1
|
van Dommelen E, Des Rosiers L, Crafton E, Hull NM. Microcystins are present in water treatment plant residuals and are impacted by extraction and quantification methodology. ENVIRONMENTAL TECHNOLOGY 2024:1-14. [PMID: 39324740 DOI: 10.1080/09593330.2024.2402098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
Microcystins (MCs), a toxin produced by some species of the photosynthetic autotrophic cyanobacteria, are the most studied and monitored cyanotoxin in water. Water treatment plant (WTP) residuals are the byproduct of water treatment consisting of solids removed from WTP processes and have been shown to contain cyanobacterial cells. However, the presence of MCs in WTP residuals has not been systematically demonstrated. Samples from four different WTPs across the United States were used to quantify MCs in residuals while assessing extraction and quantification methods adapted from water samples for solid matrices. MCs were present in 100% of samples. MC-LA was the most prevalent variant in these samples (70.05% of MCs quantified by UPLC-PDA). Natural degradation observed in a WTP storage lagoon was also investigated to determine the impact of physical, chemical, and biological processes on MC concentrations in high-biomass residuals. This study demonstrates that residuals of various characteristics across the United States contain MCs, and no one method was found to maximize results consistently across all samples. Cyanotoxins accumulating in WTP residuals are a growing concern. Implications of this work can help regulations and future studies of potential reuse applications and understanding of potential ecological significance of MCs accumulating in WTP residuals.
Collapse
Affiliation(s)
- Emma van Dommelen
- Ohio State University College of Engineering, Columbus, OH, USA
- Hazen and Sawyer, Columbus, OH, USA
| | | | | | - Natalie M Hull
- Ohio State University College of Engineering, Columbus, OH, USA
| |
Collapse
|
2
|
Li H, Li R, Kang J, Hii KS, Mohamed HF, Xu X, Luo Z. Okeanomitos corallinicola gen. and sp. nov. (Nostocales, Cyanobacteria), a new toxic marine heterocyte-forming Cyanobacterium from a coral reef. JOURNAL OF PHYCOLOGY 2024; 60:908-927. [PMID: 38943258 DOI: 10.1111/jpy.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 07/01/2024]
Abstract
Cyanobacterial mats supplanting coral and spreading coral diseases in tropical reefs, intensified by environmental shifts caused by human-induced pressures, nutrient enrichment, and global climate change, pose grave risks to the survival of coral ecosystems. In this study, we characterized Okeanomitos corallinicola gen. and sp. nov., a newly discovered toxic marine heterocyte-forming cyanobacterium isolated from a coral reef ecosystem of the South China Sea. Phylogenetic analysis, based on the 16S rRNA gene and the secondary structure of the 16S-23S rRNA intergenic region, placed this species in a clade distinct from closely related genera, that is, Sphaerospermopsis stricto sensu, Raphidiopsis, and Amphiheterocytum. The O. corallinicola is a marine benthic species lacking gas vesicles, distinguishing it from other members of the Aphanizomenonaceae family. The genome of O. corallinicola is large and exhibits diverse functional capabilities, potentially contributing to the resilience and adaptability of coral reef ecosystems. In vitro assays revealed that O. corallinicola demonstrates notable cytotoxic activity against various cancer cell lines, suggesting its potential as a source of novel anticancer compounds. Furthermore, the identification of residual saxitoxin biosynthesis function in the genome of O. corallinicola, a marine cyanobacteria, supports the theory that saxitoxin genes in cyanobacteria and dinoflagellates may have been horizontally transferred between them or may have originated from a shared ancestor. Overall, the identification and characterization of O. corallinicola provides valuable contributions to cyanobacterial taxonomy, offering novel perspectives on complex interactions within coral reef ecosystems.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jianhua Kang
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Hala F Mohamed
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Xinya Xu
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhaohe Luo
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
| |
Collapse
|
3
|
Milana M, van Asselt ED, van der Fels-Klerx HJ. The chemical and microbiological safety of emerging alternative protein sources and derived analogues: A review. Compr Rev Food Sci Food Saf 2024; 23:e13377. [PMID: 38865251 DOI: 10.1111/1541-4337.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
Climate change and changing consumer demand are the main factors driving the protein transition. This shift toward more sustainable protein sources as alternatives to animal proteins is also reflected in the rapid upscaling of meat and dairy food analogues. Such changes could challenge food safety, as new food sources could result in new and unexpected food safety risks for consumers. This review analyzed the current knowledge on chemical and microbiological contamination of emerging alternative protein sources of plant origin, including soil-based (faba bean, mung bean, lentils, black gram, cowpea, quinoa, hemp, and leaf proteins) and aquatic-based (microalgae and duckweeds) proteins. Moreover, findings on commercial analogues from known alternative protein sources were included. Overall, the main focus of the investigations is on the European context. The review aimed to enable foresight approaches to food safety concerning the protein transition. The results indicated the occurrence of multiple chemical and microbiological hazards either in the raw materials that are the protein sources and eventually in the analogues. Moreover, current European legislation on maximum limits does not address most of the "contaminant-food" pairs identified, and no legislative framework has been developed for analogues. Results of this study provide stakeholders with a more comprehensive understanding of the chemical and microbiological safety of alternative protein sources and derived analogues to enable a holistic and safe approach to the protein transition.
Collapse
Affiliation(s)
- M Milana
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands
| | - E D van Asselt
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Underwood JC, Hall NC, Mumford AC, Harvey RW, Bliznik PA, Jeanis KM. Relation between the relative abundance and collapse of Aphanizomenon flos-aquae and microbial antagonism in Upper Klamath Lake, Oregon. FEMS Microbiol Ecol 2024; 100:fiae043. [PMID: 38533659 PMCID: PMC11022654 DOI: 10.1093/femsec/fiae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024] Open
Abstract
Aphanizomenon flos-aquae (AFA) is the dominant filamentous cyanobacterium that develops into blooms in Upper Klamath Lake, Oregon, each year. During AFA bloom and collapse, ecosystem conditions for endangered Lost River and shortnose suckers deteriorate, thus motivating the need to identify processes that limit AFA abundance and decline. Here, we investigate the relations between AFA and other members of the microbial community (photosynthetic and nonphotosynthetic bacteria and archaea), how those relations impact abundance and collapse of AFA, and the types of microbial conditions that suppress AFA. We found significant spatial variation in AFA relative abundance during the 2016 bloom period using 16S rRNA sequencing. The Pelican Marina site had the lowest AFA relative abundance, and this was coincident with increased relative abundance of Candidatus Sericytochromatia, Flavobacterium, and Rheinheimera, some of which are known AFA antagonists. The AFA collapse coincided with phosphorus limitation relative to nitrogen and the increased relative abundance of Cyanobium and Candidatus Sericytochromatia, which outcompete AFA when dissolved inorganic nitrogen is available. The data collected in this study indicate the importance of dissolved inorganic nitrogen combined with microbial community structure in suppressing AFA abundance.
Collapse
Affiliation(s)
- Jennifer C Underwood
- U.S. Geological Survey, Water Mission Area, 3215 Marine Street, Boulder, CO 80303, United States
| | - Natalie C Hall
- U.S. Geological Survey, Maryland–Delaware–D.C. Water Science Center, 5522 Research Park Dr, Catonsville, MD 21228, United States
| | - Adam C Mumford
- U.S. Geological Survey, Maryland–Delaware–D.C. Water Science Center, 5522 Research Park Dr, Catonsville, MD 21228, United States
| | - Ronald W Harvey
- U.S. Geological Survey, Water Mission Area, 3215 Marine Street, Boulder, CO 80303, United States
| | - Paul A Bliznik
- U.S. Geological Survey, Water Mission Area, 3215 Marine Street, Boulder, CO 80303, United States
| | - Kaitlyn M Jeanis
- U.S. Geological Survey, Water Mission Area, 3215 Marine Street, Boulder, CO 80303, United States
| |
Collapse
|
5
|
Bishop SL, Solonenka JT, Giebelhaus RT, Bakker DTR, Li ITS, Murch SJ. Microbial Diversity Impacts Non-Protein Amino Acid Production in Cyanobacterial Bloom Cultures Collected from Lake Winnipeg. Toxins (Basel) 2024; 16:169. [PMID: 38668594 PMCID: PMC11053616 DOI: 10.3390/toxins16040169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Lake Winnipeg in Manitoba, Canada is heavily impacted by harmful algal blooms that contain non-protein amino acids (NPAAs) produced by cyanobacteria: N-(2-aminoethyl)glycine (AEG), β-aminomethyl-L-alanine (BAMA), β-N-methylamino-L-alanine (BMAA), and 2,4-diaminobutyric acid (DAB). Our objective was to investigate the impact of microbial diversity on NPAA production by cyanobacteria using semi-purified crude cyanobacterial cultures established from field samples collected by the Lake Winnipeg Research Consortium between 2016 and 2021. NPAAs were detected and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) using validated analytical methods, while Shannon and Simpson alpha diversity scores were determined from 16S rRNA metagenomic sequences. Alpha diversity in isolate cultures was significantly decreased compared to crude cyanobacterial cultures (p < 0.001), indicating successful semi-purification. BMAA and AEG concentrations were higher in crude compared to isolate cultures (p < 0.0001), and AEG concentrations were correlated to the alpha diversity in cultures (r = 0.554; p < 0.0001). BAMA concentrations were increased in isolate cultures (p < 0.05), while DAB concentrations were similar in crude and isolate cultures. These results demonstrate that microbial community complexity impacts NPAA production by cyanobacteria and related organisms.
Collapse
Affiliation(s)
- Stephanie L. Bishop
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Julia T. Solonenka
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
| | - Ryland T. Giebelhaus
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2N4, Canada
| | - David T. R. Bakker
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
| | - Isaac T. S. Li
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
| | - Susan J. Murch
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
| |
Collapse
|
6
|
Woodhouse JN, Burford MA, Neilan BA, Jex A, Tichkule S, Sivonen K, Fewer DP, Grossart HP, Willis A. Long-term stability of the genome structure of the cyanobacterium, Dolichospermum in a deep German lake. HARMFUL ALGAE 2024; 133:102600. [PMID: 38485438 DOI: 10.1016/j.hal.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Dolichospermum is a cyanobacterial genus commonly associated with toxic blooms in lakes and brackish water bodies worldwide, and is a long-term resident of Lake Stechlin, northeastern Germany. In recent decades, shifts in the phosphorus loading and phytoplankton species composition have seen increased biomass of Dolichospermum during summer blooms from 1998, peaking around 2005, and declining after 2020. Cyanobacteria are known to rapidly adapt to new environments, facilitated by genome adaptation. To investigate the changes in genomic features that may have occurred in Lake Stechlin Dolichospermum during this time of increased phosphorus loading and higher biomass, whole genome sequence analysis was performed on samples of ten akinetes isolated from ten, 1 cm segments of a sediment core, representing a ∼45-year period from 1970 to 2017. Comparison of these genomes with genomes of extant isolates revealed a clade of Dolichospermum that clustered with the ADA-6 genus complex, with remarkable genome stability, without gene gain or loss events in response to recent environmental changes. The genome characteristics indicate that this species is suited to a deep-chlorophyll maximum, including additional light-harvesting and phosphorus scavenging genes. Population SNP analysis revealed two sub-populations that shifted in dominance as the lake transitioned between oligotrophic and eutrophic conditions. Overall, the results show little change within the population, despite diversity between extant populations from different geographic locations and the in-lake changes in phosphorus concentrations.
Collapse
Affiliation(s)
- J N Woodhouse
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany
| | - M A Burford
- Australian Rivers Institute, and School of Environment and Science, Griffith University, Brisbane, Australia
| | - B A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan 2308, NSW, Australia
| | - A Jex
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - S Tichkule
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - K Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - D P Fewer
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - H-P Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany; Department of Biochemistry and Biology, Potsdam University, 14469 Potsdam, Germany
| | - A Willis
- Australian Rivers Institute, and School of Environment and Science, Griffith University, Brisbane, Australia.
| |
Collapse
|
7
|
Pham ML, Maghsoomi S, Brandl M. An Electrochemical Aptasensor for the Detection of Freshwater Cyanobacteria. BIOSENSORS 2024; 14:28. [PMID: 38248405 PMCID: PMC10813013 DOI: 10.3390/bios14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Aphanizomenon is a genus of cyanobacteria that is filamentous and nitrogen-fixing and inhabits aquatic environments. This genus is known as one of the major producers of cyanotoxins that can affect water quality after the bloom period. In this study, an electrochemical aptasensor is demonstrated using a specific aptamer to detect Aphanizomenon sp. ULC602 for the rapid and sensitive detection of this bacterium. The principal operation of the generated aptasensor is based on the conformational change in the aptamer attached to the electrode surface in the presence of the target bacterium, resulting in a decrease in the current peak, which is measured by square-wave voltammetry (SWV). This aptasensor has a limit of detection (LOD) of OD750~0.3, with an extension to OD750~1.2 and a sensitivity of 456.8 μA·OD750-1·cm-2 without interference from other cyanobacteria. This is the first aptasensor studied that provides rapid detection to monitor the spread of this bacterium quickly in a targeted manner.
Collapse
Affiliation(s)
- Mai-Lan Pham
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
| | - Somayeh Maghsoomi
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Martin Brandl
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
| |
Collapse
|
8
|
Pham ML, Askarzadmohassel E, Brandl M. Growth of freshwater cyanobacterium Aphanizomenon sp. ULC602 in different growing and nutrient conditions. Front Microbiol 2023; 14:1220818. [PMID: 38188574 PMCID: PMC10768055 DOI: 10.3389/fmicb.2023.1220818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Aphanizomenon sp. ULC602, recently isolated in a Belgian lake, is a filamentous, nitrogen-fixing, freshwater cyanobacterium that is one of the primary producers of cyanotoxins following its bloom formation, causing water contamination. This study aims to evaluate the effects of growing conditions and essential nutrients on the growth of Aphanizomenon sp. ULC602 via its production of chlorophyll-a (Chlo-a). Our results indicated that this bacterium could grow well at temperatures ranging from 18 to 25°C with an optimal pH of 6.0-7.5 under continuous lighting. It grew slowly in the absence of a carbon source or at lower carbon concentrations. The addition of nitrogen from nitrate and urea led to a less than 50% reduction of Chlo-a content compared to the medium lacking nitrogen. The iron bioavailability significantly stimulated the Chlo-a production, but it was saturated by an iron concentration of 0.115 mM. Moreover, a decrease in Chlo-a biomass was observed under sulfur deficiency. The bacterium could not grow well in media containing various phosphorus sources. In conclusion, as the growth and consequent forming bloom of cyanobacteria can be stimulated or inhibited by environmental conditions and eutrophication, our investigation could contribute to further studies to control the blooming of the target bacterium in freshwater.
Collapse
Affiliation(s)
- Mai-Lan Pham
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Krems an der Donau, Austria
| | | | | |
Collapse
|
9
|
Kieley CM, Roelke DL, Park R, Campbell KL, Klobusnik NH, Walker JR, Cagle SE, Kneer ML, Stroski KM, Brooks BW, Labonté JM. Concentration of total microcystins associates with nitrate and nitrite, and may disrupt the nitrogen cycle, in warm-monomictic lakes of the southcentral United States. HARMFUL ALGAE 2023; 130:102542. [PMID: 38061823 DOI: 10.1016/j.hal.2023.102542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Cyanobacterial blooms and the toxins they produce pose a growing threat worldwide. Mitigation of such events has primarily focused on phosphorus management and has largely neglected the role of nitrogen. Previous bloom research and proposed management strategies have primarily focused on temperate, dimictic lakes, and less on warm-monomictic systems like those at subtropical latitudes. The in-lake conditions, concentration of total microcystins, and microbial functioning of twenty warm-monomictic lakes in the southcentral United States were explored in the spring and summer of 2021. Our data revealed widespread microcystins in lakes across this region, some of which exceeded regulatory limits. Microcystins were higher in the spring compared to the summer, indicating that warm-monomictic lakes, even across a large range of precipitation, do not follow the trends of temperate dimictic lakes. Microcystins were found in surface waters and bottom waters well below the photic zone, reflecting the persistence of these toxins in the environment. Principal components analyses showed a strong association between microcystins, nitrate + nitrite, and Planktothrix relative abundance and transcriptional activity. Many systems exhibited stronger denitrification in the spring, perhaps contributing to the decreased toxin concentrations in the summer. Counter to most sampled lakes, one lake with the highest concentration of total microcystins indicated nitrogen cycle disruption, including inhibited denitrification. These findings are relevant to mitigating cyanobacterial blooms and toxin production in warm-monomictic systems, and suggests a need to consider nitrogen, and not solely phosphorus, in nutrient management discussions.
Collapse
Affiliation(s)
- Crista M Kieley
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Daniel L Roelke
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA.
| | - Royoung Park
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Kathryn L Campbell
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - N Hagen Klobusnik
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Jordan R Walker
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Sierra E Cagle
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Marissa L Kneer
- US Army Corps of Engineers ERDC-EL, Vicksburg, MS 39180, USA
| | - Kevin M Stroski
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| |
Collapse
|
10
|
Zhang XL, Zhu QQ, Chen CY, Xie B, Tang BG, Fan MH, Hu QJ, Liao Z, Yan XJ. The growth inhibitory effects and non-targeted metabolomic profiling of Microcystis aeruginosa treated by Scenedesmus sp. CHEMOSPHERE 2023; 338:139446. [PMID: 37423414 DOI: 10.1016/j.chemosphere.2023.139446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The health of the aquatic ecosystem has recently been severely affected by cyanobacterial blooms brought on by eutrophication. Therefore, it is critical to develop efficient and secure methods to control dangerous cyanobacteria, such as Microcystis aeruginosa. In this research, we tested the inhibition of M. aeruginosa growth by a Scenedesmus sp. strain isolated from a culture pond. Scenedesmus sp. culture filtrate that had been lyophilized was added to M. aeruginosa, and cultivation for seven days, the cell density, chlorophyll a (Chl-a) concentration, maximum quantum yield of photosystem II (Fv/Fm), the activities of superoxide dismutase (SOD), catalase (CAT), and the concentration of malondialdehyde (MDA) and glutathione (GSH) were measured. Moreover, non-targeted metabolomics was carried out to provide light on the inhibitory mechanism in order to better understand the metabolic response. According to the results, M. aeruginosa is effectively inhibited by the lyophilized Scenedesmus sp. culture filtrate at a rate of 51.2%. Additionally, the lyophilized Scenedesmus sp. clearly inhibit the photosystem and damages the antioxidant defense system of M. aeruginosa cells, resulting in oxidative damage, which worsens membrane lipid peroxidation, according to changes in Chl-a, Fv/Fm, SOD, CAT enzyme activities and MDA, GSH. Metabolomics analysis revealed that the secondary metabolites of Scenedesmus sp. significantly interfere with the metabolism of M. aeruginosa involved in amino acid synthesis, membrane creation and oxidative stress, which is coherent with the morphology and physiology outcomes. These results demonstrate that the secondary metabolites of Scenedesmus sp. exert algal inhibition effect by breaked the membrane structure, destroyed the photosynthetic system of microalgae, inhibited amino acid synthesis, reduced antioxidant capacity, and eventually caused algal cell lysis and death. Our research provides a reliable basis for the biological control of cyanobacterial blooms on the one hand, and on other hand supply application of non-targeted metabolome on the study of microalgae allelochemicals.
Collapse
Affiliation(s)
- Xiao-Lin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China.
| | - Qian-Qian Zhu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Chuan-Yue Chen
- College of Marine Sciences, Ningbo University, Ningbo City, 315211, Zhejiang, China
| | - Bing Xie
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Bin-Guo Tang
- Beijing Water Century Biotechnology Limited Company, Wuhan City, 430223, Hubei, China
| | - Mei-Hua Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Qun-Ju Hu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Xiao-Jun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China.
| |
Collapse
|
11
|
Thawabteh AM, Naseef HA, Karaman D, Bufo SA, Scrano L, Karaman R. Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water. Toxins (Basel) 2023; 15:582. [PMID: 37756009 PMCID: PMC10535532 DOI: 10.3390/toxins15090582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Blue-green algae, or cyanobacteria, may be prevalent in our rivers and tap water. These minuscule bacteria can grow swiftly and form blooms in warm, nutrient-rich water. Toxins produced by cyanobacteria can pollute rivers and streams and harm the liver and nervous system in humans. This review highlights the properties of 25 toxin types produced by 12 different cyanobacteria genera. The review also covered strategies for reducing and controlling cyanobacteria issues. These include using physical or chemical treatments, cutting back on fertilizer input, algal lawn scrubbers, and antagonistic microorganisms for biocontrol. Micro-, nano- and ultrafiltration techniques could be used for the removal of internal and extracellular cyanotoxins, in addition to powdered or granular activated carbon, ozonation, sedimentation, ultraviolet radiation, potassium permanganate, free chlorine, and pre-treatment oxidation techniques. The efficiency of treatment techniques for removing intracellular and extracellular cyanotoxins is also demonstrated. These approaches aim to lessen the risks of cyanobacterial blooms and associated toxins. Effective management of cyanobacteria in water systems depends on early detection and quick action. Cyanobacteria cells and their toxins can be detected using microscopy, molecular methods, chromatography, and spectroscopy. Understanding the causes of blooms and the many ways for their detection and elimination will help the management of this crucial environmental issue.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
- General Safety Section, General Services Department, Birzeit University, Bir Zeit 71939, Palestine
| | - Hani A Naseef
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
| | - Donia Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Rafik Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| |
Collapse
|
12
|
Galinytė D, Balčiūnaitė-Murzienė G, Karosienė J, Morudov D, Naginienė R, Baranauskienė D, Šulinskienė J, Kudlinskienė I, Savickas A, Savickienė N. Determination of Heavy Metal Content: Arsenic, Cadmium, Mercury, and Lead in Cyano-Phycocyanin Isolated from the Cyanobacterial Biomass. PLANTS (BASEL, SWITZERLAND) 2023; 12:3150. [PMID: 37687396 PMCID: PMC10490492 DOI: 10.3390/plants12173150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Cyano-phycocyanin (C-PC) is a light-absorbing biliprotein found in cyanobacteria, commonly known as blue-green algae. Due to its antioxidative, anti-inflammatory, and anticancer properties, this protein is a promising substance in medicine and pharmaceuticals. However, cyanobacteria tend to bind heavy metals from the environment, making it necessary to ensure the safety of C-PC for the development of pharmaceutical products, with C-PC isolated from naturally collected cyanobacterial biomass. This study aimed to determine the content of the most toxic heavy metals, arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) in C-PC isolated from different cyanobacterial biomasses collected in the Kaunas Lagoon during 2019-2022, and compare them with the content of heavy metals in C-PC isolated from cultivated Spirulina platensis (S. platensis). Cyanobacteria of Aphanizomenon flos-aquae (A. flos-aquae) dominated the biomass collected in 2019, while the genus Microcystis dominated the biomasses collected in the years 2020 and 2022. Heavy metals were determined using inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS analysis revealed higher levels of the most investigated heavy metals (Pb, Cd, and As) in C-PC isolated from the biomass with the dominant Microcystis spp. compared to C-PC isolated from the biomass with the predominant A. flos-aquae. Meanwhile, C-PC isolated from cultivated S. platensis exhibited lower concentrations of As and Pb than C-PC isolated from naturally collected cyanobacterial biomass.
Collapse
Affiliation(s)
- Daiva Galinytė
- Department of Pharmacology, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania;
| | - Gabrielė Balčiūnaitė-Murzienė
- Faculty of Pharmacy, Institute of Pharmaceutical Technologies, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania;
| | - Jūratė Karosienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania; (J.K.); (D.M.)
| | - Dmitrij Morudov
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania; (J.K.); (D.M.)
| | - Rima Naginienė
- Laboratory of Toxicology, Neurosciences Institute, Academy of Medicine, Lithuanian University of Health Sciences, Eivenių Str. 4, 50161 Kaunas, Lithuania; (R.N.); (D.B.); (J.Š.)
| | - Dalė Baranauskienė
- Laboratory of Toxicology, Neurosciences Institute, Academy of Medicine, Lithuanian University of Health Sciences, Eivenių Str. 4, 50161 Kaunas, Lithuania; (R.N.); (D.B.); (J.Š.)
| | - Jurgita Šulinskienė
- Laboratory of Toxicology, Neurosciences Institute, Academy of Medicine, Lithuanian University of Health Sciences, Eivenių Str. 4, 50161 Kaunas, Lithuania; (R.N.); (D.B.); (J.Š.)
| | | | - Arūnas Savickas
- Department of Drug Technology and Social Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania;
| | - Nijolė Savickienė
- Department of Pharmacology, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania;
| |
Collapse
|
13
|
Aguilera A, Almanza V, Haakonsson S, Palacio H, Benitez Rodas GA, Barros MUG, Capelo-Neto J, Urrutia R, Aubriot L, Bonilla S. Cyanobacterial bloom monitoring and assessment in Latin America. HARMFUL ALGAE 2023; 125:102429. [PMID: 37220982 DOI: 10.1016/j.hal.2023.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
Cyanobacterial blooms have serious adverse effects on human and environmental health. In Latin America, one of the main world's freshwater reserves, information on this phenomenon remains sparse. To assess the current situation, we gathered reports of cyanobacterial blooms and associated cyanotoxins in freshwater bodies from South America and the Caribbean (Latitude 22° N to 45° S) and compiled the regulation and monitoring procedures implemented in each country. As the operational definition of what is a cyanobacterial bloom remains controversial, we also analyzed the criteria used to determine the phenomena in the region. From 2000 to 2019, blooms were reported in 295 water bodies distributed in 14 countries, including shallow and deep lakes, reservoirs, and rivers. Cyanotoxins were found in nine countries and high concentrations of microcystins were reported in all types of water bodies. Blooms were defined according to different, and sometimes arbitrary criteria including qualitative (changes in water color, scum presence), quantitative (abundance), or both. We found 13 different cell abundance thresholds defining bloom events, from 2 × 103 to 1 × 107 cells mL-1. The use of different criteria hampers the estimation of bloom occurrence, and consequently the associated risks and economic impacts. The large differences between countries in terms of number of studies, monitoring efforts, public access to the data and regulations regarding cyanobacteria and cyanotoxins highlights the need to rethink cyanobacterial bloom monitoring, seeking common criteria. General policies leading to solid frameworks based on defined criteria are needed to improve the assessment of cyanobacterial blooms in Latin America. This review represents a starting point toward common approaches for cyanobacterial monitoring and risk assessment, needed to improve regional environmental policies.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
| | - Viviana Almanza
- University of Concepcion, EULA Center, CRHIAM Center (ANID/FONDAP/15130015), Concepcion, Chile
| | - Signe Haakonsson
- Phytoplankton physiology and ecology group. Limnology Division, Facultad de Ciencias, Universidad de la República, Uruguay
| | | | - Gilberto A Benitez Rodas
- Laboratorio de Hidrobiología. Centro Multidisciplinario de Investigaciones Tecnológicas. Universidad Nacional de Asunción, Paraguay
| | - Mário U G Barros
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Brazil; Water Resources Management Company of Ceará, Brazil
| | - José Capelo-Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Brazil
| | - Roberto Urrutia
- University of Concepcion, EULA Center, CRHIAM Center (ANID/FONDAP/15130015), Concepcion, Chile
| | - Luis Aubriot
- Phytoplankton physiology and ecology group. Limnology Division, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Sylvia Bonilla
- Phytoplankton physiology and ecology group. Limnology Division, Facultad de Ciencias, Universidad de la República, Uruguay
| |
Collapse
|
14
|
Hinojosa MG, Cascajosa-Lira A, Prieto AI, Gutiérrez-Praena D, Vasconcelos V, Jos A, Cameán AM. Cytotoxic Effects and Oxidative Stress Produced by a Cyanobacterial Cylindrospermopsin Producer Extract versus a Cylindrospermopsin Non-Producing Extract on the Neuroblastoma SH-SY5Y Cell Line. Toxins (Basel) 2023; 15:toxins15050320. [PMID: 37235355 DOI: 10.3390/toxins15050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The incidence and interest of cyanobacteria are increasing nowadays because they are able to produce some toxic secondary metabolites known as cyanotoxins. Among them, the presence of cylindrospermopsin (CYN) is especially relevant, as it seems to cause damage at different levels in the organisms: the nervous system being the one most recently reported. Usually, the effects of the cyanotoxins are studied, but not those exerted by cyanobacterial biomass. The aim of the present study was to assess the cytotoxicity and oxidative stress generation of one cyanobacterial extract of R. raciborskii non-containing CYN (CYN-), and compare its effects with those exerted by a cyanobacterial extract of C. ovalisporum containing CYN (CYN+) in the human neuroblastoma SH-SY5Y cell line. Moreover, the analytical characterization of potential cyanotoxins and their metabolites that are present in both extracts of these cultures was also carried out using Ultrahigh Performance Liquid Chromatography-Mass Spectrometry, in tandem (UHPLC-MS/MS). The results show a reduction of cell viability concentration- and time-dependently after 24 and 48 h of exposure with CYN+ being five times more toxic than CYN-. Furthermore, the reactive oxygen species (ROS) increased with time (0-24 h) and CYN concentration (0-1.11 µg/mL). However, this rise was only obtained after the highest concentrations and times of exposure to CYN-, while this extract also caused a decrease in reduced glutathione (GSH) levels, which might be an indication of the compensation of the oxidative stress response. This study is the first one performed in vitro comparing the effects of CYN+ and CYN-, which highlights the importance of studying toxic features in their natural scenario.
Collapse
Affiliation(s)
- María G Hinojosa
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Antonio Cascajosa-Lira
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Ana I Prieto
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Daniel Gutiérrez-Praena
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-159 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Angeles Jos
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Ana M Cameán
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
15
|
Zhang Y, Whalen JK, Cai C, Shan K, Zhou H. Harmful cyanobacteria-diatom/dinoflagellate blooms and their cyanotoxins in freshwaters: A nonnegligible chronic health and ecological hazard. WATER RESEARCH 2023; 233:119807. [PMID: 36871382 DOI: 10.1016/j.watres.2023.119807] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Human and ecological health depends on the vitality of freshwater systems, but these are increasingly threatened by cyanotoxins released from harmful algal blooms (HABs). Periodic cyanotoxin production, although undesirable, may be tolerable when there is enough time for cyanotoxins to degrade and dissipate in the environment, but the year-round presence of these toxins will be a chronic health for humans and ecosystems. The purpose of this critical review is to document the seasonal shifts of algal species and their ecophysiological acclimatation to dynamic environmental conditions. We discuss how these conditions will create successive occurrences of algal blooms and the release of cyanotoxins into freshwater. We first review the most common cyanotoxins, and evaluate the multiple ecological roles and physiological functions of these toxins for algae. Then, the annual recurring patterns HABs are considered in the context of global change, which demonstrates the capacity for algal blooms to shift from seasonal to year-round growth regimes that are driven by abiotic and biotic factors, leading to chronic loading of freshwaters with cyanotoxins. At last, we illustrate the impacts of HABs on the environment by compiling four health issues and four ecology issues emanating from their presence in the that covers atmosphere, aquatic ecosystems and terrestrial ecosystems. Our study highlights the annual patterns of algal blooms, and proposes that a "perfect storm" of events is lurking that will cause the 'seasonal toxicity' to become a full-blown, 'chronic toxicity' in the context of the deterioration of HABs, highlighting a non-negligible chronic health and ecological hazard.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Department of Natural Resource Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-de Bellevue, QC H9×3V9, Canada; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China.
| | - Joann K Whalen
- Department of Natural Resource Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-de Bellevue, QC H9×3V9, Canada
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kun Shan
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China, CAS Key Lab on Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hongxu Zhou
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
16
|
Napiórkowska-Krzebietke A, Dunalska JA, Bogacka-Kapusta E. Ecological Implications in a Human-Impacted Lake-A Case Study of Cyanobacterial Blooms in a Recreationally Used Water Body. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5063. [PMID: 36981972 PMCID: PMC10049155 DOI: 10.3390/ijerph20065063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
This study was aimed primarily at describing the planktonic assemblages with special attention to invasive and toxin-producing cyanobacterial species in the context of ecological and health threats. The second aim was to analyze the aspect of recreational pressure, which may enhance the cyanobacterial blooms, and, as a consequence, the negative changes and loss of planktonic biodiversity. This study was carried out in recreationally used Lake Sztynorckie throughout the whole growing season of 2020 and included an assessment of the abundance and biomass of phytoplankton (cyanobacteria and algae) in relation to environmental variables. The total biomass was in the range of 28-70 mg L-1, which is typical for strong blooms. The dominant filamentous cyanobacteria were Pseudanabaena limnetica, Limnothrix redekei, Planktolyngbya limnetica, and Planktothrix agarhii, and three invasive nostocalean species Sphaerospermopsis aphanizomenoides, Cuspidothrix issatschenkoi, and Raphidiopsis raciborskii. They can pose a serious threat not only to the ecosystem but also to humans because of the possibility of cyanobacteria producing cyanotoxins, such as microcystins, saxitoxins, anatoxin-a, and cylindrospermopsins, having hepatotoxic, cytotoxic, neurotoxic, and dermatoxic effects. The water quality was assessed as water bodies had bad ecological status (based on phytoplankton), were highly meso-eutrophic (based on zooplankton), and had very low trophic efficiency and low biodiversity.
Collapse
Affiliation(s)
- Agnieszka Napiórkowska-Krzebietke
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, National Inland Fisheries Research Institute, Oczapowskiego 10, 10-719 Olsztyn, Poland
| | - Julita Anna Dunalska
- Institute of Geography, Faculty of Oceanography and Geography, University of Gdańsk, Jana Bażyńskiego 8, 80-309 Gdańsk, Poland
| | - Elżbieta Bogacka-Kapusta
- Department of Lake Fisheries, National Inland Fisheries Research Institute, Rajska 2, 11-500 Giżycko, Poland
| |
Collapse
|
17
|
The inhibition mechanism and death mode of Microcystis aeruginosa induced by the continuous pressure of artemisinin sustained-release microspheres (ASMs). ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Seo Y, Yoon Y, Lee M, Jang M, Kim TH, Kim Y, Yoo HY, Min J, Lee T. Rapid electrochemical biosensor composed of DNA probe/iridium nanoparticle bilayer for Aphanizomenon flos-aquae detection in fresh water. Colloids Surf B Biointerfaces 2023; 225:113218. [PMID: 36871331 DOI: 10.1016/j.colsurfb.2023.113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Toxic cyanobacteria pose a serious threat to aquatic ecosystems and require adequate detection and control systems. Aphanizomenon flos-aquae is a harmful cyanobacterium that produces the toxicant saxitoxin. Therefore, it is necessary to detect the presence of A. flos-aquae in lakes and rivers. We proposed a rapid electrochemical biosensor composed of DNA primer/iridium nanoparticles (IrNP) bilyer for the detection of A. flos-aquae in freshwater. The extracted A. flos-aquae gene (rbcL-rbcX) is used as a target, and it was fixed to the electrode using a 5'-thiolated DNA primer (capture probe). Then, Avidin@IrNPs complex for amplification of electrical signals was bound to the target through a 3'-biotinylated DNA primer (detection probe). To rapidly detect the target, an alternating current electrothermal flow technique was introduced in the detection step, which could reduce the detection time to within 20 min. To confirm the biosensor fabrication, atomic force microscopy was used to investigate the surface morphology. To evaluate the biosensor performance, cyclic voltammetry and electrochemical impedance spectroscopy were used. The target gene was detected at a concentration of 9.99 pg/mL in tap water, and the detection range was 0.1 ng/mL to 103 ng/mL with high selectivity. Based on the combined system, we employed A. flos-aquae in tap water. This rapid cyanobacteria detection system is a powerful tool for CyanoHABs in the field.
Collapse
Affiliation(s)
- Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yejin Yoon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Myoungro Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea.
| | - Junhong Min
- School of Integrative Engineering Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
19
|
Osburn FS, Wagner ND, Taylor RB, Chambliss CK, Brooks BW, Scott JT. The effects of salinity and N:P on N-rich toxins by both an N-fixing and non-N-fixing cyanobacteria. LIMNOLOGY AND OCEANOGRAPHY LETTERS 2023; 8:162-172. [PMID: 36777312 PMCID: PMC9915339 DOI: 10.1002/lol2.10234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/08/2021] [Indexed: 06/18/2023]
Abstract
Freshwater ecosystems are experiencing increased salinization. Adaptive management of harmful algal blooms (HABs) contribute to eutrophication/salinization interactions through the hydrologic transport of blooms to coastal environments. We examined how nutrients and salinity interact to affect growth, elemental composition, and cyanotoxin production/release in two common HAB genera. Microcystis aeruginosa (non-nitrogen (N)-fixer and microcystin-LR producer; MC-LR) and Aphanizomenon flos-aquae (N-fixer and cylindrospermopsin producer; CYN) were grown in N:phosphorus (N:P) 4 and 50 (by atom) for 21 and 33 days, respectively, then dosed with a salinity gradient (0 - 10.5 g L-1). Both total MC-LR and CYN were correlated with particulate N. We found Microcystis MC-LR production and release was affected by salinity only in the N:P 50 treatment. However, Aphanizomenon CYN production and release was affected by salinity regardless of N availability. Our results highlight how cyanotoxin production and release across the freshwater - marine continuum are controlled by eco-physiological differences between N-acquisition traits.
Collapse
Affiliation(s)
- Felicia S. Osburn
- Department of Biology, Baylor University, Waco TX USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco TX USA
| | - Nicole D. Wagner
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco TX USA
| | - Raegyn B. Taylor
- Department of Chemistry and Biochemistry, Baylor University, Waco TX USA
| | - C. Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco TX USA
- Department of Chemistry and Biochemistry, Baylor University, Waco TX USA
- The Institute for Ecological, Earth, and Environmental Sciences, Baylor University, Waco TX USA
| | - Bryan W. Brooks
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco TX USA
- The Institute for Ecological, Earth, and Environmental Sciences, Baylor University, Waco TX USA
- Department of Environmental Science, Baylor University, Waco TX USA
- Institute of Biomedical Studies, Baylor University, Waco TX USA
| | - J. Thad Scott
- Department of Biology, Baylor University, Waco TX USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco TX USA
- The Institute for Ecological, Earth, and Environmental Sciences, Baylor University, Waco TX USA
| |
Collapse
|
20
|
Falfushynska H, Kasianchuk N, Siemens E, Henao E, Rzymski P. A Review of Common Cyanotoxins and Their Effects on Fish. TOXICS 2023; 11:toxics11020118. [PMID: 36850993 PMCID: PMC9961407 DOI: 10.3390/toxics11020118] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 05/31/2023]
Abstract
Global warming and human-induced eutrophication drive the occurrence of various cyanotoxins in aquatic environments. These metabolites reveal diversified mechanisms of action, encompassing cyto-, neuro-, hepato-, nephro-, and neurotoxicity, and pose a threat to aquatic biota and human health. In the present paper, we review data on the occurrence of the most studied cyanotoxins, microcystins, nodularins, cylindrospermopsin, anatoxins, and saxitoxins, in the aquatic environment, as well as their potential bioaccumulation and toxicity in fish. Microcystins are the most studied among all known cyanotoxins, although other toxic cyanobacterial metabolites are also commonly identified in aquatic environments and can reveal high toxicity in fish. Except for primary toxicity signs, cyanotoxins adversely affect the antioxidant system and anti-/pro-oxidant balance. Cyanotoxins also negatively impact the mitochondrial and endoplasmic reticulum by increasing intracellular reactive oxygen species. Furthermore, fish exposed to microcystins and cylindrospermopsin exhibit various immunomodulatory, inflammatory, and endocrine responses. Even though cyanotoxins exert a complex pressure on fish, numerous aspects are yet to be the subject of in-depth investigation. Metabolites other than microcystins should be studied more thoroughly to understand the long-term effects in fish and provide a robust background for monitoring and management actions.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany
- Faculty of Electrical, Mechanical and Industrial Engineering, Anhalt University for Applied Sciences, 06366 Köthen, Germany
| | - Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University, 61712 Poznan, Poland
| | - Eduard Siemens
- Faculty of Electrical, Mechanical and Industrial Engineering, Anhalt University for Applied Sciences, 06366 Köthen, Germany
| | - Eliana Henao
- Research Group Integrated Management of Ecosystems and Biodiversity XIUÂ, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61701 Poznan, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 61701 Poznań, Poland
| |
Collapse
|
21
|
Moreira C, Gomes C, Vasconcelos V, Antunes A. Risk assessment of cyanobacteria toxic metabolites on freshwater ecosystems applying molecular methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:219-227. [PMID: 35902522 DOI: 10.1007/s11356-022-21814-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria, ancient prokaryotes, interfere with ecosystem water quality through the production of cyanotoxins and bloom formation. Therefore, for water safety and public health reasons, the application of faster, sensitive, and specific tools on its risk assessment is demanded. Polymerase chain reaction (PCR) coupled with DNA sequencing can be a helpful tool for the presence and potential to cyanotoxicity. To achieve these, seven waterbodies located on the North and Center regions of Portugal were sampled for two monitoring periods (2017 and 2018). Thus, given the five risk levels proposed (none up to four cyanotoxins - mcyA, cyrC, anaC, sxtI - being detected per risk level), results showed that the great majority of the ecosystems analyzed on the presence of blooms and under climate change phenomenon (heat waves) had an elevated risk (up to four cyanotoxins being detected) corresponding to a situation of high potential of cyanotoxicity. In the opposite conditions (i.e., absence of blooms and heat waves), the risk was lowered to none or only one cyanotoxin being detected. Two ecosystems escaped this trend and demonstrated little to no alterations among risk levels from 1 year to another corresponding to a high potential of cyanotoxicity and cyanotoxins persistence in comparison to other studied ecosystems. Overall, the risk assessment undertaken suggests that other ecosystems ecological variables (physical, hydrological, or chemical) are interfering on the occurrence and persistence of cyanotoxins biosynthesis genes. Given the observed conditions (eutrophic status, bloom occurrence, and heat waves) of the analyzed ecosystems, cyanobacterial potential for toxicity seems to have increased, suggesting a need of the incorporation of other cyanotoxins apart of the regulated microcystins-LR on cyanotoxins surveillance programs of Portugal.
Collapse
Affiliation(s)
- Cristiana Moreira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Portugal
| | - Cidália Gomes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
22
|
Kosiba J, Krztoń W, Koreiviené J, Tarcz S, Wilk-Woźniak E. Interactions between Ciliate Species and Aphanizomenon flos-aquae Vary Depending on the Morphological Form and Biomass of the Diazotrophic Cyanobacterium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15097. [PMID: 36429814 PMCID: PMC9690129 DOI: 10.3390/ijerph192215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Aphanizomenon flos-aquae can form extensive blooms from freshwater to the brackish environment and, being a diazotrophic species, contribute significantly to the nitrogen and carbon cycle. It occurs as single filaments or aggregates and could be used as an alternative nutrients source for bacteria and ciliates. Ciliates are a group of organisms playing a crucial role in the transfer of nitrogen from primary producers to higher trophic levels in aquatic food webs. The aim of the experiment was to study the effects of the cyanobacterium A. flos-aquae on the community of five ciliate species (Spirostomum minus, Euplotes aediculatus, Strobilidium sp., Vorticella sp. and Paramecium tetraurelia). The response of each species to the presence of a low/high cyanobacterial biomass and to the different morphological forms of A. flos-aquae (single filaments or aggregates) was demonstrated. The results of the experiment showed the variability of interactions between the cyanobacterium A. flos-aquae and ciliates and pointed out the possible benefits that A. flos-aquae provides to the ciliates (e.g., a substrate for the development of bacteria as food for ciliates or as a source of nitrogen and carbon).
Collapse
Affiliation(s)
- Joanna Kosiba
- Institute of Nature Conservation, Polish Academy of Sciences, Adama Mickiewicza 33, 31-120 Krakow, Poland
| | - Wojciech Krztoń
- Institute of Nature Conservation, Polish Academy of Sciences, Adama Mickiewicza 33, 31-120 Krakow, Poland
| | - Judita Koreiviené
- Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Sebastian Tarcz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| | - Elżbieta Wilk-Woźniak
- Institute of Nature Conservation, Polish Academy of Sciences, Adama Mickiewicza 33, 31-120 Krakow, Poland
| |
Collapse
|
23
|
Flanzenbaum JM, Jankowiak JG, Goleski JA, Gorney RM, Gobler CJ. Nitrogen Limitation of Intense and Toxic Cyanobacteria Blooms in Lakes within Two of the Most Visited Parks in the USA: The Lake in Central Park and Prospect Park Lake. Toxins (Basel) 2022; 14:toxins14100684. [PMID: 36287953 PMCID: PMC9612084 DOI: 10.3390/toxins14100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
The Lake in Central Park (LCP) and Prospect Park Lake (PPL) in New York City (NYC), USA, are lakes within two of the most visited parks in the USA. Five years of nearshore sampling of these systems revealed extremely elevated levels of cyanobacteria and the toxin, microcystin, with microcystin levels averaging 920 µg L−1 and chlorophyll a from cyanobacterial (cyano-chla) populations averaging 1.0 × 105 µg cyano-chla L−1. Both lakes displayed elevated levels of orthophosphate (DIP) relative to dissolved inorganic nitrogen (DIN) during summer months when DIN:DIP ratios were < 1. Nutrient addition and dilution experiments revealed that N consistently limited cyanobacterial populations but that green algae were rarely nutrient limited. Experimental additions of public drinking water that is rich in P and, to a lesser extent N, to lake water significantly enhanced cyanobacterial growth rates in experiments during which N additions also yielded growth enhancement. Collectively, this study demonstrates that the extreme microcystin levels during blooms in these highly trafficked lakes represent a potential human and animal health threat and that supplementation of these artificial lakes with public drinking water to maintain water levels during summer may promote the intensity and N limitation of blooms.
Collapse
Affiliation(s)
- Jacob M. Flanzenbaum
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, NY 11794, USA
| | - Jennifer G. Jankowiak
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, NY 11794, USA
| | - Jennifer A. Goleski
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, NY 11794, USA
| | - Rebecca M. Gorney
- Division of Water, New York State Department of Environmental Conservation, Albany, NY 12233-0001, USA
| | - Christopher J. Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, NY 11794, USA
- Correspondence:
| |
Collapse
|
24
|
Gunawardana MHMASV, Sanjaya K, Atapaththu KSS, Yapa Mudiyanselage ALWY, Masakorala K, Widana Gamage SMK. Quantitative prediction of toxin-producing Aphanizomenon cyanobacteria in freshwaters using Sentinel-2 satellite imagery. JOURNAL OF WATER AND HEALTH 2022; 20:1364-1379. [PMID: 36170191 DOI: 10.2166/wh.2022.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study aimed to develop an empirical model to predict the spatial distribution of Aphanizomenon using the Ridiyagama reservoir in Sri Lanka with a dual-model strategy. In December 2020, a bloom was detected with a high density of Aphanizomenon and chlorophyll-a concentration. We generated a set of algorithms using in situ chlorophyll-a data with surface reflectance of Sentinel-2 bands on the same day using linear regression analysis. The in situ chlorophyll-a concentration was better regressed to the reflectance ratio of (1 + R665)/(1-R705) derived from B4 and B5 bands of Sentinel-2 with high reliability (R2 = 0.81, p < 0.001). The second regression model was developed to predict Aphanizomenon cell density using chlorophyll-a as the proxy and the relationship was strong and significant (R2 = 0.75, p<0.001). Coupling the former regression models, an empirical model was derived to predict Aphanizomenon cell density in the same reservoir with high reliability (R2 = 0.71, p<0.001). Furthermore, the predicted and observed spatial distribution of Aphanizomenon was fairly agreed. Our results highlight that the present empirical model has a high capability for an accurate prediction of Aphanizomenon cell density and their spatial distribution in freshwaters, which helps in the management of toxic algal blooms and associated health impacts.
Collapse
Affiliation(s)
| | - Kelum Sanjaya
- Department of Limnology and Water Technology, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, Matara, Sri Lanka
| | - Keerthi S S Atapaththu
- Department of Limnology and Water Technology, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, Matara, Sri Lanka
| | | | - Kanaji Masakorala
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka E-mail:
| | | |
Collapse
|
25
|
Caly LF, Rodríguez DC, Peñuela GA. Monitoring of cyanobacteria and cyanotoxins in a Colombian tropical reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52775-52787. [PMID: 35267163 DOI: 10.1007/s11356-022-19216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic pollution and global climate change have resulted in favorable environmental conditions for increased frequency and duration of cyanobacterial blooms in aquatic systems. Cyanobacteria can produce toxic metabolites called cyanotoxins, which have become a worldwide concern as they threaten human and animal health. The presence of cyanobacteria and four cyanotoxins were evaluated in a Colombian reservoir. The reservoir was monitored for a year, with sampling campaigns every 3 months in seven stations. To identify and quantify cyanotoxins, the ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) technique was used, and the quantification of cyanobacteria was done by quantitative real-time PCR (qPCR) assay using a cyanobacterial-specific 16S rRNA gene fragment as a target. Cyanobacteria concentration was between 4.02 (± 0.11) × 104 and 2.72 (± 0.28) × 107 copies of Cyan 16S/μL, the minimum value corresponds to the station located in the central zone and the maximum to the station at the entrance of one of the tributary rivers. The presence of MC-RR, MC-LR, MC-YR, and NOD was detected in at least six of the seven sampling stations at different times of the year. In all cases, the concentration of the toxins detected was below 0.05 μg/L, so the guideline value established by the WHO for MC-LR was not exceeded.
Collapse
Affiliation(s)
- Luisa F Caly
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia.
| | - Diana C Rodríguez
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| | - Gustavo A Peñuela
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
26
|
Antosiak A, Šulčius S, Malec P, Tokodi N, Łobodzińska A, Dziga D. Cyanophage infections reduce photosynthetic activity and expression of CO 2 fixation genes in the freshwater bloom-forming cyanobacterium Aphanizomenon flos-aquae. HARMFUL ALGAE 2022; 116:102215. [PMID: 35710200 DOI: 10.1016/j.hal.2022.102215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria play a significant role in ecosystem functioning as photosynthetic and CO2 fixing microorganisms. Whether and to what extent cyanophages alter these carbon and energy cycles in their cyanobacterial hosts is still poorly understood. In this study, we investigated changes in photosynthetic activity (PSII), expression of genes associated with the light phase of photosynthesis (psbA, petA, ndhK) and carbon metabolism (rbcL, zwf) as well as intracellular ATP and NADHP concentrations in freshwater bloom-forming filamentous cyanobacterium Aphanizomenon flos-aquae infected by cyanophage vB_AphaS-CL131. We found that PSII activity and expression level of rbcL genes, indicating potential for CO2 fixation, had decreased in response to cyanophage adsorption and DNA injection. During the period of viral DNA replication and assembly, PSII performance and gene expression remained at this decreased level and did not change significantly, indicating lack of transcriptional shutdown by the cyanophage. Combined, these observations suggest that although there is little to no interference between cyanophage DNA replication, host transcription and cellular metabolism, A. flos-aquae underwent a physiological state-shift toward lower efficiency of carbon and energy cycling. This further suggest potential cascading effect for co-occurring non-infected members of the microbial community.
Collapse
Affiliation(s)
- Adam Antosiak
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland.
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania.
| | - Przemysław Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland.
| | - Nada Tokodi
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland; Department of Biology and Ecology, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Antonia Łobodzińska
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland.
| | - Dariusz Dziga
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland.
| |
Collapse
|
27
|
Assessment of the Appearance and Toxin Production Potential of Invasive Nostocalean Cyanobacteria Using Quantitative Gene Analysis in Nakdong River, Korea. Toxins (Basel) 2022; 14:toxins14050294. [PMID: 35622541 PMCID: PMC9145623 DOI: 10.3390/toxins14050294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
Invasive nostocalean cyanobacteria (INC) were first reported in tropical regions and are now globally spreading rapidly due to climate change, appearing in temperate regions. INC require continuous monitoring for water resource management because of their high toxin production potential. However, it is difficult to analyze INC under a microscope because of their morphological similarity to nostocalean cyanobacteria such as the genus Aphanizomenon. This study calculates the gene copy number per cell for each target gene through quantitative gene analysis on the basis of genus-specific primers of genera Cylindrospermopsis, Sphaerospermopsis, and Cuspidothrix, and the toxin primers of anatoxin-a, saxitoxin, and cylindrospermopsin. In addition, quantitative gene analysis was performed at eight sites in the Nakdong River to assess the appearance of INC and their toxin production potential. Genera Cylindrospermopsis and Sphaerospermopsis did not exceed 100 cells mL−1 at the maximum, with a low likelihood of related toxin occurrence. The genus Cuspidothrix showed the highest cell density (1759 cells mL−1) among the INC. Nakdong River has potential for the occurrence of anatoxin-a through biosynthesis by genus Cuspidothrix because the appearance of this genus coincided with that of the anatoxin-a synthesis gene (anaF) and the detection of the toxin by ELISA.
Collapse
|
28
|
Phytoplankton Composition and Ecological Status of Lakes with Cyanobacteria Dominance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073832. [PMID: 35409518 PMCID: PMC8997434 DOI: 10.3390/ijerph19073832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/05/2022]
Abstract
Phytoplankton is one of the five biological quality elements used in the assessment of the ecological status of surface waters according to the European Water Framework Directive established in 2000. In this study, we determined the ecological status of three small and shallow lakes in the Polesie Plain, Eastern Poland, by using indices based on phytoplankton assemblages. The predominant phytoplankton of all three lakes were filamentous cyanobacteria, both heterocystous and non-heterocystous, represented by the genera Aphanizomenon, Planktothrix, Limnothrix, and Planktolyngbya. We used the Hungarian Q index, German PSI (Phyto-See-Index), and recently developed PMPL (Phytoplankton Metrics for Polish Lakes) for Polish lakes. We compared the results from the calculation of the indices to physicochemical data obtained from the lake water and Carlson’s Trophy State Index (TSI). On the basis of TSI, Gumienek and Glinki lakes were classified as advanced eutrophic, whereas Czarne Lake had a better score and was classified as slightly eutrophic. The trophic state was generally confirmed by the ecological status based on phytoplankton indices and also showed the diverse ecological situation in the lakes studied. Based on the Polish PMPL, Gumienek Lake was classified as having bad status (ecological quality ratio (EQR) = 0.05), whereas Glinki and Czarne lakes were classified within the poor status range (EQR = 0.25 and 0.35, respectively). However, based on the German PSI, the lakes were classified in a different manner: the status of Gumienek and Czarne lakes was better, but unsatisfactory, because they were still below the boundary for the good status category recommended by the European Commission. The best ecological status for the studied lakes was obtained using the Q index: Gumienek Lake with EQR = 0.42 had a moderate status, and Czarne Lake with EQR = 0.62 obtained a good status. However, Glinki Lake, with EQR = 0.40, was classified at the boundary for poor and moderate status. Based on our study, it seems that the best index for ecological status assessment based on phytoplankton that can be used for small lakes is the Polish (PMPL) index.
Collapse
|
29
|
Sauer HM, Hamilton TL, Anderson RE, Umbanhowar CE, Heathcote AJ. Diversity and distribution of sediment bacteria across an ecological and trophic gradient. PLoS One 2022; 17:e0258079. [PMID: 35312685 PMCID: PMC8936460 DOI: 10.1371/journal.pone.0258079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
The microbial communities of lake sediments have the potential to serve as valuable bioindicators and integrators of watershed land-use and water quality; however, the relative sensitivity of these communities to physio-chemical and geographical parameters must be demonstrated at taxonomic resolutions that are feasible by current sequencing and bioinformatic approaches. The geologically diverse and lake-rich state of Minnesota (USA) is uniquely situated to address this potential because of its variability in ecological region, lake type, and watershed land-use. In this study, we selected twenty lakes with varying physio-chemical properties across four ecological regions of Minnesota. Our objectives were to (i) evaluate the diversity and composition of the bacterial community at the sediment-water interface and (ii) determine how lake location and watershed land-use impact aqueous chemistry and influence bacterial community structure. Our 16S rRNA amplicon data from lake sediment cores, at two depth intervals, data indicate that sediment communities are more likely to cluster by ecological region rather than any individual lake properties (e.g., trophic status, total phosphorous concentration, lake depth). However, composition is tied to a given lake, wherein samples from the same core were more alike than samples collected at similar depths across lakes. Our results illustrate the diversity within lake sediment microbial communities and provide insight into relationships between taxonomy, physicochemical, and geographic properties of north temperate lakes.
Collapse
Affiliation(s)
- Hailey M. Sauer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, Minnesota, United States of America
| | - Trinity L. Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- The Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| | - Rika E. Anderson
- Biology Department, Carleton College, Northfield, Minnesota, United States of America
| | - Charles E. Umbanhowar
- Department of Biology and Environmental Studies, St. Olaf College, Northfield, Minnesota, United States of America
| | - Adam J. Heathcote
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, Minnesota, United States of America
| |
Collapse
|
30
|
Amat S, Holman DB, Schmidt K, McCarthy KL, Dorsam ST, Ward AK, Borowicz PP, Reynolds LP, Caton JS, Sedivec KK, Dahlen CR. Characterization of the Microbiota Associated With 12-Week-Old Bovine Fetuses Exposed to Divergent in utero Nutrition. Front Microbiol 2022; 12:771832. [PMID: 35126326 PMCID: PMC8811194 DOI: 10.3389/fmicb.2021.771832] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
A recent study reported the existence of a diverse microbiota in 5-to-7-month-old calf fetuses, suggesting that colonization of the bovine gut with so-called “pioneer” microbiota may begin during mid-gestation. In the present study, we investigated 1) the presence of microbiota in bovine fetuses at early gestation (12 weeks), and 2) whether the fetal microbiota is influenced by the maternal rate of gain or dietary supplementation with vitamins and minerals (VTM) during early gestation. Amniotic and allantoic fluids, and intestinal and placental (cotyledon) tissue samples obtained from fetuses (n = 33) on day 83 of gestation were processed for the assessment of fetal microbiota using 16S rRNA gene sequencing. The sequencing results revealed that a diverse and complex microbial community was present in each of these fetal compartments evaluated. Allantoic and amniotic fluids, and fetal intestinal and placenta microbiota each had distinctly different (0.047 ≥ R2 ≥ 0.019, P ≤ 0.031) microbial community structures. Allantoic fluid had a greater (P < 0.05) microbial richness (number of OTUs) (Mean 122) compared to amniotic fluid (84), intestine (63), and placenta (66). Microbial diversity (Shannon index) was similar for the intestinal and placental samples, and both were less diverse compared with fetal fluid microbiota (P < 0.05). Thirty-nine different archaeal and bacterial phyla were detected across all fetal samples, with Proteobacteria (55%), Firmicutes (16.2%), Acidobacteriota (13.6%), and Bacteroidota (5%) predominating. Among the 20 most relatively abundant bacterial genera, Acidovorax, Acinetobacter, Brucella, Corynebacterium, Enterococcus, Exiguobacterium, and Stenotrophomonas differed by fetal sample type (P < 0.05). A total of 55 taxa were shared among the four different microbial communities. qPCR of bacteria in the intestine and placenta samples as well as scanning electron microscopy imaging of fetal fluids provided additional evidence for the presence of a microbiota in these samples. Minor effects of maternal rate of gain and VTM supplementation, and their interactions on microbial richness and composition were detected. Overall, the results of this study indicate that colonization with pioneer microbiota may occur during early gestation in bovine fetuses, and that the maternal nutritional regime during gestation may influence the early fetal microbiota.
Collapse
Affiliation(s)
- Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
- *Correspondence: Samat Amat,
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Kacie L. McCarthy
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Sheri T. Dorsam
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Alison K. Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Pawel P. Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Lawrence P. Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Joel S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kevin K. Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
31
|
Jin H, Ma H, Gan N, Wang H, Li Y, Wang L, Song L. Non-targeted metabolomic profiling of filamentous cyanobacteria Aphanizomenon flos-aquae exposed to a concentrated culture filtrate of Microcystis aeruginosa. HARMFUL ALGAE 2022; 111:102170. [PMID: 35016758 DOI: 10.1016/j.hal.2021.102170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Microcystis and Aphanizomenon are two toxic cyanobacteria genera, which frequently cause blooms in freshwater lakes. In some cases, succession of these two genera was observed in natural water bodies. Among the diverse factors contributing to such succession of dominant cyanobacterial genera, an allelopathic effect was proposed to be involved after the growth inhibitory effect of several Microcystis species on A. flos-aquae was investigated. However, the response of target species exposed to Microcystis are poorly described. In the present study, we used two toxic cyanobacteria strains, Aphanizomenon flos-aquae (Aph1395) and Microcystis aeruginosa strain 905 (Ma905) as research subjects. Aph1395 was inhibited with a necessarily concentrated culture filtrate of Ma905 (MA905-SPE), and the response of the inhibited Aph1395 cells was explored via non-targeted metabolomic profiling. In total, 3735 features were significantly different in the Aph1395 treated with Ma905-SPE vs. those treated with BG11 medium. Among them, the annotations of 146 differential features were considered to be confident via MS/MS spectrum matching analysis. Based on the reported physiological functions of the annotated differential features, we proposed a putative model that in the growth-inhibited Aph1395, a suite of increased or decreased features with activities in apoptosis, growth inhibition, and stress response processes contributed to, or defended against, the allelopathic effect caused by Ma905. Our findings provide insights into the interaction between the bloom forming cyanobacterial species that share the same ecological environment.
Collapse
Affiliation(s)
- Hu Jin
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Haiyan Ma
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China.
| | - Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Hongxia Wang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Yanhua Li
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Lan Wang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| |
Collapse
|
32
|
Blahova L, Sehnal L, Lepsova-Skacelova O, Szmucova V, Babica P, Hilscherova K, Teikari J, Sivonen K, Blaha L. Occurrence of cylindrospermopsin, anatoxin-a and their homologs in the southern Czech Republic - Taxonomical, analytical, and molecular approaches. HARMFUL ALGAE 2021; 108:102101. [PMID: 34588122 DOI: 10.1016/j.hal.2021.102101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/26/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Water bloom-forming cyanobacteria have a severe impact on freshwater quality. Although some cyanobacterial toxins such as microcystins have been studied extensively, other toxins like anatoxin-a (ATX) and their structural analogs - as well as cyanobacterial taxa producing these toxins remain to be explored in detail. The present study investigated levels of ATX, CYN and their homologs along with the occurrence of anaC and cyrJ genes in water blooms in 16 sites in the Czech Republic that were pre-selected concerning the presence of potential toxin producers. Besides, we also studied toxins and genes in a series of strains available in our laboratories. ATX and its congener HATX were detected in 5 natural biomass samples from the Czech Republic (maximum concentration 2.8 micrograms per gram d.w.). Interestingly, the anaC gene coding for ATX production was not detected in any of these toxin-positive biomass samples. The concentrations of ATX congeners in cyanobacterial laboratory strains were about 10-times higher than those of the original ATX, which calls for further research addressing levels and hazards of ATX analogs. Regarding the CYN and 7-deoxyCYN (other CYN congeners were not analyzed in this study) - these toxins were identified in a single small pond in the Czech Republic at concentrations 4.3 and 2.7 micrograms per gram of biomass d.w., respectively (corresponded to dissolved concentrations higher than 1 microgram per liter). The CYN-positive sample was dominated by CYN-producing taxa Raphidiopsis (basionym Cylindrospermopsis) and Cuspidothrix. We also confirmed the presence of a specific cyrJ gene in this natural bloom sample. To our knowledge, this is the first study pointing to Raphidiopsis (Cylindrospermopsis) and Cuspidothrix as producers of CYN in Europe. This observation calls for further research because of their increasing occurrence in (Central) Europe along with the global change. The present study demonstrates the importance of using combined (taxonomical, analytical, and molecular) approaches in the assessment of hazardous cyanobacteria and their toxins in freshwaters.
Collapse
Affiliation(s)
- Lucie Blahova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Ludek Sehnal
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Olga Lepsova-Skacelova
- University of South Bohemia, Faculty of Science, Department of Botany, 370 05 Ceske Budejovice, Czech Republic
| | - Vendula Szmucova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jonna Teikari
- University of Helsinki, Department of Microbiology, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Kaarina Sivonen
- University of Helsinki, Department of Microbiology, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
33
|
Development of Genus-Specific PCR Primers for Molecular Monitoring of Invasive Nostocalean Cyanobacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115703. [PMID: 34073374 PMCID: PMC8198022 DOI: 10.3390/ijerph18115703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
The geographical range of invasive cyanobacteria with high toxigenic potential is widening because of eutrophication and global warming, thus, monitoring their appearance is necessary for safe water quality control. Most invasive cyanobacteria are nostocalean species, and their accurate identification by classical morphological methods may be problematic. In this study, we developed polymerase chain reaction (PCR) primers to selectively identify five invasive cyanobacterial genera, namely, Chrysosporum, Cuspidothrix, Cylindrospermopsis, Raphidiopsis, and Sphaerospermopsis, using genetic markers such as rbcLX, rpoB, rpoC1, and cpcBA, and determined the amplification conditions for each pair of primers. The primer performances were verified on single or mixed nostocalean cyanobacterial isolates. The five primers allowed selective identification of all the target genera. In field samples collected during summer, when cyanobacteria flourished in the Nakdong River, the respective PCR product was observed in all samples where the target genus was detected by microscopic analysis. Besides, weak bands corresponding to Sphaerospermopsis and Raphidiopsis were observed in some samples in which these genera were not detected by microscopy, suggesting that the cell densities were below the detection limit of the microscopic method used. Thus, the genus-specific primers developed in this study enable molecular monitoring to supplement the current microscopy-based monitoring.
Collapse
|
34
|
Ivanov D, Yaneva G, Potoroko I, Ivanova DG. Contribution of Cyanotoxins to the Ecotoxicological Role of Lichens. Toxins (Basel) 2021; 13:321. [PMID: 33946807 PMCID: PMC8146415 DOI: 10.3390/toxins13050321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/02/2022] Open
Abstract
The fascinating world of lichens draws the attention of the researchers because of the numerous properties of lichens used traditionally and, in modern times, as a raw material for medicines and in the perfumery industry, for food and spices, for fodder, as dyes, and for other various purposes all over the world. However, lichens being widespread symbiotic entities between fungi and photosynthetic partners may acquire toxic features due to either the fungi, algae, or cyano-procaryotes producing toxins. By this way, several common lichens acquire toxic features. In this survey, recent data about the ecology, phytogenetics, and biology of some lichens with respect to the associated toxin-producing cyanoprokaryotes in different habitats around the world are discussed. Special attention is paid to the common toxins, called microcystin and nodularin, produced mainly by the Nostoc species. The effective application of a series of modern research methods to approach the issue of lichen toxicity as contributed by the cyanophotobiont partner is emphasized.
Collapse
Affiliation(s)
- Dobri Ivanov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria; (G.Y.); (D.G.I.)
| | - Galina Yaneva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria; (G.Y.); (D.G.I.)
| | - Irina Potoroko
- Department of Food and Biotechnologies, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Diana G. Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria; (G.Y.); (D.G.I.)
| |
Collapse
|
35
|
Falfushynska H, Horyn O, Osypenko I, Rzymski P, Wejnerowski Ł, Dziuba MK, Sokolova IM. Multibiomarker-based assessment of toxicity of central European strains of filamentous cyanobacteria Aphanizomenon gracile and Raphidiopsis raciborskii to zebrafish Danio rerio. WATER RESEARCH 2021; 194:116923. [PMID: 33631698 DOI: 10.1016/j.watres.2021.116923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The global increase in cyanobacterial blooms poses environmental and health threats. Selected cyanobacterial strains reveal toxicities despite a lack of synthesis of known toxic metabolites, and the mechanisms of these toxicities are not well understood. Here we investigated the toxicity of non-cylindrospermopsin and non-microcystin producing Aphanizomenon gracile and Raphidiopsis raciborskii of Central European origin to zebrafish exposed for 14 days to their extracts. Toxicological screening revealed the presence of anabaenopeptins and a lack of anatoxin-a, ß-methylamino-L-alanine or saxitoxins in examined extracts. The responses were compared to 20 μg L-1 of common cyanobacterial toxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR). The expression of the marker genes involved in apoptosis (caspase 3a and 3b, Bcl-2, BAX, p53, MAPK, Nrf2), DNA damage detection and repair (GADD45, RAD51, JUN, XPC), detoxification (CYP1A, CYP26, EPHX1), lipid metabolism (PPARa, FABP1, PLA2), phosphorylation/dephosphorylation (PPP6C, PPM1) and cytoskeleton (actin, tubulin) were examined using targeted transcriptomics. Cellular stress and toxicity biomarkers (oxidative injury, antioxidant enzymes, thiol pool status, and lactate dehydrogenase activity) were measured in the liver, and acetylcholinesterase activity was determined as an index of neurotoxicity in the brain. The extracts of three cyanobacterial strains that produce no known cyanotoxins caused marked toxicity in D. rerio, and the biomarker profiles indicate different toxic mechanisms between the bioactive compounds extracted from these strains and the purified cyanotoxins. All studied cyanobacterial extracts and purified cyanotoxins induced oxidative stress and neurotoxicity, downregulated Nrf2 and CYP26B1, disrupted phosphorylation/dephosphorylation processes and actin/tubulin cytoskeleton and upregulated apoptotic activity in the liver. The tested strains and purified toxins displayed distinctively different effects on lipid metabolism. Unlike CYN and MC-LR, the Central European strain of A. gracile and R. raciborskii did not reveal a genotoxic potential. These findings help to further understand the ecotoxicological consequences of toxic cyanobacterial blooms in freshwater ecosystems.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Oksana Horyn
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Inna Osypenko
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Łukasz Wejnerowski
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Marcin K Dziuba
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
36
|
Dreher TW, Davis EW, Mueller RS, Otten TG. Comparative genomics of the ADA clade within the Nostocales. HARMFUL ALGAE 2021; 104:102037. [PMID: 34023075 DOI: 10.1016/j.hal.2021.102037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The ADA clade of Nostocales cyanobacteria, a group that is prominent in current harmful algal bloom events, now includes over 40 genome sequences with the recent addition of sixteen novel sequenced genomes (Dreher et al., Harmful Algae, 2021). Fourteen genomes are complete (closed), enabling highly detailed assessments of gene content and genome architecture. ADA genomes contain 5 rRNA operons, genes expected to support a photoautotrophic and diazotrophic lifestyle, and a varied array of genes for the synthesis of bioactive secondary metabolites. Genes for the production of the taste-and-odor compound geosmin and the four major classes of cyanotoxins - anatoxin-a, cylindrospermopsin, microcystin and saxitoxin - are represented in members of the ADA clade. Notably, the gene array for the synthesis of cylindrospermopsin by Dolichospermum sp. DET69 was located on a plasmid, raising the possibility of facile horizontal transmission. However, genes supporting independent conjugative transfer of this plasmid are lacking. Further, analysis of genomic loci containing this and other cyanotoxin gene arrays shows evidence that these arrays have long-term stability and do not appear to be genomic islands easily capable of horizontal transmission to other cells. There is considerable diversity in the gene complements of individual ADA genomes, including the variable presence of physiologically important genes: genomes in three species-level subclades lack the gas vesicle genes that facilitate a planktonic lifestyle, and, surprisingly, the genome of Cuspidothrix issatschenkoi CHARLIE-1, a reported diazotroph, lacks the genes for nitrogen fixation. Notably, phylogenetically related genomes possess limited synteny, indicating a prominent role for chromosome rearrangements during ADA strain evolution. The genomes contain abundant insertion sequences and repetitive transposase genes, which could be the main drivers of genome rearrangement through active transposition and homologous recombination. No prophages were found, and no evidence of viral infection was observed in the bloom population samples from which the genomes discussed here were derived. Phages thus seem to have a limited influence on ADA evolution.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331 USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331 USA.
| | - Edward W Davis
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331 USA
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331 USA
| | - Timothy G Otten
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331 USA.
| |
Collapse
|
37
|
Howard MDA, Kudela RM, Hayashi K, Tatters AO, Caron DA, Theroux S, Oehrle S, Roethler M, Donovan A, Loftin K, Laughrey Z. Multiple co-occurring and persistently detected cyanotoxins and associated cyanobacteria in adjacent California lakes. Toxicon 2021; 192:1-14. [PMID: 33428970 PMCID: PMC8811718 DOI: 10.1016/j.toxicon.2020.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 01/04/2023]
Abstract
The global proliferation of toxin producing cyanobacterial blooms has been attributed to a wide variety of environmental factors with nutrient pollution, increased temperatures, and drought being three of the most significant. The current study is the first formal assessment of cyanotoxins in two impaired lakes, Canyon Lake and Lake Elsinore, in southern California that have a history of cyanobacterial blooms producing high biomass as measured by chl-a. Cyanotoxins in Lake Elsinore were detected at concentrations that persistently exceeded California recreational health thresholds, whereas Canyon Lake experienced persistent concentrations that only occasionally exceeded health thresholds. The study results are the highest recorded concentrations of microcystins, anatoxin-a, and cylindrospermopsin detected in southern California lakes. Concentrations exceeded health thresholds that caused both lakes to be closed for recreational activities. Cyanobacterial identifications indicated a high risk for the presence of potentially toxic genera and agreed with the cyanotoxin results that indicated frequent detection of multiple cyanotoxins simultaneously. A statistically significant correlation was observed between chlorophyll-a (chl-a) and microcystin concentrations for Lake Elsinore but not Canyon Lake, and chl-a was not a good indicator of cylindrospermopsin, anatoxin-a, or nodularin. Therefore, chl-a was not a viable screening indicator of cyanotoxin risk in these lakes. The study results indicate potential acute and chronic risk of exposure to cyanotoxins in these lakes and supports the need for future monitoring efforts to help minimize human and domestic pet exposure and to better understand potential effects to wildlife. The frequent co-occurrence of complex cyanotoxin mixtures further complicates the risk assessment process for these lakes given uncertainty in the toxicology of mixtures.
Collapse
Affiliation(s)
- Meredith D A Howard
- Central Valley Regional Water Quality Control Board, 11020 Sun Center Drive, #200, Rancho Cordova, CA, 95670, USA.
| | - Raphael M Kudela
- Department of Ocean Science, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Kendra Hayashi
- Department of Ocean Science, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Avery O Tatters
- USEPA Gulf Ecosystem Measurement and Modeling Division Laboratory, 1 Sabine Drive, Gulf Breeze, FL, 32561, USA.
| | - David A Caron
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089-0371, USA.
| | - Susanna Theroux
- Biogeochemistry Department, Southern California Coastal Water Research Project, 3535 Harbor Blvd., Suite 110, Costa Mesa, CA, 92626, USA.
| | - Stuart Oehrle
- Waters Field Lab, Northern Kentucky University, Chemistry Department, Highland Heights, KY, 41099, USA.
| | - Miranda Roethler
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St. Box 355020, Seattle, WA, 98195-5020, USA.
| | - Ariel Donovan
- U.S. Geological Survey, Kansas Water Science Center, Organic Geochemistry Research Laboratory, 1217 Biltmore Drive, Lawrence, KS, 66049, USA.
| | - Keith Loftin
- U.S. Geological Survey, Kansas Water Science Center, Organic Geochemistry Research Laboratory, 1217 Biltmore Drive, Lawrence, KS, 66049, USA.
| | - Zachary Laughrey
- U.S. Geological Survey, Kansas Water Science Center, Organic Geochemistry Research Laboratory, 1217 Biltmore Drive, Lawrence, KS, 66049, USA.
| |
Collapse
|
38
|
Dreher TW, Davis EW, Mueller RS. Complete genomes derived by directly sequencing freshwater bloom populations emphasize the significance of the genus level ADA clade within the Nostocales. HARMFUL ALGAE 2021; 103:102005. [PMID: 33980445 DOI: 10.1016/j.hal.2021.102005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The genome sequences of 16 Nostocales cyanobacteria have been determined. Most of them are complete or near-complete genome sequences derived by long-read metagenome sequencing of recent harmful algal blooms (HABs) in freshwater lakes without the potential bias of culture isolation. The genomes are all members of the recently recognized ADA clade (Driscoll et al., Harmful Algae, 77:93, 2018), which we argue represents a genus. We identify 10 putative species-level branches within the clade, on the basis of 91-gene phylogenomic and average nucleotide identity analyses. The assembled genomes each correspond to a single morphotype in the original sample, but distinct genomes from different HABs in some cases correspond to similar morphotypes. We present data indicating that the ADA clade is a highly significant component of current cyanobacterial HABs, including members assigned to the prevalent Dolichospermum and Aphanizomenon genera, as well as Cuspidothrix and Anabaena. In general, currently used genus and species names within the ADA clade are not monophyletic. We infer that the morphological characters routinely used in taxonomic assignments are not reliable for discriminating species within the ADA clade. Taxonomic revisions will be needed to create a genus with a single name (we recommend Anabaena) and to adopt species names that do not depend on morphological traits that lack sufficient discrimination and specificity, while recognizing the utility of some easily observable and distinct morphologies.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331, USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA.
| | - Edward W Davis
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331, USA
| |
Collapse
|
39
|
Houliez E, Briand E, Malo F, Rovillon GA, Hervé F, Robert E, Marchand L, Zykwinska A, Caruana AMN. Physiological changes induced by sodium chloride stress in Aphanizomenon gracile, Cylindrospermopsis raciborskii and Dolichospermum sp. HARMFUL ALGAE 2021; 103:102028. [PMID: 33980428 DOI: 10.1016/j.hal.2021.102028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Due to anthropogenic activities, associated with climate change, many freshwater ecosystems are expected to experience an increase in salinity. This phenomenon is predicted to favor the development and expansion of freshwater cyanobacteria towards brackish waters due to their transfer along the estuarine freshwater-marine continuum. Since freshwater cyanobacteria are known to produce toxins, this represents a serious threat for animal and human health. Saxitoxins (STXs) are classified among the most powerful cyanotoxins. It becomes thus critical to evaluate the capacity of cyanobacteria producing STXs to face variations in salinity and to better understand the physiological consequences of sodium chloride (NaCl) exposure, in particular on their toxicity. Laboratory experiments were conducted on three filamentous cyanobacteria species isolated from brackish (Dolichospermum sp.) and fresh waters (Aphanizomenon gracile and Cylindrospermopsis raciborskii) to determine how salinity variations affect their growth, photosynthetic activity, pigment composition, production of reactive oxygen species (ROS), synthesis of compatible solutes and STXs intracellular quotas. Salinity tolerance was found to be species-specific. Dolichospermum sp. was more resistant to salinity variations than A. gracile and C. raciborskii. NaCl variations reduced growth in all species. In A. gracile, carotenoids content was dose-dependently reduced by NaCl. By contrast, in C. raciborskii and Dolichospermum sp., variations in carotenoids content did not show obvious relationships with NaCl concentration. While in Dolichospermum sp. phycocyanin and phycoerythrin increased within the first 24 h exposure to NaCl, in both A. gracile and C. raciborskii, these pigments decreased proportionally to NaCl concentration. Low changes in salinity did not impact STXs production in A. gracile and C. raciborskii while higher increase in salinity could modify the toxin profile and content of C. raciborskii (intracellular STX decreased while dc-GTX2 increased). In estuaries, A. gracile and C. raciborskii would not be able to survive beyond the oligohaline area (i.e. salinity > 5). Conversely, in part due to its ability to accumulate compatible solutes, Dolichospermum sp. has the potential to face consequent salinity variations and to survive in the polyhaline area (at least up to salinity = 24).
Collapse
Affiliation(s)
| | - Enora Briand
- IFREMER-Phycotoxins Laboratory, F-44311 Nantes, France
| | - Florent Malo
- IFREMER-Phycotoxins Laboratory, F-44311 Nantes, France
| | | | | | - Elise Robert
- IFREMER-Phycotoxins Laboratory, F-44311 Nantes, France
| | | | | | | |
Collapse
|
40
|
Hobbs WO, Dreher TW, Davis EW, Vinebrooke RD, Wong S, Weissman T, Dawson M. Using a lake sediment record to infer the long-term history of cyanobacteria and the recent rise of an anatoxin producing Dolichospermum sp. HARMFUL ALGAE 2021; 101:101971. [PMID: 33526187 DOI: 10.1016/j.hal.2020.101971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Lakes that experience recurrent toxic cyanobacterial harmful algae blooms (cyanoHABS) are often subject to cultural eutrophication, where landscape development and upland activities increase the nutrient inputs to the water column and fuel cyanoHABS. Few studies have focused on the response of a lake to nutrient inputs for which the natural geomorphic setting predisposes a nutrient-rich water column to already support abundant cyanobacteria. Here, we present a sediment core record from a lake surrounded by parkland that experiences recurrent cyanoHABs which produce dangerous levels of the neurotoxin, anatoxin-a, impacting the recreational use of the lake and park. Using photoautotrophic pigments in the sediment record, we establish cyanobacteria have long been part of the diverse and abundant phytoplankton community within the lake. Despite this long record, shotgun metagenome and other DNA analyses of the sediment record suggest that the current anatoxin-a producer Dolichospermum sp. WA102 only emerged to dominate the cyanobacterial community in the mid-1990s. A period of lakeshore farming that finished in the 1950s-1960s and possibly the stocking of rainbow trout fry (1970-2016) coincide with a progressive shift in primary production, together with a change in bacterial communities. Based on the history of the lake and contemporary ecology of Dolichospermum, we propose that the legacy of nutrient inputs and changes in nutrient cycling within the lake has encouraged the development of an ecosystem where the toxin producing Dolichospermum sp WA102 is highly competitive. Understanding the historical presence of cyanobacteria in the lake provides a context for current-day management strategies of cyanoHABs.
Collapse
Affiliation(s)
- William O Hobbs
- Washington State Department of Ecology, PO Box 47600, Olympia, WA 98502 United States.
| | - Theo W Dreher
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331 United States; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331 United States
| | - Edward W Davis
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331 United States
| | - Rolf D Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9 Canada
| | - Siana Wong
- Washington State Department of Ecology, PO Box 47600, Olympia, WA 98502 United States
| | - Tim Weissman
- Jefferson County Public Health, 615 Sheridan St, Port Townsend, Washington 98368 United States
| | - Michael Dawson
- Jefferson County Public Health, 615 Sheridan St, Port Townsend, Washington 98368 United States
| |
Collapse
|
41
|
Metagenome-Assembled Genome Sequence of
Vulcanococcus
sp. Strain Clear-D1, Assembled from a Cyanobacterial Enrichment Culture. Microbiol Resour Announc 2020; 9:9/49/e01121-20. [PMID: 33272997 PMCID: PMC7714852 DOI: 10.1128/mra.01121-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the metagenome-assembled genome sequence of a
Vulcanococcus
sp. binned from a cyanobacterial enrichment culture. The genome contains 39 contigs comprising 2.96 Mbp and is estimated as 100% complete, with a GC content of 63.9% and 3,261 predicted coding genes.
Collapse
|
42
|
Kim YJ, Park HK, Kim IS. Invasion and toxin production by exotic nostocalean cyanobacteria (Cuspidothrix, Cylindrospermopsis, and Sphaerospermopsis) in the Nakdong River, Korea. HARMFUL ALGAE 2020; 100:101954. [PMID: 33298363 DOI: 10.1016/j.hal.2020.101954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The extent and frequency of harmful cyanobacterial blooms are increasing, owing to the climate change caused by global warming, and some harmful filamentous cyanobacteria that were first reported in the tropics are spreading to temperate regions, such as North America, Europe, and Northeast Asia. Although these exotic invasive cyanobacteria have a high toxigenic potential, they are not targeted in management plans in many countries. This study analyzed the occurrence of and potential toxin and off-flavor secondary metabolite production by invasive nostocalean cyanobacteria in the Nakdong River in Korea, which is a temperate region. The occurrence of four species belonging to three genera of cyanobacteria was confirmed in the Nakdong River. The quantities of cyanobacteria in the Nakdong River were mostly low, fewer than 1,000 cells mL-1. Twenty-four strains belonging to four species in three genera of cyanobacteria were isolated from the Nakdong River. Analysis revealed no off-flavor secondary metabolite production by any of the isolates, and those belonging to Cylindrospermopsis raciborskii, Sphaerospermopsis aphanizomenoides, and S. reniformis were identified as nontoxic strains. However, anatoxin-a production was observed in two of the eleven isolates of Cuspidothrix issatschenkoi. Given the sites and the timing of its occurrence, C. issatschenkoi had the highest potential for toxin production among the invasive nostocalean cyanobacteria appearing in the Nakdong River.
Collapse
Affiliation(s)
- Yong-Jin Kim
- Nakdong River Environment Research Center, National Institute of Environmental Research, Dalseong-gun, Daegu, Korea
| | - Hae-Kyung Park
- Nakdong River Environment Research Center, National Institute of Environmental Research, Dalseong-gun, Daegu, Korea.
| | - In-Soo Kim
- Nakdong River Environment Research Center, National Institute of Environmental Research, Dalseong-gun, Daegu, Korea
| |
Collapse
|
43
|
Understanding the Differences in the Growth and Toxin Production of Anatoxin-Producing Cuspidothrix issatschenkoi Cultured with Inorganic and Organic N Sources from a New Perspective: Carbon/Nitrogen Metabolic Balance. Toxins (Basel) 2020; 12:toxins12110724. [PMID: 33228063 PMCID: PMC7699347 DOI: 10.3390/toxins12110724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
Cyanotoxins are the underlying cause of the threat that globally pervasive Cyanobacteria Harmful algal blooms (CyanoHABs) pose to humans. Major attention has been focused on the cyanobacterial hepatotoxin microcystins (MCs); however, there is a dearth of studies on cyanobacterial neurotoxin anatoxins. In this study, we explored how an anatoxin-producing Cuspidothrix issatschenkoi strain responded to culture with inorganic and organic nitrogen sources in terms of growth and anatoxins production. The results of our study revealed that ʟ- alanine could greatly boost cell growth, and was associated with the highest cell productivity, while urea significantly stimulated anatoxin production with the maximum anatoxin yield reaching 25.86 μg/mg dry weight, which was 1.56-fold higher than that in the control group (BG11). To further understand whether the carbon/nitrogen balance in C. issatschenkoi would affect anatoxin production, we explored growth and toxin production in response to different carbon/nitrogen ratios (C/N). Anatoxin production was mildly promoted when the C/N ratio was within low range, and significantly inhibited when the C/N ratio was within high range, showing approximately a three-fold difference. Furthermore, the transcriptional profile revealed that anaC gene expression was significantly up-regulated over 2–24 h when the C/N ratio was increased, and was significantly down-regulated after 96 h. Overall, our results further enriched the evidence that urea can stimulate cyanotoxin production, and ʟ-alanine could boost C. issatschenkoi proliferation, thus providing information for better management of aquatic systems. Moreover, by focusing on the intracellular C/N metabolic balance, this study explained the anatoxin production dynamics in C. issatschenkoi in response to different N sources.
Collapse
|
44
|
Berezina NA, Verbitsky VB, Sharov AN, Chernova EN, Meteleva NY, Malysheva OA. Biomarkers in bivalve mollusks and amphipods for assessment of effects linked to cyanobacteria and elodea: Mesocosm study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110994. [PMID: 32888603 DOI: 10.1016/j.ecoenv.2020.110994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
The effects of cyanobacteria (Aphanizomenon flos-aquae (90%), Microcystis aeruginosa) and dense Elodea canadensis beds on the health endpoints of the amphipod Gmelinoides fasciatus and bivalve mollusc Unio pictorum were examined in mesocosms with simulated summer conditions (July-August 2018) in the environment of the Rybinsk Reservoir (Volga River Basin, Russia). Four treatments were conducted, including one control and three treatments with influencing factors, cyanobacteria and dense elodea beds (separately and combined). After 20 days of exposure, we evaluated the frequency of malformed and dead embryos in amphipods, heart rate (HR) and its recovery (HRR) after stress tests in molluscs as well as heat tolerance (critical thermal maximum or CTMax) in both amphipods and molluscs. The significant effect, such as elevated number of malformed embryos, was recorded after exposure with cyanobacteria (separately and combined with elodea) and presence of microcystins (MC) in water (0.17 μg/l, 40% of the most toxic MC-LR contribution). This study provided evidence that an elevated number (>5% of the total number per female) of malformed embryos in amphipods showed noticeable toxicity effects in the presence of cyanobacteria. The decreased oxygen under the influence of dense elodea beds led to a decrease in HR (and an increase in HRR) in molluscs. The notable effects on all studied biomarkers, embryo malformation frequency and heat tolerance in the amphipod G. fasciatus, as well as the heat tolerance and heart rate in the mollusc U. pictorum, were found when both factors (elodea and cyanobacteria) were combined. The applied endpoints could be further developed for environmental monitoring, but the obtained results support the importance of the combined use of several biomarkers and species, especially in the case of multi-factor environmental stress.
Collapse
Affiliation(s)
- Nadezhda A Berezina
- Zoological Institute, Russian Academy of Sciences (RAS), Universitetskaya Embankment 1, St. Petersburg, 199034, Russia.
| | | | - Andrey N Sharov
- Papanin Institute for Biology of Inland Waters, RAS, Borok, 152742, Russia; Saint Petersburg Research Center for Ecological Safety, RAS, Korpusnaya Street 18, St. Petersburg, 197110, Russia
| | - Ekaterina N Chernova
- Saint Petersburg Research Center for Ecological Safety, RAS, Korpusnaya Street 18, St. Petersburg, 197110, Russia
| | - Nina Yu Meteleva
- Papanin Institute for Biology of Inland Waters, RAS, Borok, 152742, Russia
| | - Olga A Malysheva
- Papanin Institute for Biology of Inland Waters, RAS, Borok, 152742, Russia
| |
Collapse
|
45
|
Kuznecova J, Šulčius S, Vogts A, Voss M, Jürgens K, Šimoliūnas E. Nitrogen Flow in Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Is Altered by Cyanophage Infection. Front Microbiol 2020; 11:2010. [PMID: 32973727 PMCID: PMC7466765 DOI: 10.3389/fmicb.2020.02010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/29/2020] [Indexed: 12/03/2022] Open
Abstract
Viruses can significantly influence cyanobacteria population dynamics and activity, and through this the biogeochemical cycling of major nutrients. However, surprisingly little attention has been given to understand how viral infections alter the ability of diazotrophic cyanobacteria for atmospheric nitrogen fixation and its release to the environment. This study addressed the importance of cyanophages for net 15N2 assimilation rate, expression of nitrogenase reductase gene (nifH) and changes in nitrogen enrichment (15N/14N) in the diazotrophic cyanobacterium Aphanizomenon flos-aquae during infection by the cyanophage vB_AphaS-CL131. We found that while the growth of A. flos-aquae was inhibited by cyanophage addition (decreased from 0.02 h–1 to 0.002 h–1), there were no significant differences in nitrogen fixation rates (control: 22.7 × 10–7 nmol N heterocyte–1; infected: 23.9 × 10–7 nmol N heterocyte–1) and nifH expression level (control: 0.6–1.6 transcripts heterocyte–1; infected: 0.7–1.1 transcripts heterocyte–1) between the infected and control A. flos-aquae cultures. This implies that cyanophage genome replication and progeny production within the vegetative cells does not interfere with the N2 fixation reactions in the heterocytes of these cyanobacteria. However, higher 15N enrichment at the poles of heterocytes of the infected A. flos-aquae, revealed by NanoSIMS analysis indicates the accumulation of fixed nitrogen in response to cyanophage addition. This suggests reduced nitrogen transport to vegetative cells and the alterations in the flow of fixed nitrogen within the filaments. In addition, we found that cyanophage lysis resulted in a substantial release of ammonium into culture medium. Cyanophage infection seems to substantially redirect N flow from cyanobacterial biomass to the production of N storage compounds and N release.
Collapse
Affiliation(s)
- Jolita Kuznecova
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Angela Vogts
- Section Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Maren Voss
- Section Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Klaus Jürgens
- Section Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
46
|
Cao X, Xu X, Bian R, Wang Y, Yu H, Xu Y, Duan G, Bi L, Chen P, Gao S, Wang J, Peng J, Qu J. Sedimentary ancient DNA metabarcoding delineates the contrastingly temporal change of lake cyanobacterial communities. WATER RESEARCH 2020; 183:116077. [PMID: 32693300 DOI: 10.1016/j.watres.2020.116077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/18/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Harmful cyanobacterial blooms consisting of toxic taxa can produce a wide variety of toxins to threaten water quality, ecosystem functions and services. Of greater concern was the changing patterns of cyanobacterial assemblage were not well understood due to the lack of long-term monitoring data over the temporal scale. Biodiversity change in cyanobacterial community and paleoenvironmental variables over the past 170 years in Lake Chenghai were investigated based on sedimentary ancient DNA metabarcoding and traditional paleolimnological analysis. The results showed species richness and homogenization of cyanobacterial assemblage increased in the most recent decades, which were synchronized with the growth of artificial fertilization and decline in precipitation. Cyanobacterial co-occurrence network analysis revealed more complex interactions and weak community stability after the change point of ∼1987, while the rare cyanobacterial genera such as Anabaena, Planktothrix, Oscillatoria and Microcystis were identified to be keystone taxa affecting cyanobacterial assemblage. Furthermore, an increase of toxin-producing cyanobacterial taxa was significantly and positively associated with TN and TP, as well as TN/IP and TN/TP, which was verified by quantitative real-time PCR of mcyA and rpoC1 genes. Threshold in total nitrogen (TN) concentration should be targeted no more than 0.60 mg/L to alleviate nuisance cyanobacterial blooms in Lake Chenghai. These findings reinforce the comprehensive understanding for the long-term dynamics of cyanobacterial assemblage responding to environmental change, which could contribute to proactively regulate environmental conditions for avoiding undesirable ecological consequences.
Collapse
Affiliation(s)
- Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoyan Xu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, China
| | - Rui Bian
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yajun Wang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hongwei Yu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yan Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Gaoqi Duan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lijiao Bi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Pengfei Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shaopeng Gao
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
47
|
Zhang K, Yu M, Xu P, Zhang S, Benoit G. Physiological and morphological response of Aphanizomenon flos-aquae to watermelon (Citrullus lanatus) peel aqueous extract. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105548. [PMID: 32593115 DOI: 10.1016/j.aquatox.2020.105548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Natural algaecides are more likely to be specific and biodegradable, and may offer an environmentally friendly method for control of cyanobacterial blooms. We explored, for the first time, the potential for watermelon peel aqueous extract (WMPAE) to control the growth of the harmful blue-green alga Aphanizomenon flos-aquae. The growth inhibition and several physiological parameters of A. flos-aquae, in response to WMPAE, were analyzed. Results showed that WMPAE significantly inhibited the growth of A. flos-aquae in a concentration-dependent way. The highest inhibition reached 94 % after 3 days' treatment with 6 g L-1 of WMPAE and a significant effect was obtained with lower doses and shorter times as well. The cell viability decreased quickly, cell shape changed, and intracellular structural damage occurred. At the same time, the antioxidant enzymes (superoxide dismutase SOD, catalase CAT and peroxidase POD) and malondialdehyde (MDA) levels all increased significantly, indicating that WMPAE between 2-6 g L-1 induced severe oxidative stress and damage to A. flos-aquae. Moreover, production of the four pigments chlorophyll a (Chl a), carotenoids, phycocyanin (PC), and allophycocyanin (APC) were all stimulated, though photosynthesis of A. flos-aquae was clearly inhibited. The maximum quantum yield of photosystem II (Fv/Fm) and the effective quantum yield of photosystem II ( Fv'/Fm') declined sharply, suggesting the decreased photosystem capacity of A. flos-aquae to convert light energy into chemical energy. In addition, non-photochemical quenching (NPQ) of A. flos-aquae increased after a very short time exposure to WMPAE, and decreased significantly with prolonged exposure time, which indicated the failure of photo protection mechanisms. These results suggest that the loss of cell viability, and increases in oxidative stress, and damage to intracellular structure and photosynthetic systems might be the mechanisms for the inhibitory effects. Our results suggested that WMPAE could be a novel and effective approach for controlling the growth of A. flos-aquae in aquatic environments.
Collapse
Affiliation(s)
- Kaixiang Zhang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Mengdie Yu
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Peiyao Xu
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shenghua Zhang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China; School of Forestry & Environmental Studies, Yale University, New Haven, 06511 CT, United States.
| | - Gaboury Benoit
- School of Forestry & Environmental Studies, Yale University, New Haven, 06511 CT, United States
| |
Collapse
|
48
|
Vilar MCP, Molica RJR. Changes in pH and dissolved inorganic carbon in water affect the growth, saxitoxins production and toxicity of the cyanobacterium Raphidiopsis raciborskii ITEP-A1. HARMFUL ALGAE 2020; 97:101870. [PMID: 32732056 DOI: 10.1016/j.hal.2020.101870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 05/06/2023]
Abstract
Raphidiopsis raciborskii is a widely distributed, potentially toxic cyanobacterium described as a tropical-subtropical species. However, its occurrence in temperate regions has been expanding. Understanding the environmental factors underlying the expansion and colonization success of Raphidiopsis has been the object of numerous studies. However, less is known regarding its responses to pH and inorganic carbon in water. Thus, the aim of the present study was to investigate the effects of changes in pH and dissolved inorganic carbon on growth and saxitoxins production in the strain R. raciborskii ITEP-A1. We incubated batch cultures with different unbuffered and buffered pH (neutral-acid and alkaline) and inorganic carbon availability (CO2-rich air bubbling and the addition of NaHCO3) to assess the effect of these factors on the growth, toxin production as well as saxitoxins composition of the cyanobacterium. The carbon concentrating mechanism (CCM) system of ITEP-A1 was also characterized by an in silico analysis of its previously sequenced genome. The growth and saxitoxins production of R. raciborskii were affected. The addition of sodium bicarbonate and air bubbling enhanced the growth of the cyanobacterium in alkaline pH. In contrast, saxitoxins production and relative toxicity were decreased. Moreover, significant changes in the cellular composition of saxitoxins were strongly related to pH changes. ITEP-A1 potentially expresses the low-flux bicarbonate transporter BicA, an efficient CCM which uptakes most of its carbon from HCO3-. Hence, increasing the diffusion of CO2 in alkaline eutrophic lakes is likely to increase R. raciborskii dominance, but produce less toxic blooms.
Collapse
Affiliation(s)
- Mauro Cesar Palmeira Vilar
- Graduate Program in Ecology, Biology Department, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Renato José Reis Molica
- Academic Unit of Garanhuns, Rural Federal University of Pernambuco, Bom Pastor Avenue, Garanhuns, PE, 55292-270, Brazil.
| |
Collapse
|
49
|
Chen G, Jia Z, Wang L, Hu T. Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio). ENVIRONMENTAL RESEARCH 2020; 185:109432. [PMID: 32247151 DOI: 10.1016/j.envres.2020.109432] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
As a type of cyanobacterial toxins, saxitoxin (STX) is receiving great interest due to its increasing presence in waterbodies. However, the underlying mechanism of STX-induced adverse effect is poorly understood. Here, we examined the developmental toxicity and molecular mechanism induced by STX using zebrafish embryos as an animal model. The embryonic toxicity induced by STX was demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, abnormalities in embryo morphology as well as defects in angiogenesis and common cardinal vein remodeling. STX induced embryonic DNA damage and cell apoptosis, which would be alleviated by antioxidant N-acetyl-L-cysteine. Additionally, STX significantly increased reactive oxygen species level, catalase activity and malondialdehyde content and decreased the activity of superoxide dismutase and glutathione content. STX also promoted the expression of vascular development-related genes DLL4 and VEGFC, and inhibited VEGFA expression. Furthermore, STX altered the transcriptional regulation of apoptosis-related genes (BAX, BCL-2, P53 and CASPASE 3). Taken together, STX induced adverse effect on development of zebrafish embryos, which might be associated with oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Zimu Jia
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
50
|
Zhong Y, Shen L, Ye X, Zhou D, He Y, Li Y, Ding Y, Zhu W, Ding J, Zhang H. Neurotoxic Anatoxin-a Can Also Exert Immunotoxicity by the Induction of Apoptosis on Carassius auratus Lymphocytes in vitro When Exposed to Environmentally Relevant Concentrations. Front Physiol 2020; 11:316. [PMID: 32351401 PMCID: PMC7174720 DOI: 10.3389/fphys.2020.00316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Hazardous anatoxin-a (ANTX-a) is produced by freshwater algal blooms worldwide, which greatly increases the risk of consumer exposure. Although ANTX-a shows widespread neurotoxicity in aquatic animals, little is known about its mechanism of action and biotransformation in biological systems, especially in immunobiological models. In this study, transmission electron microscopy results showed that ANTX-a can destroy lymphocytes of Carassius auratus in vitro by inducing cytoplasmic concentration, vacuolation, and swollen mitochondria. DNA fragmentations clearly showed a ladder pattern in agarose gel electrophoresis, which demonstrated that the apoptosis of fish lymphocytes was caused by exposure to ANTX-a. Flow cytometry results showed that the apoptotic percentage of fish lymphocytes exposed to 0.01, 0.1, 1, and 10 mg/L of ANTX-a for 12 h reached 18.89, 22.89, 39.23, and 35.58%, respectively. ANTX-a exposure induced a significant increase in reactive oxygen species (ROS) and malonaldehyde (MDA) in lymphocytes. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and the glutathione (GSH) content of the 0.01 mg/L ANTX-a-treated group decreased significantly by about 41, 46, 67, and 54% compared with that of the control group (p < 0.01), respectively. Although these observations were dose-dependent, these results suggested that ANTX-a can induce lymphocyte apoptosis via intracellular oxidative stress and destroy the antioxidant system after a short exposure time of only 12 h. Besides neurotoxicity, ANTX-a may also be toxic to the immune system of fish, even when the fish are exposed to environmentally relevant concentrations, which clearly demonstrated that the potential health risks induced by ANTX-a in aquatic organisms requires attention.
Collapse
Affiliation(s)
- Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lilai Shen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueping Ye
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Dongren Zhou
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yunyi He
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ying Ding
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Weiqin Zhu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiafeng Ding
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|