1
|
Ji Y, Wang R, Zhao H. Toward Sensitive and Reliable Immunoassays of Marine Biotoxins: From Rational Design to Food Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16076-16094. [PMID: 39010820 DOI: 10.1021/acs.jafc.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Finol-Urdaneta RK, Zhorov BS, Baden DG, Adams DJ. Brevetoxin versus Brevenal Modulation of Human Nav1 Channels. Mar Drugs 2023; 21:396. [PMID: 37504927 PMCID: PMC10382042 DOI: 10.3390/md21070396] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Brevetoxins (PbTx) and brevenal are marine ladder-frame polyethers. PbTx binds to and activates voltage-gated sodium (Nav) channels in native tissues, whereas brevenal antagonizes these actions. However, the effects of PbTx and brevenal on recombinant Nav channel function have not been systematically analyzed. In this study, the PbTx-3 and brevenal modulation of tissue-representative Nav channel subtypes Nav1.2, Nav1.4, Nav1.5, and Nav1.7 were examined using automated patch-clamp. While PbTx-3 and brevenal elicit concentration-dependent and subtype-specific modulatory effects, PbTx-3 is >1000-fold more potent than brevenal. Consistent with effects observed in native tissues, Nav1.2 and Nav1.4 channels were PbTx-3- and brevenal-sensitive, whereas Nav1.5 and Nav1.7 appeared resistant. Interestingly, the incorporation of brevenal in the intracellular solution caused Nav channels to become less sensitive to PbTx-3 actions. Furthermore, we generated a computational model of PbTx-2 bound to the lipid-exposed side of the interface between domains I and IV of Nav1.2. Our results are consistent with competitive antagonism between brevetoxins and brevenal, setting a basis for future mutational analyses of Nav channels' interaction with brevetoxins and brevenal. Our findings provide valuable insights into the functional modulation of Nav channels by brevetoxins and brevenal, which may have implications for the development of new Nav channel modulators with potential therapeutic applications.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Illawarra Health & Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Daniel G Baden
- Center for Marine Science, University of North Carolina Wilmington MARBIONC, Wilmington, NC 28409, USA
| | - David J Adams
- Illawarra Health & Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
3
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
L’Herondelle K, Talagas M, Mignen O, Misery L, Le Garrec R. Neurological Disturbances of Ciguatera Poisoning: Clinical Features and Pathophysiological Basis. Cells 2020; 9:E2291. [PMID: 33066435 PMCID: PMC7602189 DOI: 10.3390/cells9102291] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ciguatera fish poisoning (CFP), the most prevalent seafood poisoning worldwide, is caused by the consumption of tropical and subtropical fish contaminated with potent neurotoxins called ciguatoxins (CTXs). Ciguatera is a complex clinical syndrome in which peripheral neurological signs predominate in the acute phase of the intoxication but also persist or reoccur long afterward. Their recognition is of particular importance in establishing the diagnosis, which is clinically-based and can be a challenge for physicians unfamiliar with CFP. To date, no specific treatment exists. Physiopathologically, the primary targets of CTXs are well identified, as are the secondary events that may contribute to CFP symptomatology. This review describes the clinical features, focusing on the sensory disturbances, and then reports on the neuronal targets and effects of CTXs, as well as the neurophysiological and histological studies that have contributed to existing knowledge of CFP neuropathophysiology at the molecular, neurocellular and nerve levels.
Collapse
Affiliation(s)
- Killian L’Herondelle
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
| | - Matthieu Talagas
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Olivier Mignen
- University of Brest, School of Medicine, INSERM U1227, Lymphocytes B et auto-immunité, F-29200 Brest, France;
| | - Laurent Misery
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Raphaele Le Garrec
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
| |
Collapse
|
5
|
Amorim ML, Soares J, Coimbra JSDR, Leite MDO, Albino LFT, Martins MA. Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Crit Rev Food Sci Nutr 2020; 61:1976-2002. [PMID: 32462889 DOI: 10.1080/10408398.2020.1768046] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many countries have been experienced an increase in protein consumption due to the population growth and adoption of protein-rich dietaries. Unfortunately, conventional-based protein agroindustry is associated with environmental impacts that might aggravate as the humankind increase. Thus, it is important to screen for novel protein sources that are environmentally friendly. Microalgae farming is a promising alternative to couple the anthropic emissions with the production of food and feed. Some microalgae show protein contents two times higher than conventional protein sources. The use of whole microalgae biomass as a protein source in food and feed is simple and well-established. Conversely, the production of microalgae protein supplements and isolates requires the development of feasible and robust processes able to fractionate the microalgae biomass in different value-added products. Since most of the proteins are inside the microalgae cells, several techniques of disruption have been proposed to increase the efficiency to extract them. After the disruption of the microalgae cells, the proteins can be extracted, concentrated, isolated or purified allowing the development of different products. This critical review addresses the current state of the production of microalgae proteins for multifarious applications, and possibilities to concatenate the production of proteins and advanced biofuels.
Collapse
Affiliation(s)
- Matheus Lopes Amorim
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jimmy Soares
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
6
|
Ye W, Liu T, Zhang W, Zhu M, Liu Z, Kong Y, Liu S. Marine Toxins Detection by Biosensors Based on Aptamers. Toxins (Basel) 2019; 12:E1. [PMID: 31861315 PMCID: PMC7020455 DOI: 10.3390/toxins12010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Marine toxins cause great harm to human health through seafood, therefore, it is urgent to exploit new marine toxins detection methods with the merits of high sensitivity and specificity, low detection limit, convenience, and high efficiency. Aptasensors have emerged to replace classical detection methods for marine toxins detection. The rapid development of molecular biological approaches, sequencing technology, material science, electronics and chemical science boost the preparation and application of aptasensors. Taken together, the aptamer-based biosensors would be the best candidate for detection of the marine toxins with the merits of high sensitivity and specificity, convenience, time-saving, relatively low cost, extremely low detection limit, and high throughput, which have reduced the detection limit of marine toxins from nM to fM. This article reviews the detection of marine toxins by aptamer-based biosensors, as well as the selection approach for the systematic evolution of ligands by exponential enrichment (SELEX), the aptamer sequences. Moreover, the newest aptasensors and the future prospective are also discussed, which would provide thereotical basis for the future development of marine toxins detection by aptasensors.
Collapse
Affiliation(s)
| | | | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China; (W.Y.); (T.L.); (M.Z.); (Z.L.); (Y.K.); (S.L.)
| | | | | | | | | |
Collapse
|
7
|
Longo S, Sibat M, Viallon J, Darius HT, Hess P, Chinain M. Intraspecific Variability in the Toxin Production and Toxin Profiles of In Vitro Cultures of Gambierdiscus polynesiensis (Dinophyceae) from French Polynesia. Toxins (Basel) 2019; 11:toxins11120735. [PMID: 31861242 PMCID: PMC6950660 DOI: 10.3390/toxins11120735] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Ciguatera poisoning (CP) is a foodborne disease caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. The toxin production and toxin profiles were explored in four clones of G. polynesiensis originating from different islands in French Polynesia with contrasted CP risk: RIK7 (Mangareva, Gambier), NHA4 (Nuku Hiva, Marquesas), RAI-1 (Raivavae, Australes), and RG92 (Rangiroa, Tuamotu). Productions of CTXs, maitotoxins (MTXs), and gambierone group analogs were examined at exponential and stationary growth phases using the neuroblastoma cell-based assay and liquid chromatography–tandem mass spectrometry. While none of the strains was found to produce known MTX compounds, all strains showed high overall P-CTX production ranging from 1.1 ± 0.1 to 4.6 ± 0.7 pg cell−1. In total, nine P-CTX analogs were detected, depending on strain and growth phase. The production of gambierone, as well as 44-methylgamberione, was also confirmed in G. polynesiensis. This study highlighted: (i) intraspecific variations in toxin production and profiles between clones from distinct geographic origins and (ii) the noticeable increase in toxin production of both CTXs, in particular CTX4A/B, and gambierone group analogs from the exponential to the stationary phase.
Collapse
Affiliation(s)
- Sébastien Longo
- Laboratoire de recherche sur les Biotoxines Marines Institut Louis Malardé-UMR 241 EIO, 98713 Papeete-Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
- Correspondence:
| | - Manoella Sibat
- Laboratoire Phycotoxines, IFREMER, Rue de l’Ile d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Jérôme Viallon
- Laboratoire de recherche sur les Biotoxines Marines Institut Louis Malardé-UMR 241 EIO, 98713 Papeete-Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
| | - Hélène Taiana Darius
- Laboratoire de recherche sur les Biotoxines Marines Institut Louis Malardé-UMR 241 EIO, 98713 Papeete-Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
| | - Philipp Hess
- Laboratoire Phycotoxines, IFREMER, Rue de l’Ile d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Mireille Chinain
- Laboratoire de recherche sur les Biotoxines Marines Institut Louis Malardé-UMR 241 EIO, 98713 Papeete-Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
| |
Collapse
|
8
|
Setterholm NA, McDonald FE. Sequential exo-mode oxacyclizations for the synthesis of the CD substructure of brevenal. J Antibiot (Tokyo) 2019; 72:364-374. [PMID: 30607013 DOI: 10.1038/s41429-018-0124-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 11/09/2022]
Abstract
We describe a novel strategy for synthesizing the CD bicyclic ether substructure of the fused polycyclic ether natural product brevenal. This product arises from a three-step sequence beginning with (1) regio- and diastereoselective iodoetherification of an acyclic diene-diol, followed by (2) alkene metathesis with an epoxyalkene synthon, concluding with (3) palladium-catalyzed cycloisomerization. Despite the modest yield and long reaction period for the cycloisomerization step, these studies provide valuable insights into the nature of byproducts generated and the mechanisms by which they form. This work demonstrates a portion of a larger synthetic strategy for constructing the pentacyclic core of brevenal from an acyclic precursor.
Collapse
Affiliation(s)
| | - Frank E McDonald
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Immune effects of the neurotoxins ciguatoxins and brevetoxins. Toxicon 2018; 149:6-19. [PMID: 29360534 DOI: 10.1016/j.toxicon.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 11/21/2022]
Abstract
Ciguatoxins (CTXs) and brevetoxins (PbTxs) are phycotoxins that can accumulate along the marine food chain and thus cause seafood poisoning in humans, namely "ciguatera fish poisoning" (CFP) and "neurotoxic shellfish poisoning" (NSP), respectively. CFP is characterized by early gastrointestinal symptoms and typical sensory disorders (paraesthesia, pain, pruritus and cold dysaesthesia), which can persist several weeks and, in some cases, several months or years. NSP is considered a mild form of CFP with similar but less severe symptoms. After inhaled exposure, PbTxs can also cause respiratory tract irritation in healthy subjects and asthma exacerbations in predisposed subjects, whose respiratory functions may be disrupted for several days following PbTx inhalation. Mechanistically, it is well established that CTX- or PbTx-induced disturbances are primarily mainly due to voltage-gated sodium channel activation in sensory and motor peripheral nervous system. However, little is known about the pathophysiology or a potential individual susceptibility to long lasting effects of CFP/NSP. In addition to their action on the nervous system, PbTxs and CTXs were also shown to exert effects on the immune system. However, their role in the pathophysiology of syndromes induced by CTX or PbTx exposure is poorly documented. The aim of this review is to inventory the literature thus far on the inflammatory and immune effects of PbTxs and CTXs.
Collapse
|
10
|
Shmukler YB, Nikishin DA. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge. Mar Drugs 2017; 15:E232. [PMID: 28726749 PMCID: PMC5532674 DOI: 10.3390/md15070232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na⁺-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.
Collapse
Affiliation(s)
- Yuri B Shmukler
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| | - Denis A Nikishin
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| |
Collapse
|
11
|
Cocilova CC, Milton SL. Characterization of brevetoxin (PbTx-3) exposure in neurons of the anoxia-tolerant freshwater turtle (Trachemys scripta). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:115-122. [PMID: 27697698 DOI: 10.1016/j.aquatox.2016.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Harmful algal blooms are increasing in frequency and extent worldwide and occur nearly annually off the west coast of Florida where they affect both humans and wildlife. The dinoflagellate Karenia brevis is a key organism in Florida red tides that produces a suite of potent neurotoxins collectively referred to as the brevetoxins (PbTx). Brevetoxins bind to and open voltage gated sodium channels (VGSC), increasing cell permeability in excitable cells and depolarizing nerve and muscle tissue. Exposed animals may thus show muscular and neurological symptoms including head bobbing, muscle twitching, paralysis, and coma; large HABs can result in significant morbidity and mortality of marine life, including fish, birds, marine mammals, and sea turtles. Brevetoxicosis however is difficult to treat in endangered sea turtles as the physiological impacts have not been investigated and the magnitude and duration of brevetoxin exposure are generally unknown. In this study we used the freshwater turtle Trachemys scripta as a model organism to investigate the effects of the specific brevetoxin PbTx-3 in the turtle brain. Primary turtle neuronal cell cultures were exposed to a range of PbTx-3 concentrations to determine excitotoxicity. Agonists and antagonists of voltage-gated sodium channels and downstream targets were utilized to confirm the toxin's mode of action. We found that turtle neurons are highly resistant to PbTx-3; while cell viability decreased in a dose dependent manner across PbTx-3 concentrations of 100-2000nM, the EC50 was significantly higher than has been reported in mammalian neurons. PbTx-3 exposure resulted in significant Ca2+ influx, which could be fully abrogated by the VGSC antagonist tetrodotoxin, NMDA receptor blocker MK-801, and tetanus toxin, indicating that the mode of action in turtle neurons is the same as in mammalian cells. As both turtle and mammalian VGSCs have a high affinity for PbTx-3, we suggest that the high resistance of the turtle neuron to PbTx-3 may be related to its ability to withstand anoxic depolarization. The ultimate goal of this work is to design treatment protocols for sea turtles exposed to red tides worldwide.
Collapse
Affiliation(s)
- Courtney C Cocilova
- Florida Atlantic University, Department of Biological Sciences, 777 Glades Road, Boca Raton, FL, 33431, USA.
| | - Sarah L Milton
- Florida Atlantic University, Department of Biological Sciences, 777 Glades Road, Boca Raton, FL, 33431, USA
| |
Collapse
|
12
|
Cassell RT, Chen W, Thomas S, Liu L, Rein KS. Brevetoxin, the Dinoflagellate Neurotoxin, Localizes to Thylakoid Membranes and Interacts with the Light-Harvesting Complex II (LHCII) of Photosystem II. Chembiochem 2015; 16:1060-7. [DOI: 10.1002/cbic.201402669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/11/2022]
|
13
|
|
14
|
McCall JR, Goodman AJ, Jacocks HM, Thompson A, Baden DG, Bourdelais AJ. Development of a fluorescence assay for the characterization of brevenal binding to rat brain synaptosomes. JOURNAL OF NATURAL PRODUCTS 2014; 77:2014-20. [PMID: 25226846 PMCID: PMC4176390 DOI: 10.1021/np500118p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Indexed: 06/03/2023]
Abstract
The marine dinoflagellate Karenia brevis produces a family of neurotoxins known as brevetoxins. Brevetoxins elicit their effects by binding to and activating voltage-sensitive sodium channels (VSSCs) in cell membranes. K. brevis also produces brevenal, a brevetoxin antagonist, which is able to inhibit and/or negate many of the detrimental effects of brevetoxins. Brevenal binding to VSSCs has yet to be fully characterized, in part due to the difficulty and expense of current techniques. In this study, we have developed a novel fluorescence binding assay for the brevenal binding site. Several fluorescent compounds were conjugated to brevenal to assess their effects on brevenal binding. The assay was validated against the radioligand assay for the brevenal binding site and yielded comparable equilibrium inhibition constants. The fluorescence-based assay was shown to be quicker and far less expensive and did not generate radioactive waste or need facilities for handling radioactive materials. In-depth studies using the brevenal conjugates showed that, while brevenal conjugates do bind to a binding site in the VSSC protein complex, they are not displaced by known VSSC site specific ligands. As such, brevenal elicits its action through a novel mechanism and/or currently unknown receptor site on VSSCs.
Collapse
Affiliation(s)
- Jennifer R. McCall
- Center
for Marine Science, University of North
Carolina at Wilmington, Wilmington, North Carolina 28409, United States
| | - Allan J. Goodman
- Center
for Marine Science, University of North
Carolina at Wilmington, Wilmington, North Carolina 28409, United States
| | - Henry M. Jacocks
- Center
for Marine Science, University of North
Carolina at Wilmington, Wilmington, North Carolina 28409, United States
| | - Alysha
M. Thompson
- Center
for Marine Science, University of North
Carolina at Wilmington, Wilmington, North Carolina 28409, United States
| | - Daniel G. Baden
- Center
for Marine Science, University of North
Carolina at Wilmington, Wilmington, North Carolina 28409, United States
| | - Andrea J. Bourdelais
- Center
for Marine Science, University of North
Carolina at Wilmington, Wilmington, North Carolina 28409, United States
| |
Collapse
|
15
|
Calabro K, Guigonis JM, Teyssié JL, Oberhänsli F, Goudour JP, Warnau M, Bottein MYD, Thomas OP. Further insights into brevetoxin metabolism by de novo radiolabeling. Toxins (Basel) 2014; 6:1785-98. [PMID: 24918358 PMCID: PMC4073129 DOI: 10.3390/toxins6061785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/16/2022] Open
Abstract
The toxic dinoflagellate Karenia brevis, responsible for early harmful algal blooms in the Gulf of Mexico, produces many secondary metabolites, including potent neurotoxins called brevetoxins (PbTx). These compounds have been identified as toxic agents for humans, and they are also responsible for the deaths of several marine organisms. The overall biosynthesis of these highly complex metabolites has not been fully ascertained, even if there is little doubt on a polyketide origin. In addition to gaining some insights into the metabolic events involved in the biosynthesis of these compounds, feeding studies with labeled precursors helps to discriminate between the de novo biosynthesis of toxins and conversion of stored intermediates into final toxic products in the response to environmental stresses. In this context, the use of radiolabeled precursors is well suited as it allows working with the highest sensitive techniques and consequently with a minor amount of cultured dinoflagellates. We were then able to incorporate [U-¹⁴C]-acetate, the renowned precursor of the polyketide pathway, in several PbTx produced by K. brevis. The specific activities of PbTx-1, -2, -3, and -7, identified by High-Resolution Electrospray Ionization Mass Spectrometer (HRESIMS), were assessed by HPLC-UV and highly sensitive Radio-TLC counting. We demonstrated that working at close to natural concentrations of acetate is a requirement for biosynthetic studies, highlighting the importance of highly sensitive radiolabeling feeding experiments. Quantification of the specific activity of the four, targeted toxins led us to propose that PbTx-1 and PbTx-2 aldehydes originate from oxidation of the primary alcohols of PbTx-7 and PbTx-3, respectively. This approach will open the way for a better comprehension of the metabolic pathways leading to PbTx but also to a better understanding of their regulation by environmental factors.
Collapse
Affiliation(s)
- Kevin Calabro
- Institut de Chimie de Nice-PCRE (Processus Chimiques et Radiochimiques dans l'Environnement), UMR 7272 CNRS, Université de Nice Sophia-Antipolis, Faculté des Sciences, Parc Valrose Nice 06108, France.
| | - Jean-Marie Guigonis
- Plateforme "Bernard Rossi"-Laboratoire TIRO (Transporteur en Imagerie Radiothérapie et Oncologie), UMR E 4320 CEA /iBEB /SBTN-CAL, Université de Nice Sophia Antipolis, Faculté de Médecine, 28 Avenue de Valombrose, Nice 06107, France.
| | - Jean-Louis Teyssié
- Radioecology Laboratory, International Atomic Energy Agency-Environment Laboratories, MC 98012, Monaco.
| | - François Oberhänsli
- Radioecology Laboratory, International Atomic Energy Agency-Environment Laboratories, MC 98012, Monaco.
| | - Jean-Pierre Goudour
- Geoazur Laboratory, Université de Nice-Sophia-Antipolis, UMR 7329 CNRS, UR 082 IRD, Campus Azur CNRS Bât. 1, 250 rue Albert Einstein, Sophia Antipolis Valbonne 06560, France.
| | - Michel Warnau
- Radioecology Laboratory, International Atomic Energy Agency-Environment Laboratories, MC 98012, Monaco.
| | | | - Olivier P Thomas
- Institut de Chimie de Nice-PCRE (Processus Chimiques et Radiochimiques dans l'Environnement), UMR 7272 CNRS, Université de Nice Sophia-Antipolis, Faculté des Sciences, Parc Valrose Nice 06108, France.
| |
Collapse
|
16
|
Structure activity relationship of brevenal hydrazide derivatives. Mar Drugs 2014; 12:1839-58. [PMID: 24686558 PMCID: PMC4012454 DOI: 10.3390/md12041839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 11/17/2022] Open
Abstract
Brevenal is a ladder frame polyether produced by the dinoflagellate Karenia brevis. This organism is also responsible for the production of the neurotoxic compounds known as brevetoxins. Ingestion or inhalation of the brevetoxins leads to adverse effects such as gastrointestinal maladies and bronchoconstriction. Brevenal shows antagonistic behavior to the brevetoxins and shows beneficial attributes when administered alone. For example, in an asthmatic sheep model, brevenal has been shown to increase tracheal mucosal velocity, an attribute which has led to its development as a potential treatment for Cystic Fibrosis. The mechanism of action of brevenal is poorly understood and the exact binding site has not been elucidated. In an attempt to further understand the mechanism of action of brevenal and potentially develop a second generation drug candidate, a series of brevenal derivatives were prepared through modification of the aldehyde moiety. These derivatives include aliphatic, aromatic and heteroaromatic hydrazide derivatives. The brevenal derivatives were tested using in vitro synaptosome binding assays to determine the ability of the compounds to displace brevetoxin and brevenal from their native receptors. A sheep inhalation model was used to determine if instillation of the brevenal derivatives resulted in bronchoconstriction. Only small modifications were tolerated, with larger moieties leading to loss of affinity for the brevenal receptor and bronchoconstriction in the sheep model.
Collapse
|