AI human PCa cells, PC3, in intact and castrate Nod/SCID lit/lit and lit/+ mice, and in vitro growth of these cell lines in lit/lit and lit/+ serum-containing media supplemented with GH or IGF-I. RESULTS Tumor growth and PSA accumulation rates were suppressed in LNCaP tumor-bearing lit/lit mice pre- and post-castration. Growth of PC3 xenografts in lit/lit mice was also suppressed. In vitro proliferation of LNCaP and PC3 cells cultured in media containing lit/lit mouse serum was decreased as compared to growth in media containing lit/+ serum. Suppressed growth in lit/lit serum could be restored by the addition of IGF-I, and to a lesser extent, GH. Differences in growth correlated with differences in steady-state AKT and ERK1/2 activation. CONCLUSIONS This study demonstrates that circulating GH and IGF-I can promote androgen-responsive growth, CR progression, and AI expansion of PTEN-deficient human PCa cell xenografts and indicates that IGF-I can promote PCa growth in a suppressed GH environment.
Collapse
Affiliation(s)
- Kiyoshi Takahara
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Plasma proteomic profiles of bovine growth hormone transgenic mice as they age. Transgenic Res 2011; 20:1305-20. [PMID: 21365322 DOI: 10.1007/s11248-011-9499-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/20/2011] [Indexed: 12/17/2022]
Abstract
Attenuation of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis results in extended lifespan in many organisms including mice. Conversely, GH transgenic mice have excess GH action and die prematurely. We have studied bovine (b) GH transgenic mice (n = 9) and their wild type (WT) littermates (n = 8) longitudinally and have determined several age-related changes. Compared to WT mice, bGH mice lost fat mass, became hypoglycemic and had lower insulin levels at older ages despite being hyperinsulinemic when young. To examine plasma protein differences in bGH mice relative to controls, samples at 2, 4, 8, 12 and 16 months of age were analyzed by two-dimensional gel electrophoresis followed by identification using mass spectrometry. We found several differences in plasma proteins of bGH mice compared to controls, including increased apolipoprotein E (five isoforms), haptoglobin (four isoforms) and mannose-binding protein-C (one out of three isoforms), and decreased transthyretin (six isoforms). In addition, clusterin (two out of six isoforms) and haptoglobin (four isoforms) were up-regulated in bGH mice as a function of age. Finally, alpha-2 macroglobulin (seven isoforms) was altered in an isoform-specific manner with two isoforms increased and two decreased in bGH mouse plasma compared to controls. In conclusion, identification of these proteins suggests that bGH mice exhibit an increased inflammatory state with an adverse lipid profile, possibly contributing to their diminished life expectancy. Also, these newly discovered plasma proteins may be indicative or 'biomarkers' of a shortened lifespan.
Collapse
|
15
|
Boparai RK, Arum O, Khardori R, Bartke A. Glucose homeostasis and insulin sensitivity in growth hormone-transgenic mice: a cross-sectional analysis. Biol Chem 2011; 391:1149-55. [PMID: 20707609 DOI: 10.1515/bc.2010.124] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In contrast to its stimulatory effects on musculature, bone, and organ development, and its lipolytic effects, growth hormone (GH) opposes insulin effects on glucose metabolism. Chronic GH overexposure is thought to result in insulin insensitivity and decreased blood glucose homeostatic control. Yet, despite the importance of this concept for basic biology, as well as human conditions of GH excess or deficiency, no systematic assessment of the impact of GH over- expression on glucose homeostasis and insulin sensitivity has been conducted. We report that male and female adult GH transgenic mice have enhanced glucose tolerance compared to littermate controls and this effect is not dependent on age or on the particular heterologous GH transgene used. Furthermore, increased glucose-stimulated insulin secretion, augmented insulin sensitivity, and muted gluconeogenesis were also observed in bovine GH overexpressing mice. These results show that markedly increased systemic GH concentration in GH-transgenic mice exerts unexpected beneficial effects on glucose homeostasis, presumably via a compensatory increase in insulin release. The counterintuitive nature of these results challenges previously held presumptions of the physiology of these mice and other states of GH overexpression or suppression. In addition, they pose intriguing queries about the relationships between GH, endocrine control of metabolism, and aging.
Collapse
Affiliation(s)
- Ravneet K Boparai
- Department of Internal Medicine, Division of Geriatrics Research, School of Medicine, Southern Illinois University, 801 N Rutledge, Room 4389, P.O. Box 19628, Springfield, IL 62794-9628, USA.
| | | | | | | |
Collapse
|