1
|
Zhai Z, Zhang Y, Liang X, Li J, Chen Z, Zhang J, Li W, Wang T, He Q, Li F, Meng Q, Cao J, Su Z, Chang Y, Chen X, Hong A. Acesulfame potassium triggers inflammatory bowel disease via the inhibition of focal adhesion pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134901. [PMID: 38909462 DOI: 10.1016/j.jhazmat.2024.134901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Acesulfame potassium (ACK) was generally regarded as innocuous and extensively ingested. Nevertheless, ACK has recently gained attention as a burgeoning pollutant that has the potential to induce a range of health hazards, particularly to the digestive system. Herein, we uncover that ACK initiates inflammatory bowel disease (IBD) in mice and zebrafish, as indicated by the aggregation of macrophages in the intestine and the inhibition of intestinal mucus secretion. Transcriptome analysis of mice and zebrafish guts revealed that exposure to ACK typically impacts the cell cycle, focal adhesion, and PI3K-Akt signaling pathways. Using pharmacological approaches, we demonstrate that the PI3K-Akt signaling pathway and the generation of reactive oxygen species (ROS) triggered by cell division are not significant factors in the initiation of IBD caused by ACK. Remarkably, inhibition of the focal adhesion pathway is responsible for the IBD onset induced by ACK. Our results indicate the detrimental impacts and possible underlying mechanisms of ACK on the gastrointestinal system and provide insights for making informed choices about everyday dietary habits.
Collapse
Affiliation(s)
- Zhaodong Zhai
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China.
| | - Xujing Liang
- Department of Infectious Disease, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jingsheng Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Zhiqi Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Jianbin Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - WeiCai Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Teng Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Qianyi He
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Fu Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Qilin Meng
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China; Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Yiming Chang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China; Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China; MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Ibeagha-Awemu EM, Bissonnette N, Bhattarai S, Wang M, Dudemaine PL, McKay S, Zhao X. Whole Genome Methylation Analysis Reveals Role of DNA Methylation in Cow's Ileal and Ileal Lymph Node Responses to Mycobacterium avium subsp. paratuberculosis Infection. Front Genet 2021; 12:797490. [PMID: 34992636 PMCID: PMC8724574 DOI: 10.3389/fgene.2021.797490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Johne's Disease (JD), caused by Mycobacterium avium subsp paratuberculosis (MAP), is an incurable disease of ruminants and other animal species and is characterized by an imbalance of gut immunity. The role of MAP infection on the epigenetic modeling of gut immunity during the progression of JD is still unknown. This study investigated the DNA methylation patterns in ileal (IL) and ileal lymph node (ILLN) tissues from cows diagnosed with persistent subclinical MAP infection over a one to 4 years period. DNA samples from IL and ILLN tissues from cows negative (MAPneg) (n = 3) or positive for MAP infection (MAPinf) (n = 4) were subjected to whole genome bisulfite sequencing. A total of 11,263 and 62,459 differentially methylated cytosines (DMCs), and 1259 and 8086 differentially methylated regions (DMRs) (FDR<0.1) were found between MAPinf and MAPneg IL and ILLN tissues, respectively. The DMRs were found on 394 genes (denoted DMR genes) in the IL and on 1305 genes in the ILLN. DMR genes with hypermethylated promoters/5'UTR [3 (IL) and 88 (ILLN)] or hypomethylated promoters/5'UTR [10 (IL) and 25 (ILLN)] and having multiple functions including response to stimulus/immune response (BLK, BTC, CCL21, AVPR1A, CHRNG, GABRA4, TDGF1), cellular processes (H2AC20, TEX101, GLA, NCKAP5L, RBM27, SLC18A1, H2AC20BARHL2, NLGN3, SUV39H1, GABRA4, PPA1, UBE2D2) and metabolic processes (GSTO2, H2AC20, SUV39H1, PPA1, UBE2D2) are potential DNA methylation candidate genes of MAP infection. The ILLN DMR genes were enriched for more biological process (BP) gene ontology (GO) terms (n = 374), most of which were related to cellular processes (27.6%), biological regulation (16.6%), metabolic processes (15.4%) and response to stimulus/immune response (8.2%) compared to 75 BP GO terms (related to cellular processes, metabolic processes and transport, and system development) enriched for IL DMR genes. ILLN DMR genes were enriched for more pathways (n = 47) including 13 disease pathways compared with 36 enriched pathways, including 7 disease/immune pathways for IL DMR genes. In conclusion, the results show tissue specific responses to MAP infection with more epigenetic changes (DMCs and DMRs) in the ILLN than in the IL tissue, suggesting that the ILLN and immune processes were more responsive to regulation by methylation of DNA relative to IL tissue. Our data is the first to demonstrate a potential role for DNA methylation in the pathogenesis of MAP infection in dairy cattle.
Collapse
Affiliation(s)
- Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Suraj Bhattarai
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States
| | - Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Stephanie McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-Be-Bellevue, QC, Canada
| |
Collapse
|
3
|
Yuan J, Ni A, Li Y, Bian S, Liu Y, Wang P, Shi L, Isa AM, Ge P, Sun Y, Ma H, Chen J. Transcriptome Analysis Revealed Potential Mechanisms of Resistance to Trichomoniasis gallinae Infection in Pigeon ( Columba livia). Front Vet Sci 2021; 8:672270. [PMID: 34595226 PMCID: PMC8477972 DOI: 10.3389/fvets.2021.672270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Trichomoniasis gallinae (T. gallinae) is one of the most pathogenic parasites in pigeon, particularly in squabs. Oral cavity is the main site for the host-parasite interaction. Herein, we used RNA-sequencing technology to characterize lncRNA and mRNA profiles and compared transcriptomic dynamics of squabs, including four susceptible birds (S) from infected group, four tolerant birds (T) without parasites after T. gallinae infection, and three birds from uninfected group (N), to understand molecular mechanisms underlying host resistance to this parasite. We identified 29,809 putative lncRNAs and characterized their genomic features subsequently. Differentially expressed (DE) genes, DE-lncRNAs and cis/trans target genes of DE-lncRNAs were further compared among the three groups. The KEGG analysis indicated that specific intergroup DEGs were involved in carbon metabolism (S vs. T), metabolic pathways (N vs. T) and focal adhesion pathway (N vs. S), respectively. Whereas, the cis/trans genes of DE-lncRNAs were enriched in cytokine-cytokine receptor interaction, toll-like receptor signaling pathway, p53 signaling pathway and insulin signaling pathway, which play crucial roles in immune system of the host animal. This suggests T. gallinae invasion in pigeon mouth may modulate lncRNAs expression and their target genes. Moreover, co-expression analysis identified crucial lncRNA-mRNA interaction networks. Several DE-lncRNAs including MSTRG.82272.3, MSTRG.114849.42, MSTRG.39405.36, MSTRG.3338.5, and MSTRG.105872.2 targeted methylation and immune-related genes, such as JCHAIN, IL18BP, ANGPT1, TMRT10C, SAMD9L, and SOCS3. This implied that DE-lncRNAs exert critical influence on T. gallinae infections. The quantitative exploration of host transcriptome changes induced by T. gallinae infection broaden both transcriptomic and epigenetic insights into T. gallinae resistance and its pathological mechanism.
Collapse
Affiliation(s)
- Jingwei Yuan
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Aixin Ni
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Yunlei Li
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Shixiong Bian
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Yunjie Liu
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Panlin Wang
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Lei Shi
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Adamu Mani Isa
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China.,Department of Animal Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Pingzhuang Ge
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Yanyan Sun
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Hui Ma
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Jilan Chen
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| |
Collapse
|
4
|
Evaluation of anti-TNF therapeutic response in patients with inflammatory bowel disease: Current and novel biomarkers. EBioMedicine 2021; 66:103329. [PMID: 33862588 PMCID: PMC8054158 DOI: 10.1016/j.ebiom.2021.103329] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Neutralizing tumour necrosis factor (TNF) antibodies have been widely used to treat inflammatory bowel disease (IBD) in the clinical practice. In this review, the principal biomarker analysis revealed that faecal calprotectin, C-reactive protein, serum or mucosal concentrations of anti-TNF monoclonal antibodies (mAbs) and antibodies to anti-TNF mAbs are commonly used as current biomarkers in the evaluation of anti-TNF therapeutic efficacy. However, mucosal cytokine transcripts. microRNAs, proteomics and faecal and mucosal gut microbiota profile and mucosal histological features are reported to be novel candidates of biomarkers with high clinical utility in the evaluation of anti-TNF therapeutic efficacy in patients with IBD. Therefore, a robust validation of novel promising biomarkers and comparison studies between current used and novel biomarkers are urgently required to improve their value in the evaluation of therapeutic efficacy and optimization of personalized medicine and identification of IBD candidates for anti-TNF therapy in future clinical practice.
Collapse
|
5
|
Kumavat R, Kumar V, Malhotra R, Pandit H, Jones E, Ponchel F, Biswas S. Biomarkers of Joint Damage in Osteoarthritis: Current Status and Future Directions. Mediators Inflamm 2021; 2021:5574582. [PMID: 33776572 PMCID: PMC7969115 DOI: 10.1155/2021/5574582] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a disease of the whole joint organ, characterized by the loss of cartilage, and structural changes in bone including the formation of osteophytes, causing disability and loss of function. It is also associated with systemic mediators and low-grade inflammation. Currently, there is negligible/no availability of specific biomarkers that can be used to facilitate the diagnosis and treatment of OA. The most unmet clinical need is, however, related to the monitoring of disease progression over a short period that can be used in clinical trials. In this review, the value of biomarkers identified over the past decade has been highlighted. These biomarkers are associated with the synthesis and breakdown of cartilage, including collagenous and noncollagenous biomarkers, inflammatory and anti-inflammatory biomarkers, expressed in the biological fluid such as serum, synovial fluid, and urine. Broad validation of novel and clinically applicable biomarkers and their involvement in the pathways are particularly needed for early-stage diagnosis, monitoring disease progression, and severity and examining new drugs to mitigate the effects of this highly prevalent and debilitating condition.
Collapse
Affiliation(s)
- Rajkamal Kumavat
- Department of Integrative and Functional Biology, CSIR-Institute of Genomics & Integrative Biology, Mall Road, -110007, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay Kumar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rajesh Malhotra
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, The University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, The University of Leeds, Leeds, UK
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, The University of Leeds, Leeds, UK
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR-Institute of Genomics & Integrative Biology, Mall Road, -110007, Delhi, India
| |
Collapse
|
6
|
Seyed Tabib NS, Madgwick M, Sudhakar P, Verstockt B, Korcsmaros T, Vermeire S. Big data in IBD: big progress for clinical practice. Gut 2020; 69:1520-1532. [PMID: 32111636 PMCID: PMC7398484 DOI: 10.1136/gutjnl-2019-320065] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
IBD is a complex multifactorial inflammatory disease of the gut driven by extrinsic and intrinsic factors, including host genetics, the immune system, environmental factors and the gut microbiome. Technological advancements such as next-generation sequencing, high-throughput omics data generation and molecular networks have catalysed IBD research. The advent of artificial intelligence, in particular, machine learning, and systems biology has opened the avenue for the efficient integration and interpretation of big datasets for discovering clinically translatable knowledge. In this narrative review, we discuss how big data integration and machine learning have been applied to translational IBD research. Approaches such as machine learning may enable patient stratification, prediction of disease progression and therapy responses for fine-tuning treatment options with positive impacts on cost, health and safety. We also outline the challenges and opportunities presented by machine learning and big data in clinical IBD research.
Collapse
Affiliation(s)
| | - Matthew Madgwick
- Organisms and Ecosystems, Earlham Institute, Norwich, UK
- Gut microbes in health and disease, Quadram Institute Bioscience, Norwich, UK
| | - Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, TARGID, KU Leuven, Leuven, Belgium
- Organisms and Ecosystems, Earlham Institute, Norwich, UK
- Gut microbes in health and disease, Quadram Institute Bioscience, Norwich, UK
| | - Bram Verstockt
- Translational Research in GastroIntestinal Disorders, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | - Tamas Korcsmaros
- Organisms and Ecosystems, Earlham Institute, Norwich, UK
- Gut microbes in health and disease, Quadram Institute Bioscience, Norwich, UK
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, TARGID, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Kaminski TW, Pawlak K, Karbowska M, Znorko B, Mor AL, Mysliwiec M, Pawlak D. The impact of antihypertensive pharmacotherapy on interplay between protein-bound uremic toxin (indoxyl sulfate) and markers of inflammation in patients with chronic kidney disease. Int Urol Nephrol 2019; 51:491-502. [PMID: 30617956 PMCID: PMC6424951 DOI: 10.1007/s11255-018-02064-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Indoxyl sulfate (IS) is one of the most potent uremic toxins involved in chronic kidney disease (CKD) progression, induction of inflammation, oxidative stress, and cardiovascular diseases occurrence. It is proved that hypertension is a common CVD complication and a major death risk factor as well as contributes for decline in a renal function. The aim of our study was to investigate how implementing of antihypertensive therapy impact IS concentrations and the associations between IS and markers of renal function, inflammation and oxidative stress. METHODS Study was conducted on 50 patients diagnosed with CKD and hypertension, divided into three groups: without hypotensive therapy (CKD-NONE), hypotensive monotherapy (CKD-MONO), and hypotensive polypharmacotherapy (CKD-POLI), and 18 healthy volunteers. The markers of inflammation [interleukin-6, tumor necrosis factor-alpha (TNF-α), high-sensitive C-reactive protein (hs-CRP), neopterin, ferritin], oxidative status [superoxide dismutase (Cu/Zn-SOD), antibodies against oxidized low-density lipoprotein (oxLDL-abs)], and selectins were determinate using immunoenzymatic methods. IS levels were assayed using high-performance liquid chromatography and other parameters were analysed using routine laboratory techniques. Then cross-sectional analysis was performed. RESULTS Elevated levels of IS, indicators of kidney function, markers of inflammation and blood pressure values were observed in each CKD subgroups. There was no effect of antihypertensive therapy on IS levels between studied groups, as well as there was no clear relationship between IS and blood pressure values in each studied group. The positive associations between IS and Cu/Zn SOD, neopterin, hs-CRP, creatinine and neutrophils/lymphocytes ratio were observed in CKD-NONE and CKD-POLI subgroups. Additionally, in CKD-POLI group IS positively correlated with TNF-α, ferritin and neutrophils. In CKD-MONO group, IS was positively related to oxLDL-abs, neopterin, E-selectin and creatinine, whereas it was inversely associated with hs-CRP. CONCLUSIONS Our study showed for the first time that the antihypertensive therapy has no impact on IS levels in CKD patients with hypertension. However, the introduction of the antihypertensive therapy modified the dependencies between IS and the studied markers of kidney function, inflammation, oxidative stress and hematological parameters that are crucial for mortality and morbidity amongst the CKD patients with hypertension.
Collapse
Affiliation(s)
- Tomasz W Kaminski
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222, Białystok, Poland.
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Malgorzata Karbowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Beata Znorko
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Adrian L Mor
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Michal Mysliwiec
- Department of Nephrology and Clinical Transplantation, Medical University of Bialystok, Zurawia 14, 15-540, Białystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222, Białystok, Poland
| |
Collapse
|
8
|
A Pathway Analysis Based on Genome-Wide DNA Methylation of Chinese Patients with Graves' Orbitopathy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9565794. [PMID: 30733969 PMCID: PMC6348866 DOI: 10.1155/2019/9565794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
Background The pathogenesis Graves' Orbitopathy (GO) is not yet fully understood. Here, we conducted a pathway analysis based on genome-wide DNA methylation data of Chinese GO patients to explore GO-related pathways and potential feature genes. Methods Six GO patients and 6 age-matched control individuals were recruited, and a genome-scale screen of DNA methylation was measured using their peripheral blood sample. After extracting the differentially methylated regions (DMRs), we classified DMRs into three clusters with respect to median absolute deviation (MAD) for GO and control group, respectively. Then the extract tests were performed to identify significant pathways by comparing the counts of genes in each cluster between GO and control group in a pathway. For each significant pathway, we calculated the Methylation-based Inference of Regulatory Activity (MIRA) score to infer the regulatory activity of genes involved in the pathway. Furthermore, we took the significant pathways as the subsets and applied Random forests (RF) method to extract GO-related feature genes. Results We identified four potential significant pathways associated with the occurrence and development of GO disease. There were Toxoplasmosis, Axon guidance, Focal adhesion, and Proteoglycans in cancer (p<0.001 or p=0.007). The identified genes involved in the significant pathways, such as LDLR (p=0.019), CDK5 (p=0.036), and PIK3CB (p=0.020), were found to be correlated with GO phenotype. Conclusion Our study suggested pathway analyses can help understand the potential relationships between the DNA methylation level of some certain genes and their regulation in Chinese GO patients.
Collapse
|
9
|
Sun L, Min L, Li M, Shao F, Wang W. Transcriptomic analysis reveals oxidative phosphorylation activation in an adolescent social isolation rat model. Brain Res Bull 2018; 142:304-312. [PMID: 30142370 DOI: 10.1016/j.brainresbull.2018.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/23/2018] [Accepted: 08/18/2018] [Indexed: 12/29/2022]
Abstract
Complex interactions between genetic and environmental factors exert a sustained influence on the pathogenesis of schizophrenia (SCZ). Adolescent social isolation is regarded as a typical paradigm for SCZ. However, the underlying pathological mechanisms are not fully understood. In this study, adolescent Sprague-Dawley (SD) rats were placed in isolation rearing (IR) or social rearing (SR) conditions from postnatal day (PND) 21 to 34 to establish a SCZ disease model and a control model, respectively. Prepulse inhibition (PPI) assays and elevated plus maze tests were performed on PND 56. Next, prefrontal cortex (PFC) tissues were isolated for transcriptomic sequencing and RT-qPCR analyses. The results indicated that adolescent social isolation induced anxious behaviors and disrupted PPIs as well as specific PFC gene expression patterns in adult SD rats. A total of 196 genes were identified as upregulated, and 748 genes were identified as down-regulated in the IR group compared with those in the SR group. Differentially expressed genes (DEGs) were highly enriched in the KEGG pathways associated with the comorbidity of neurological disorder and oxidative phosphorylation (OXPHOS); 26 out of 27 comorbid neurological disorder-associated DEGs overlapped with 31 OXPHOS-associated DEGs. Those 26 overlapping DEGs were all upregulated in the IR group and could easily distinguish the IR group from the SR group; 6 of these DEGs (COX7C, NDUFB11, NDUFA2, NDUFC2, ATP5C1, and COX6A1) were verified by RT-qPCR. Here, we provide a systematic overview of gene expression alterations in adolescent-social-isolation-induced SCZ (ASI-SCZ), which suggests that genes that are associated with the comorbidity of neurological disorders, especially OXPHOS-related genes, contribute to the pathogenesis of ASI-SCZ.
Collapse
Affiliation(s)
- Lan Sun
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Man Li
- Department of Psychology, School of Educational Science, Tianjin Normal University, Tianjin, 300387, China
| | - Feng Shao
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.
| | - Weiwen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Zhuo Y, Choi JS, Marin T, Yu H, Harley BA, Cunningham BT. Quantitative analysis of focal adhesion dynamics using photonic resonator outcoupler microscopy (PROM). LIGHT, SCIENCE & APPLICATIONS 2018; 7:9. [PMID: 29963322 PMCID: PMC6020849 DOI: 10.1038/s41377-018-0001-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Focal adhesions are critical cell membrane components that regulate adhesion and migration and have cluster dimensions that correlate closely with adhesion engagement and migration speed. We utilized a label-free approach for dynamic, long-term, quantitative imaging of cell-surface interactions called photonic resonator outcoupler microscopy (PROM) in which membrane-associated protein aggregates outcoupled photons from the resonant evanescent field of a photonic crystal biosensor, resulting in a highly localized reduction of the reflected light intensity. By mapping the changes in the resonant reflected peak intensity from the biosensor surface, we demonstrate the ability of PROM to detect focal adhesion dimensions. Similar spatial distributions can be observed between PROM images and fluorescence-labeled images of focal adhesion areas in dental epithelial stem cells. In particular, we demonstrate that cell-surface contacts and focal adhesion formation can be imaged by two orthogonal label-free modalities in PROM simultaneously, providing a general-purpose tool for kinetic, high axial-resolution monitoring of cell interactions with basement membranes.
Collapse
Affiliation(s)
- Yue Zhuo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Ji Sun Choi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Thibault Marin
- Atkins Building, University of Illinois Research Park, 1800 South Oak Street, Champaign, IL 61820 USA
| | - Hojeong Yu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Brendan A. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Brian T. Cunningham
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
11
|
Lee JE, Kim YY. Impact of Preanalytical Variations in Blood-Derived Biospecimens on Omics Studies: Toward Precision Biobanking? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:499-508. [PMID: 28873014 DOI: 10.1089/omi.2017.0109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Research data and outcomes do vary across populations and persons, but this is not always due to experimental or true biological variation. Preanalytical components of experiments, be they biospecimen acquisition, preparation, storage, or transportation to the laboratory, may all contribute to apparent variability in research data, outcomes, and interpretation. The present review article and biobanking innovation analysis offer new insights with a summary of such preanalytical variables, for example, the type of blood collection tube, centrifugation conditions, long-term sample storage temperature, and duration, on output of omics analyses of blood-derived biospecimens: whole blood, serum, plasma, buffy coat, and peripheral blood mononuclear cells. Furthermore, we draw parallels from the field of precision medicine in this study, with a view to the future of "precision biobanking" wherein such preanalytical variations are carefully taken into consideration so as to minimize their influence on outcomes of omics data, analyses, and sensemaking, particularly in clinical omics applications. We underscore the need for using broadly framed, critical, independent, social and political science, and humanities research so as to understand the multiple possible future trajectories of, and the motivations and values embedded in, precision biobanking that is increasingly relevant in the current age of Big Data.
Collapse
Affiliation(s)
- Jae-Eun Lee
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health , Korea Centers for Disease Control and Prevention, Cheongju-si, Korea
| | - Young-Youl Kim
- Division of Biobank for Health Sciences, Center for Genome Science, Korea National Institute of Health , Korea Centers for Disease Control and Prevention, Cheongju-si, Korea
| |
Collapse
|