1
|
Zhu X, Li P. GABA(A) Receptor Subunit (γ2, δ, β1-3) Variants in Genetic Epilepsy: A Comprehensive Summary of 206 Clinical Cases. J Child Neurol 2024; 39:354-370. [PMID: 39228214 DOI: 10.1177/08830738241273437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Epilepsy is identified in individuals who experienced 2 or more unprovoked seizures occurring over 24 hours apart, which can have a profound impact on a person's neurobiological, cognitive, psychological, and social well-being. Epilepsy is considerably diverse, with classifications such as genetic epilepsy that result directly from a known or presumed genetic variant with the core symptoms of seizures. The GABAA receptor primarily functions as a heteropentamer, containing 3 of 8 subunit types: α, β, γ, δ, ε, π, θ, and ρ. In the adult brain, the GABAA receptor is the primary inhibitory component in neural networks. The involvement of GABAA receptors in the pathogenesis of epilepsy has been proposed. We extensively reviewed all relevant clinical data of previously published cases of GABAA receptor subunit γ2, δ, β1-3 variants included in PubMed up to February 2024, including the variant types, loci, postulated mechanisms, their relevant regions, first onset ages, and phenotypes. We summarized the postulated mechanisms of epileptic pathogenesis. We also divided the collected 206 cases of epilepsy into 4 epileptic phenotypes: genetic generalized epilepsies, focal epilepsy, developmental and epileptic encephalopathies, and epilepsy with fever sensibility. We showed that there were significant differences in the likelihood of the γ2, β2, and β3 subunit variants causing genetic generalized epilepsies, focal epilepsy, developmental and epileptic encephalopathies, and epilepsy with fever sensibility. Patients with the β3 subunit variant seemed related to an earlier first onset age. Our review supports that GABAA receptor subunit variants are a crucial area of epilepsy research and treatment exploration.
Collapse
Affiliation(s)
- Xinyi Zhu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Peijun Li
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Mohammadi NA, Ahring PK, Yu Liao VW, Chua HC, Ortiz de la Rosa S, Johannesen KM, Michaeli-Yossef Y, Vincent-Devulder A, Meridda C, Bruel AL, Rossi A, Patel C, Klepper J, Bonanni P, Minghetti S, Trivisano M, Specchio N, Amor D, Auvin S, Baer S, Meyer P, Milh M, Salpietro V, Maroofian R, Lemke JR, Weckhuysen S, Christophersen P, Rubboli G, Chebib M, Jensen AA, Absalom NL, Møller RS. Distinct neurodevelopmental and epileptic phenotypes associated with gain- and loss-of-function GABRB2 variants. EBioMedicine 2024; 106:105236. [PMID: 38996765 PMCID: PMC11296288 DOI: 10.1016/j.ebiom.2024.105236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Variants in GABRB2, encoding the β2 subunit of the γ-aminobutyric acid type A (GABAA) receptor, can result in a diverse range of conditions, ranging from febrile seizures to severe developmental and epileptic encephalopathies. However, the mechanisms underlying the risk of developing milder vs more severe forms of disorder remain unclear. In this study, we conducted a comprehensive genotype-phenotype correlation analysis in a cohort of individuals with GABRB2 variants. METHODS Genetic and electroclinical data of 42 individuals harbouring 26 different GABRB2 variants were collected and accompanied by electrophysiological analysis of the effects of the variants on receptor function. FINDINGS Electrophysiological assessments of α1β2γ2 receptors revealed that 25/26 variants caused dysfunction to core receptor properties such as GABA sensitivity. Of these, 17 resulted in gain-of-function (GOF) while eight yielded loss-of-function traits (LOF). Genotype-phenotype correlation analysis revealed that individuals harbouring GOF variants suffered from severe developmental delay/intellectual disability (DD/ID, 74%), movement disorders such as dystonia or dyskinesia (59%), microcephaly (50%) and high risk of early mortality (26%). Conversely, LOF variants were associated with milder disease manifestations. Individuals with these variants typically exhibited fever-triggered seizures (92%), milder degrees of DD/ID (85%), and maintained ambulatory function (85%). Notably, severe movement disorders or microcephaly were not reported in individuals with loss-of-function variants. INTERPRETATION The data reveals that genetic variants in GABRB2 can lead to both gain and loss-of-function, and this divergence is correlated with distinct disease manifestations. Utilising this information, we constructed a diagnostic flowchart that aids in predicting the pathogenicity of recently identified variants by considering clinical phenotypes. FUNDING This work was funded by the Australian National Health & Medical Research Council, the Novo Nordisk Foundation and The Lundbeck Foundation.
Collapse
Affiliation(s)
- Nazanin Azarinejad Mohammadi
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Philip Kiær Ahring
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vivian Wan Yu Liao
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Han Chow Chua
- Sydney Pharmacy School, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sebastián Ortiz de la Rosa
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Katrine Marie Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Yael Michaeli-Yossef
- Pediatric Neurology Unit and Metabolic Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
| | | | | | | | - Alessandra Rossi
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Pediatric Clinic, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD 4029, Australia
| | - Joerg Klepper
- Children's Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Paolo Bonanni
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Conegliano, Treviso, Italy
| | - Sara Minghetti
- IRCCS E. Medea Scientific Institute, Clinical Neurophysiology Unit, Bosisio Parini, LC, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - David Amor
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Stéphane Auvin
- Université de Paris, Child Neurology & Epilepsy, Paris, France; Robert-Debré Hospital, Center for Rare Epilepsies - Pediatric Neurology, Paris, France
| | - Sarah Baer
- Department of Paediatric Neurology, French Reference Center of Rare Epilepsies CREER, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pierre Meyer
- Paediatric Neurology Department, Phymedexp, Montpellier University, Inserm, CNRS, University Hospital Montpellier, Montpellier, France
| | - Mathieu Milh
- Department of Pediatric Neurology, AP-HM, La Timone Children's Hospital, Marseille, France; Faculté de Médecine Timone, Aix Marseille Univ, INSERM, MMG, U1251, ERN EpiCARE, Marseille, France
| | - Vincenzo Salpietro
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Antwerp, Belgium; Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | | | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mary Chebib
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathan L Absalom
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; School of Science, Western Sydney University, Sydney, Australia.
| | - Rikke Steensbjerre Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Brancato D, Bruno F, Coniglio E, Sturiale V, Saccone S, Federico C. The Chromatin Organization Close to SNP rs12913832, Involved in Eye Color Variation, Is Evolutionary Conserved in Vertebrates. Int J Mol Sci 2024; 25:6602. [PMID: 38928306 PMCID: PMC11204186 DOI: 10.3390/ijms25126602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The most significant genetic influence on eye color pigmentation is attributed to the intronic SNP rs12913832 in the HERC2 gene, which interacts with the promoter region of the contiguous OCA2 gene. This interaction, through the formation of a chromatin loop, modulates the transcriptional activity of OCA2, directly affecting eye color pigmentation. Recent advancements in technology have elucidated the precise spatial organization of the genome within the cell nucleus, with chromatin architecture playing a pivotal role in regulating various genome functions. In this study, we investigated the organization of the chromatin close to the HERC2/OCA2 locus in human lymphocyte nuclei using fluorescence in situ hybridization (FISH) and high-throughput chromosome conformation capture (Hi-C) data. The 3 Mb of genomic DNA that belonged to the chromosomal region 15q12-q13.1 revealed the presence of three contiguous chromatin loops, which exhibited a different level of compaction depending on the presence of the A or G allele in the SNP rs12913832. Moreover, the analysis of the genomic organization of the genes has demonstrated that this chromosomal region is evolutionarily highly conserved, as evidenced by the analysis of syntenic regions in species from other Vertebrate classes. Thus, the role of rs12913832 variant is relevant not only in determining the transcriptional activation of the OCA2 gene but also in the chromatin compaction of a larger region, underscoring the critical role of chromatin organization in the proper regulation of the involved genes. It is crucial to consider the broader implications of this finding, especially regarding the potential regulatory role of similar polymorphisms located within intronic regions, which do not influence the same gene by modulating the splicing process, but they regulate the expression of adjacent genes. Therefore, caution should be exercised when utilizing whole-exome sequencing for diagnostic purposes, as intron sequences may provide valuable gene regulation information on the region where they reside. Thus, future research efforts should also be directed towards gaining a deeper understanding of the precise mechanisms underlying the role and mode of action of intronic SNPs in chromatin loop organization and transcriptional regulation.
Collapse
Affiliation(s)
| | | | | | | | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (F.B.); (E.C.); (V.S.); (C.F.)
| | | |
Collapse
|
4
|
Richardson RJ, Petrou S, Bryson A. Established and emerging GABA A receptor pharmacotherapy for epilepsy. Front Pharmacol 2024; 15:1341472. [PMID: 38449810 PMCID: PMC10915249 DOI: 10.3389/fphar.2024.1341472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Drugs that modulate the GABAA receptor are widely used in clinical practice for both the long-term management of epilepsy and emergency seizure control. In addition to older medications that have well-defined roles for the treatment of epilepsy, recent discoveries into the structure and function of the GABAA receptor have led to the development of newer compounds designed to maximise therapeutic benefit whilst minimising adverse effects, and whose position within the epilepsy pharmacologic armamentarium is still emerging. Drugs that modulate the GABAA receptor will remain a cornerstone of epilepsy management for the foreseeable future and, in this article, we provide an overview of the mechanisms and clinical efficacy of both established and emerging pharmacotherapies.
Collapse
Affiliation(s)
- Robert J. Richardson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Praxis Precision Medicines, Boston, MA, United States
| | - Alexander Bryson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Department of Neurology, Eastern Health, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Lin SXN, Ahring PK, Keramidas A, Liao VWY, Møller RS, Chebib M, Absalom NL. Correlations of receptor desensitization of gain-of-function GABRB3 variants with clinical severity. Brain 2024; 147:224-239. [PMID: 37647766 PMCID: PMC10766243 DOI: 10.1093/brain/awad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic variants associated with developmental and epileptic encephalopathies have been identified in the GABRB3 gene that encodes the β3 subunit of GABAA receptors. Typically, variants alter receptor sensitivity to GABA resulting in either gain- or loss-of-function, which correlates with patient phenotypes. However, it is unclear how another important receptor property, desensitization, contributes to the greater clinical severity of gain-of-function variants. Desensitization properties of 20 gain-of-function GABRB3 variant receptors were evaluated using two-electrode voltage-clamp electrophysiology. The parameters measured included current decay rates and steady-state currents. Selected variants with increased or reduced desensitization were also evaluated using whole-cell electrophysiology in transfected mammalian cell lines. Of the 20 gain-of-function variants assessed, 13 were found to alter receptor desensitization properties. Seven variants reduced desensitization at equilibrium, which acts to worsen gain-of-function traits. Six variants accelerated current decay kinetics, which limits gain-of-function traits. All affected patients displayed severe clinical phenotypes with intellectual disability and difficult-to-treat epilepsy. Nevertheless, variants that reduced desensitization at equilibrium were associated with more severe clinical outcomes. This included younger age of first seizure onset (median 0.5 months), movement disorders (dystonia and dyskinesia), epilepsy of infancy with migrating focal seizures (EIMFS) and risk of early mortality. Variants that accelerated current decay kinetics were associated with slightly milder phenotypes with later seizure onset (median 4 months), unclassifiable developmental and epileptic encephalopathies or Lennox-Gastaut syndrome and no movement disorders. Our study reveals that gain-of-function GABRB3 variants can increase or decrease receptor desensitization properties and that there is a correlation with the degree of disease severity. Variants that reduced the desensitization at equilibrium were clustered in the transmembrane regions that constitute the channel pore and correlated with greater disease severity, while variants that accelerated current decay were clustered in the coupling loops responsible for receptor activation and correlated with lesser severity.
Collapse
Affiliation(s)
- Susan X N Lin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Philip K Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Member of ERN, EpiCare, Danish Epilepsy Centre, Dianalund DK-4293, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense DK-5230, Denmark
| | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nathan L Absalom
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Science, University of Western Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Kwon S, Safer J, Nguyen DT, Hoksza D, May P, Arbesfeld JA, Rubin AF, Campbell AJ, Burgin A, Iqbal S. Genomics 2 Proteins portal: A resource and discovery tool for linking genetic screening outputs to protein sequences and structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573913. [PMID: 38260256 PMCID: PMC10802383 DOI: 10.1101/2024.01.02.573913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Recent advances in AI-based methods have revolutionized the field of structural biology. Concomitantly, high-throughput sequencing and functional genomics technologies have enabled the detection and generation of variants at an unprecedented scale. However, efficient tools and resources are needed to link these two disparate data types - to "map" variants onto protein structures, to better understand how the variation causes disease and thereby design therapeutics. Here we present the Genomics 2 Proteins Portal (G2P; g2p.broadinstitute.org/): a human proteome-wide resource that maps 19,996,443 genetic variants onto 42,413 protein sequences and 77,923 structures, with a comprehensive set of structural and functional features. Additionally, the G2P portal generalizes the capability of linking genomics to proteins beyond databases by allowing users to interactively upload protein residue-wise annotations (variants, scores, etc.) as well as the protein structure to establish the connection. The portal serves as an easy-to-use discovery tool for researchers and scientists to hypothesize the structure-function relationship between natural or synthetic variations and their molecular phenotype.
Collapse
|
7
|
Hernandez CC, Hu N, Shen W, Macdonald RL. Epileptic Encephalopathy GABRB Structural Variants Share Common Gating and Trafficking Defects. Biomolecules 2023; 13:1790. [PMID: 38136660 PMCID: PMC10741827 DOI: 10.3390/biom13121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Variants in the GABRB gene, which encodes the β subunit of the GABAA receptor, have been implicated in various epileptic encephalopathies and related neurodevelopmental disorders such as Dravet syndrome and Angelman syndrome. These conditions are often associated with early-onset seizures, developmental regression, and cognitive impairments. The severity and specific features of these encephalopathies can differ based on the nature of the genetic variant and its impact on GABAA receptor function. These variants can lead to dysfunction in GABAA receptor-mediated inhibition, resulting in an imbalance between neuronal excitation and inhibition that contributes to the development of seizures. Here, 13 de novo EE-associated GABRB variants, occurring as missense mutations, were analyzed to determine their impact on protein stability and flexibility, channel function, and receptor biogenesis. Our results showed that all mutations studied significantly impact the protein structure, altering protein stability, flexibility, and function to varying degrees. Variants mapped to the GABA-binding domain, coupling zone, and pore domain significantly impact the protein structure, modifying the β+/α- interface of the receptor and altering channel activation and receptor trafficking. Our study proposes that the extent of loss or gain of GABAA receptor function can be elucidated by identifying the specific structural domain impacted by mutation and assessing the variability in receptor structural dynamics. This paves the way for future studies to explore and uncover links between the incidence of a variant in the receptor topology and the severity of the related disease.
Collapse
Affiliation(s)
- Ciria C. Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (N.H.); (W.S.); (R.L.M.)
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (N.H.); (W.S.); (R.L.M.)
| | - Robert L. Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (N.H.); (W.S.); (R.L.M.)
| |
Collapse
|
8
|
Stefanski A, Pérez-Palma E, Brünger T, Montanucci L, Gati C, Klöckner C, Johannesen KM, Goodspeed K, Macnee M, Deng AT, Aledo-Serrano Á, Borovikov A, Kava M, Bouman AM, Hajianpour MJ, Pal DK, Engelen M, Hagebeuk EEO, Shinawi M, Heidlebaugh AR, Oetjens K, Hoffman TL, Striano P, Freed AS, Futtrup L, Balslev T, Abulí A, Danvoye L, Lederer D, Balci T, Nouri MN, Butler E, Drewes S, van Engelen K, Howell KB, Khoury J, May P, Trinidad M, Froelich S, Lemke JR, Tiller J, Freed AN, Kang JQ, Wuster A, Møller RS, Lal D. SLC6A1 variant pathogenicity, molecular function and phenotype: a genetic and clinical analysis. Brain 2023; 146:5198-5208. [PMID: 37647852 PMCID: PMC10689929 DOI: 10.1093/brain/awad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/05/2023] [Accepted: 07/08/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering the protein function. Thus, systematically curated clinically relevant genotype-phenotype associations are needed to understand the disease mechanism and improve therapeutic decision-making. We aggregated genetic and clinical data from 172 individuals with likely pathogenic/pathogenic (lp/p) SLC6A1 variants and functional data for 184 variants (14.1% lp/p). Clinical and functional data were available for a subset of 126 individuals. We explored the potential associations of variant positions on the GAT1 3D structure with variant pathogenicity, altered molecular function and phenotype severity using bioinformatic approaches. The GAT1 transmembrane domains 1, 6 and extracellular loop 4 (EL4) were enriched for patient over population variants. Across functionally tested missense variants (n = 156), the spatial proximity from the ligand was associated with loss-of-function in the GAT1 transporter activity. For variants with complete loss of in vitro GABA uptake, we found a 4.6-fold enrichment in patients having severe disease versus non-severe disease (P = 2.9 × 10-3, 95% confidence interval: 1.5-15.3). In summary, we delineated associations between the 3D structure and variant pathogenicity, variant function and phenotype in SLC6A1-related disorders. This knowledge supports biology-informed variant interpretation and research on GAT1 function. All our data can be interactively explored in the SLC6A1 portal (https://slc6a1-portal.broadinstitute.org/).
Collapse
Affiliation(s)
- Arthur Stefanski
- Genomic Medicine Institute and Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Eduardo Pérez-Palma
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago de Chile 7610658, Chile
| | - Tobias Brünger
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, Cologne 50931, Germany
| | - Ludovica Montanucci
- Genomic Medicine Institute and Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Cornelius Gati
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Genetics, University Hospital of Copenhagen, Rigshispitalet, Copenhagen 2100, Denmark
| | - Kimberly Goodspeed
- Children’s Health, Medical Center, Dallas, TX 75235, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marie Macnee
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, Cologne 50931, Germany
| | - Alexander T Deng
- Clinical Genetics, Guys and St Thomas NHS Trust, London SE19RT, UK
| | - Ángel Aledo-Serrano
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Artem Borovikov
- Research and Counseling Department, Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Maina Kava
- Department of Neurology and Metabolic Medicine, Perth Children’s Hospital, Perth 6009, Australia
- School of Paediatrics and Child Health, UWA Medical School, University of Western Australia, Perth 6009, Australia
| | - Arjan M Bouman
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam 3015GD, The Netherlands
| | - M J Hajianpour
- Department of Pediatrics, Division of Medical Genetics and Genomics, Albany Medical College, Albany Med Health System, Albany, NY 12208, USA
| | - Deb K Pal
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE58AF, UK
- Department of Basic and Clinical Neurosciences, King’s College Hospital, London SE59RS, UK
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam 1081HV, The Netherlands
| | - Eveline E O Hagebeuk
- Department of Pediatric Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede and Zwolle 2103SW, The Netherlands
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St.Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kathryn Oetjens
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA 17837, USA
| | - Trevor L Hoffman
- Department of Regional Genetics, Anaheim, Southern California Kaiser Permanente Medical Group, CA 92806, USA
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy
| | - Amanda S Freed
- Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA
| | - Line Futtrup
- Department of Paediatrics, Regional Hospital of Central Jutland, Viborg 8800, Denmark
| | - Thomas Balslev
- Department of Paediatrics, Regional Hospital of Central Jutland, Viborg 8800, Denmark
- Centre for Educational Development, Aarhus University, Aarhus 8200, Denmark
| | - Anna Abulí
- Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, University Hospital Vall d’Hebron, Barcelona 08035, Spain
| | - Leslie Danvoye
- Department of Neurology, Université catholique de Louvain, Cliniques universitaires Saint-Luc, Brussels 1200, Belgium
| | - Damien Lederer
- Centre for Human Genetics, Institute for Pathology and Genetics, Gosselies 6041, Belgium
| | - Tugce Balci
- Department of Pediatrics, Division of Medical Genetics, Western University, London, ON N6A3K7, Canada
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre and Children's Health Research Institute, London, ON N6A5A5, Canada
| | - Maryam Nabavi Nouri
- Department of Paediatrics, Division of Pediatric Neurology, London Health Sciences Centre, London, ON N6A5W9, Canada
| | | | - Sarah Drewes
- Department of Medical Genetics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kalene van Engelen
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON N6A5W9, Canada
| | - Katherine B Howell
- Department of Neurology, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Jean Khoury
- Genomic Medicine Institute and Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Marena Trinidad
- Translational Genomics, BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | - Steven Froelich
- Translational Genomics, BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig 04103, Germany
| | | | | | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurology, Vanderbilt Brain Institute, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Kennedy Center of Human Development, Nashville, TN 37203, USA
| | - Arthur Wuster
- Translational Genomics, BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense 5000, Denmark
| | - Dennis Lal
- Genomic Medicine Institute and Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
- Stanley Center of Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
9
|
Absalom NL, Lin SXN, Liao VWY, Chua HC, Møller RS, Chebib M, Ahring PK. GABA A receptors in epilepsy: Elucidating phenotypic divergence through functional analysis of genetic variants. J Neurochem 2023. [PMID: 37621067 DOI: 10.1111/jnc.15932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Normal brain function requires a tightly regulated balance between excitatory and inhibitory neurotransmissions. γ-Aminobutyric acid type A (GABAA ) receptors represent the major class of inhibitory ion channels in the mammalian brain. Dysregulation of these receptors and/or their associated pathways is strongly implicated in the pathophysiology of epilepsy. To date, hundreds of different GABAA receptor subunit variants have been associated with epilepsy, making them a prominent cause of genetically linked epilepsy. While identifying these genetic variants is crucial for accurate diagnosis and effective genetic counselling, it does not necessarily lead to improved personalised treatment options. This is because the identification of a variant does not reveal how the function of GABAA receptors is affected. Genetic variants in GABAA receptor subunits can cause complex changes to receptor properties resulting in various degrees of gain-of-function, loss-of-function or a combination of both. Understanding how variants affect the function of GABAA receptors therefore represents an important first step in the ongoing development of precision therapies. Furthermore, it is important to ensure that functional data are produced using methodologies that allow genetic variants to be classified using clinical guidelines such as those developed by the American College of Medical Genetics and Genomics. This article will review the current knowledge in the field and provide recommendations for future functional analysis of genetic GABAA receptor variants.
Collapse
Affiliation(s)
- Nathan L Absalom
- School of Science, University of Western Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Susan X N Lin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Han C Chua
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre, Filadelfia, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Philip K Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Hernandez CC, Shen Y, Hu N, Shen W, Narayanan V, Ramsey K, He W, Zou L, Macdonald RL. GABRG2 Variants Associated with Febrile Seizures. Biomolecules 2023; 13:414. [PMID: 36979350 PMCID: PMC10046037 DOI: 10.3390/biom13030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Febrile seizures (FS) are the most common form of epilepsy in children between six months and five years of age. FS is a self-limited type of fever-related seizure. However, complicated prolonged FS can lead to complex partial epilepsy. We found that among the GABAA receptor subunit (GABR) genes, most variants associated with FS are harbored in the γ2 subunit (GABRG2). Here, we characterized the effects of eight variants in the GABAA receptor γ2 subunit on receptor biogenesis and channel function. Two-thirds of the GABRG2 variants followed the expected autosomal dominant inheritance in FS and occurred as missense and nonsense variants. The remaining one-third appeared as de novo in the affected probands and occurred only as missense variants. The loss of GABAA receptor function and dominant negative effect on GABAA receptor biogenesis likely caused the FS phenotype. In general, variants in the GABRG2 result in a broad spectrum of phenotypic severity, ranging from asymptomatic, FS, genetic epilepsy with febrile seizures plus (GEFS+), and Dravet syndrome individuals. The data presented here support the link between FS, epilepsy, and GABRG2 variants, shedding light on the relationship between the variant topological occurrence and disease severity.
Collapse
Affiliation(s)
- Ciria C. Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanwen Shen
- Department of Pediatrics, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100010, China
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Wen He
- Department of Pediatrics, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100010, China
| | - Liping Zou
- Department of Pediatrics, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100010, China
| | - Robert L. Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Gallagher MJ. No Gain, Less Pain: GABRB3 Mutations in Epileptic Encephalopathy. Epilepsy Curr 2023; 23:44-46. [PMID: 36923344 PMCID: PMC10009129 DOI: 10.1177/15357597221130199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Gain-of-Function and Loss-of-Function GABRB3 Variants Lead to Distinct Clinical Phenotypes in Patients With Developmental and Epileptic Encephalopathies Absalom NL, Liao VW, Johannesen KM, Gardella E, Jacobs J, Lesca G, Gokce-Samar Z, Arzimanoglou A, Zeidler S, Striano P, Meyer P, Benkel-Herrenbrueck I, Mero I-L, Rummel J, Chebib M, Møller RS, Ahring PK. Nat Commun. 2022;13(1):1822. doi:10.1038/s41467-022-29280-x Many patients with developmental and epileptic encephalopathies present with variants in genes coding for GABAA receptors. These variants are presumed to cause loss-of-function receptors leading to reduced neuronal GABAergic activity. Yet, patients with GABAA receptor variants have diverse clinical phenotypes and many are refractory to treatment despite the availability of drugs that enhance GABAergic activity. Here we show that 44 pathogenic GABRB3 missense variants segregate into gain-of-function and loss-of-function groups and respective patients display distinct clinical phenotypes. The gain-of-function cohort (n = 27 patients) presented with a younger age of seizure onset, higher risk of severe intellectual disability, focal seizures at onset, hypotonia, and lower likelihood of seizure freedom in response to treatment. Febrile seizures at onset are exclusive to the loss-of-function cohort (n = 47 patients). Overall, patients with GABRB3 variants that increase GABAergic activity have more severe developmental and epileptic encephalopathies. This paradoxical finding challenges our current understanding of the GABAergic system in epilepsy and how patients should be treated.
Collapse
|
12
|
Maillard P, Baer S, Schaefer É, Desnous B, Villeneuve N, Lépine A, Fabre A, Lacoste C, El Chehadeh S, Piton A, Porter LF, Perriard C, Wardé MA, Spitz M, Laugel V, Lesca G, Putoux A, Ville D, Mignot C, Héron D, Nabbout R, Barcia G, Rio M, Roubertie A, Meyer P, Paquis‐Flucklinger V, Patat O, Lefranc J, Gerard M, de Bellescize J, Villard L, De Saint Martin A, Milh M. Molecular and clinical descriptions of patients with GABA A receptor gene variants (GABRA1, GABRB2, GABRB3, GABRG2): A cohort study, review of literature, and genotype-phenotype correlation. Epilepsia 2022; 63:2519-2533. [PMID: 35718920 PMCID: PMC9804453 DOI: 10.1111/epi.17336] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE γ-Aminobutyric acid (GABA)A -receptor subunit variants have recently been associated with neurodevelopmental disorders and/or epilepsy. The phenotype linked with each gene is becoming better known. Because of the common molecular structure and physiological role of these phenotypes, it seemed interesting to describe a putative phenotype associated with GABAA -receptor-related disorders as a whole and seek possible genotype-phenotype correlations. METHODS We collected clinical, electrophysiological, therapeutic, and molecular data from patients with GABAA -receptor subunit variants (GABRA1, GABRB2, GABRB3, and GABRG2) through a national French collaboration using the EPIGENE network and compared these data to the one already described in the literature. RESULTS We gathered the reported patients in three epileptic phenotypes: 15 patients with fever-related epilepsy (40%), 11 with early developmental epileptic encephalopathy (30%), 10 with generalized epilepsy spectrum (27%), and 1 patient without seizures (3%). We did not find a specific phenotype for any gene, but we showed that the location of variants on the transmembrane (TM) segment was associated with a more severe phenotype, irrespective of the GABAA -receptor subunit gene, whereas N-terminal variants seemed to be related to milder phenotypes. SIGNIFICANCE GABAA -receptor subunit variants are associated with highly variable phenotypes despite their molecular and physiological proximity. None of the genes described here was associated with a specific phenotype. On the other hand, it appears that the location of the variant on the protein may be a marker of severity. Variant location may have important weight in the development of targeted therapeutics.
Collapse
Affiliation(s)
- Pierre‐Yves Maillard
- Department of Medical GeneticsIGMA, Hôpitaux Universitaires de StrasbourgStrasbourgFrance,Present address:
Institut Jérome LejeuneParisFrance
| | - Sarah Baer
- Department of NeuropediatricsERN EpiCare, Hôpitaux Universitaires de StrasbourgStrasbourgFrance,Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258IllkirchFrance
| | - Élise Schaefer
- Department of Medical GeneticsIGMA, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Béatrice Desnous
- Department of Pediatric NeurologyAP‐HM, La Timone Children's HospitalMarseilleFrance
| | - Nathalie Villeneuve
- Department of Pediatric NeurologyAP‐HM, La Timone Children's HospitalMarseilleFrance
| | - Anne Lépine
- Department of Pediatric NeurologyAP‐HM, La Timone Children's HospitalMarseilleFrance
| | - Alexandre Fabre
- Pediatric Multidisciplinary UnitAP‐HM, Timone EnfantMarseilleFrance,Aix‐Marseille University, INSERM, GMGFMarseilleFrance
| | - Caroline Lacoste
- Department of Medical GeneticsLa Timone Children's HospitalMarseilleFrance
| | - Salima El Chehadeh
- Department of Medical GeneticsIGMA, Hôpitaux Universitaires de StrasbourgStrasbourgFrance,Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258IllkirchFrance
| | - Amélie Piton
- Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258IllkirchFrance,Laboratory of Genetic DiagnosisInstitut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Louise Frances Porter
- Department of Medical GeneticsInstitut de Génétique Médicale d'Alsace, Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO)StrasbourgFrance
| | - Caroline Perriard
- Department of NeuropediatricsERN EpiCare, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Marie‐Thérèse Abi Wardé
- Department of NeuropediatricsERN EpiCare, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Marie‐Aude Spitz
- Department of NeuropediatricsERN EpiCare, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Vincent Laugel
- Department of NeuropediatricsERN EpiCare, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Gaëtan Lesca
- Department of GeneticsHospices Civils de LyonBronFrance
| | - Audrey Putoux
- Department of GeneticsHospices Civils de LyonBronFrance
| | - Dorothée Ville
- Pediatric Neurology Department and Reference Center of Rare EpilepsiesMother Child Women's Hospital, Lyon University HospitalLyonFrance
| | - Cyril Mignot
- Department of GeneticsGroupe Hospitalier Pitié‐Salpêtrière and Hôpital Armand Trousseau, APHP‐Sorbonne UniversitéParisFrance,Centre de Référence Déficiences Intellectuelles de Causes RaresParisFrance
| | - Delphine Héron
- Department of GeneticsGroupe Hospitalier Pitié‐Salpêtrière and Hôpital Armand Trousseau, APHP‐Sorbonne UniversitéParisFrance,Centre de Référence Déficiences Intellectuelles de Causes RaresParisFrance
| | - Rima Nabbout
- Department of Pediatric NeurologyReference Centre for Rare Epilepsies, Necker Enfants Malades University Hospital, APHP, Université de ParisParisFrance
| | - Giulia Barcia
- Department of Medical GeneticsNecker‐Enfants Malades Hospital, Université de ParisParisFrance
| | - Marlène Rio
- Department of Medical GeneticsNecker‐Enfants Malades Hospital, Université de ParisParisFrance
| | - Agathe Roubertie
- Pediatric Neurology DepartmentINM, INSERM, CHU Montpellier, University of MontpellierMontpellierFrance
| | - Pierre Meyer
- Pediatric Neurology DepartmentINM, INSERM, CHU Montpellier, University of MontpellierMontpellierFrance
| | | | - Olivier Patat
- Department of Medical GeneticsCHU Toulouse PurpanToulouseFrance
| | | | - Marion Gerard
- Department of Medical GeneticsCentre Hospitalier Universitaire de CaenCaenFrance
| | | | - Julietta de Bellescize
- Paediatric Clinical Epileptology and Functional Neurology DepartmentReference Center of Rare Epilepsies, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL)LyonFrance
| | - Laurent Villard
- Pediatric Multidisciplinary UnitAP‐HM, Timone EnfantMarseilleFrance,Faculté de Médecine TimoneAix Marseille Univ, INSERM, MMG, U1251, ERN EpicareMarseilleFrance
| | - Anne De Saint Martin
- Department of NeuropediatricsERN EpiCare, Hôpitaux Universitaires de StrasbourgStrasbourgFrance,Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258IllkirchFrance
| | - Mathieu Milh
- Department of Pediatric NeurologyAP‐HM, La Timone Children's HospitalMarseilleFrance,Faculté de Médecine TimoneAix Marseille Univ, INSERM, MMG, U1251, ERN EpicareMarseilleFrance
| |
Collapse
|
13
|
Absalom NL, Liao VWY, Johannesen KMH, Gardella E, Jacobs J, Lesca G, Gokce-Samar Z, Arzimanoglou A, Zeidler S, Striano P, Meyer P, Benkel-Herrenbrueck I, Mero IL, Rummel J, Chebib M, Møller RS, Ahring PK. Gain-of-function and loss-of-function GABRB3 variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies. Nat Commun 2022; 13:1822. [PMID: 35383156 PMCID: PMC8983652 DOI: 10.1038/s41467-022-29280-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
Many patients with developmental and epileptic encephalopathies present with variants in genes coding for GABAA receptors. These variants are presumed to cause loss-of-function receptors leading to reduced neuronal GABAergic activity. Yet, patients with GABAA receptor variants have diverse clinical phenotypes and many are refractory to treatment despite the availability of drugs that enhance GABAergic activity. Here we show that 44 pathogenic GABRB3 missense variants segregate into gain-of-function and loss-of-function groups and respective patients display distinct clinical phenotypes. The gain-of-function cohort (n = 27 patients) presented with a younger age of seizure onset, higher risk of severe intellectual disability, focal seizures at onset, hypotonia, and lower likelihood of seizure freedom in response to treatment. Febrile seizures at onset are exclusive to the loss-of-function cohort (n = 47 patients). Overall, patients with GABRB3 variants that increase GABAergic activity have more severe developmental and epileptic encephalopathies. This paradoxical finding challenges our current understanding of the GABAergic system in epilepsy and how patients should be treated.
Collapse
Affiliation(s)
- Nathan L Absalom
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,School of Science, Western Sydney University, Sydney, NSW, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Katrine M H Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Julia Jacobs
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Paediatrics and Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France.,Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Zeynep Gokce-Samar
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Alexis Arzimanoglou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Pasquale Striano
- IRCCS Institute "Giannina Gaslini", Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pierre Meyer
- Pediatric Neurology Department, Phymedexp, Montpellier University, Inserm, CRNS, Montpellier University Hospital, Montpellier, France
| | - Ira Benkel-Herrenbrueck
- Sana-Krankenhaus Düsseldorf-Gerresheim, Academic Teaching Hospital der Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jutta Rummel
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Mary Chebib
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark. .,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - Philip K Ahring
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|