Chaiden C, Jaresitthikunchai J, Phaonakrop N, Roytrakul S, Kerdsin A, Nuanualsuwan S. Peptidomics Analysis of Virulent Peptides Involved in
Streptococcus suis Pathogenesis.
Animals (Basel) 2021;
11:ani11092480. [PMID:
34573446 PMCID:
PMC8468194 DOI:
10.3390/ani11092480]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary
The virulence factors and pathogenesis of S. suis are inconclusive. Here, the associated proteins, or their derived peptides, involved in the survival of S. suis when simulated with a blood environment are demonstrated. The results reveal the derived peptides or proteins of S. suis potentially serving as the putative virulence factors. Further studies based on our findings could be used to fulfill the knowledge gap of S. suis pathogenesis.
Abstract
Streptococcus suis (S. suis) is a zoonotic pathogen causing severe streptococcal disease worldwide. S. suis infections in pigs and humans are frequently associated with the virulent S. suis serotype 2 (SS2). Though various virulence factors of S. suis have been proposed, most of them were not essentially accounted for in the experimental infections. In the present study, we compared the peptidomes of highly virulent SS2 and SS14 in humans, the swine causative serotypes SS7 and SS9, and the rarely reported serotypes SS25 and SS27, and they were cultured in a specified culture medium containing whole blood to simulate their natural host environment. LC-MS/MS could identify 22 unique peptides expressed in the six S. suis serotypes. Under the host-simulated environment, peptides from the ABC-type phosphate transport system (SSU05_1106) and 30S ribosomal protein S2 (rpsB) were detected in the peptidome of virulent SS2 and SS14. Therefore, we suggest that these two proteins or their derived peptides might be involved in the survival of S. suis when simulated with a blood environment.
Collapse