1
|
Gouveia F, Carona A, Lacerda M, Bicker J, Camins A, Teresa Cruz M, Ettcheto M, Falcão A, Fortuna A. Unveiling the potential of intranasal delivery of renin-angiotensin system drugs: Insights on the pharmacokinetics of irbesartan. Biochem Pharmacol 2024:116616. [PMID: 39528072 DOI: 10.1016/j.bcp.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The therapeutic interest of renin-angiotensin system (RAS) drugs for the treatment of neuroinflammation has been recently acknowledged. Nevertheless, most RAS drugs display limited passage across the blood-brain barrier (BBB). Therefore, this study investigated the potential of intranasal (IN) delivery of six RAS drugs to circumvent the BBB and attain the brain, envisioning its future use in central nervous system (CNS) neuroinflammatory diseases, such as Alzheimer's disease (AD). Captopril, enalaprilat, irbesartan, lisinopril, losartan and valsartan were firstly screened based on their impact on the viability of nasal, lung, and neuronal cell lines and their apparent permeability (Papp) across porcine olfactory mucosa. Irbesartan, identified as the one with the best safety and permeability balance, was selected for pharmacokinetic characterization following single and multidose IN administration to CD-1 mice. The results were compared to those obtained by intravenous (IV) injection to assess direct nose-to-brain drug delivery. Olfactory toxicity and anxiety were also evaluated after multidose IN treatment. Irbesartan IN administration significantly enhanced brain targeting, with a 3-fold increase in the maximum concentration (Cmax) and a 2.5-fold increase in the area under the curve (AUCt) in the brain compared to IV route. The drug exhibited a tmax of 15 min post-IN administration and achieved a brain targeting efficiency of 239.56%, with a significant direct transport percentage of 58.26%. Multidose administration indicated no systemic or tissue accumulation, with accumulation ratio (Rac) values below 1.0, and no significant olfactory toxicity. Overall, the study highlights the potential of IN delivery of irbesartan as a promising strategy to improve brain targeting and therapeutic outcomes in CNS diseases such as AD, providing an effective approach to bypass BBB limitations.
Collapse
Affiliation(s)
- Filipa Gouveia
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Andreia Carona
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Mariana Lacerda
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - M Teresa Cruz
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Loeffler CR, Spielmeyer A. Faster ciguatoxin extraction methods for toxicity screening. Sci Rep 2024; 14:21715. [PMID: 39289443 PMCID: PMC11408646 DOI: 10.1038/s41598-024-72708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Ciguatera poisoning (CP) is a severe global public health problem caused by the consumption of seafood products contaminated with ciguatoxins (CTXs). The growing demand for seafood products requires high-throughput testing for CTX-susceptible seafood, however complex extraction and slow cleanup methods inhibit this goal. Herein, several methods for extracting CTXs from fish tissue were established and compared; these methods are sensitive, specific, and valid while achieving higher sample extraction throughput than currently established protocols. The trial fish material was generated from multiple species, with different physical conditions (wet and freeze-dried tissue), and naturally contaminated with various CTXs (i.e., CTX-1B, CTX-3C, and C-CTX-1), thus ensuring these methods are robust and broadly applicable. The extraction methods used were based on mechanical maceration with acetone or methanol or enzymatic digestion followed by acetone and ethyl acetate extraction. Crude extracts were investigated for CTX-like toxicity using an in vitro mouse neuroblastoma (N2a) cell-based assay (CBA). Among the three methods, there was no significant difference in toxin estimates (p = 0.219, two-way ANOVA), indicating their interchangeability. For speed (> 16 samples/day), accuracy (100%), and CTX analog retention confirmation by liquid chromatography-tandem mass spectrometry (LC‒MS/MS), the preferred extraction methods were both methanol and enzyme-based. All extraction methods post hoc confirmation of CTX analogs successfully met international seafood market-based CTX contaminant guidance. These methods can drastically increase global CTX screening capabilities and subsequently relieve sample processing bottlenecks, inhibiting environmental and human health-based CTX analysis.
Collapse
Affiliation(s)
- Christopher R Loeffler
- Department of Safety in the Food Chain, National Reference Laboratory for the Monitoring of Marine Biotoxins, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Astrid Spielmeyer
- Department of Safety in the Food Chain, National Reference Laboratory for the Monitoring of Marine Biotoxins, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
3
|
Kobayashi M, Masuda J, Oshiro N. Detection of Extremely Low Level Ciguatoxins through Monitoring of Lithium Adduct Ions by Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry. Toxins (Basel) 2024; 16:170. [PMID: 38668595 PMCID: PMC11053878 DOI: 10.3390/toxins16040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
Ciguatera poisoning (CP) is the most common type of marine biotoxin food poisoning worldwide, and it is caused by ciguatoxins (CTXs), thermostable polyether toxins produced by dinoflagellate Gambierdiscus and Fukuyoa spp. It is typically caused by the consumption of large fish high on the food chain that have accumulated CTXs in their flesh. CTXs in trace amounts are found in natural samples, and they mainly induce neurotoxic effects in consumers at concentrations as low as 0.2 µg/kg. The U.S. Food and Drug Administration has established CTX maximum permitted levels of 0.01 µg/kg for CTX1B and 0.1 µg/kg for C-CTX1 based on toxicological data. More than 20 variants of the CTX1B and CTX3C series have been identified, and the simultaneous detection of trace amounts of CTX analogs has recently been required. Previously published works using LC-MS/MS achieved the safety levels by monitoring the sodium adduct ions of CTXs ([M+Na]+ > [M+Na]+). In this study, we optimized a highly sensitive method for the detection of CTXs using the sodium or lithium adducts, [M+Na]+ or [M+Li]+, by adding alkali metals such as Na+ or Li+ to the mobile phase. This work demonstrates that CTXs can be successfully detected at the low concentrations recommended by the FDA with good chromatographic separation using LC-MS/MS. It also reports on the method's new analytical conditions and accuracy using [M+Li]+.
Collapse
Affiliation(s)
- Manami Kobayashi
- Shimadzu Corporation, 3-25-40, Tonomachi, Kawasaki-Ku, Kawasaki 210-0821, Kanagawa, Japan;
| | - Junichi Masuda
- Shimadzu Corporation, 3-25-40, Tonomachi, Kawasaki-Ku, Kawasaki 210-0821, Kanagawa, Japan;
| | - Naomasa Oshiro
- Division of Biomedical Food Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki 210-9501, Kanagawa, Japan;
| |
Collapse
|
4
|
Raposo-Garcia S, Costas C, Louzao MC, Vieytes MR, Vale C, Botana LM. Synergistic Effect of Brevetoxin BTX-3 and Ciguatoxin CTX3C in Human Voltage-Gated Na v1.6 Sodium Channels. Chem Res Toxicol 2023; 36:1990-2000. [PMID: 37965843 PMCID: PMC10845145 DOI: 10.1021/acs.chemrestox.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Emerging marine biotoxins such as ciguatoxins and brevetoxins have been widely and independently studied as food pollutants. Their maximum levels in food components were set without considering their possible synergistic effects as consequence of their coexistence in seafood and their action at the same cellular target. The absolute lack of data and regulations of the possible combined effects that both marine biotoxins may have raised the need to analyze their direct in vitro effects using electrophysiology techniques. The results presented in this study indicate that ciguatoxins and brevetoxins had a synergistic effect on human Nav1.6 voltage-gated sodium channels by hyperpolarizing their activation and inactivation states. The results presented here indicate that brevetoxin 3 (BTX-3) acts as partial agonist of human sodium channels, while ciguatoxin 3C (CTX3C) was a full agonist, explaining the differences in the effect of each toxin in the channel. Therefore, this work sets the cellular basis to further apply this type of studies to other food toxicants that may act synergistically and thus implement the corresponding regulatory limits considering their coexistence and the risks to human and animal health derived from it.
Collapse
Affiliation(s)
- Sandra Raposo-Garcia
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Celia Costas
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - M. Carmen Louzao
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Mercedes R. Vieytes
- Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Carmen Vale
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Luis M. Botana
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| |
Collapse
|
5
|
Lu J, Niu X, Wang H, Zhang H, Guan W. Toxic dinoflagellate Karenia mikimotoi induces apoptosis in Neuro-2a cells through an oxidative stress-mediated mitochondrial pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115667. [PMID: 37944466 DOI: 10.1016/j.ecoenv.2023.115667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
The dinoflagellate Karenia mikimotoi is a toxic bloom-forming species that threatens aquaculture and public health worldwide. Previous studies showed that K. mikimotoi induces neurotoxicity; however, the underlying mechanism is poorly understood. In this study, three neural cell lines were used to investigate the potential neurotoxicity of K. mikimotoi. The tested cells were exposed to a ruptured cell solution (RCS) of K. mikimotoi at different concentrations (0.5 × 105, 1.0 × 105, 2.0 × 105, 4.0 × 105, and 6 × 105 cells mL-1) for 24 h, and the RCS decreased cell viabilities and promoted Neuro-2a (N2A) cell apoptosis in a dose-dependent manner. The underlying mechanism was further investigated in N2A cells. At the biochemical level, the RCS stimulated reactive oxygen species (ROS) and malondialdehyde (MDA) formation, decreased SOD activity, and reduced mitochondrial membrane potential (MMP). At the gene level, the moderate RCS treatment (2.0 × 105 cells mL-1) upregulated antioxidant response genes (e.g., nrf-2, HO-1, NQO-1, and cat) to alleviate RCS-induced oxidative stress, while the high RCS treatment (4.0 × 105 cells mL-1) downregulated these genes, thereby aggravating oxidative stress. Meanwhile, apoptosis-related genes (e.g., p53, caspase 3, and bax2) were significantly upregulated and the anti-apoptotic gene bcl2 was suppressed after RCS treatment. Western blotting results for Caspase 3, Bax2 and Bcl2 were consistent with the mRNA trends. These results revealed that K. mikimotoi RCS can induce neural cell apoptosis via the oxidative stress-mediated mitochondrial pathway, providing novel insights into the neurotoxicity of K. mikimotoi.
Collapse
Affiliation(s)
- Jinfang Lu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoqin Niu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Clinical Laboratory, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Hong Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - He Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Institute of Marine Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
6
|
Raposo-Garcia S, Cao A, Costas C, Louzao MC, Vilariño N, Vale C, Botana LM. Mouse N2a Neuroblastoma Assay: Uncertainties and Comparison with Alternative Cell-Based Assays for Ciguatoxin Detection. Mar Drugs 2023; 21:590. [PMID: 37999414 PMCID: PMC10672529 DOI: 10.3390/md21110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.R.-G.); (A.C.); (C.C.); (M.C.L.); (N.V.)
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.R.-G.); (A.C.); (C.C.); (M.C.L.); (N.V.)
| |
Collapse
|
7
|
Yokozeki T, Hama Y, Fujita K, Igarashi T, Hirama M, Tsumuraya T. Evaluation of relative potency of calibrated ciguatoxin congeners by near-infrared fluorescent receptor binding and neuroblastoma cell-based assays. Toxicon 2023; 230:107161. [PMID: 37201801 DOI: 10.1016/j.toxicon.2023.107161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Ciguatera fish poisoning (CFP) is a foodborne illness affecting > 50,000 people worldwide annually. It is caused by eating marine invertebrates and fish that have accumulated ciguatoxins (CTXs). Recently, the risk of CFP to human health, the local economy, and fishery resources have increased; therefore, detection methods are urgently needed. Functional assays for detecting ciguatoxins in fish include receptor binding (RBA) and neuroblastoma cell-based assay (N2a assay), which can detect all CTX congeners. In this study, we made these assays easier to use. For RBA, an assay was developed using a novel near-infrared fluorescent ligand, PREX710-BTX, to save valuable CTXs. In the N2a assay, a 1-day assay was developed with the same detection performance as the conventional 2-day assay. Additionally, in these assays, we used calibrated CTX standards from the Pacific determined by quantitative NMR for the first time to compare the relative potency of congeners, which differed significantly among previous studies. In the RBA, there was almost no difference in the binding affinity among congeners, showing that the differences in side chains, stereochemistry, and backbone structure of CTXs did not affect the binding affinity. However, this result did not correlate with the toxic equivalency factors (TEFs) based on acute toxicity in mice. In contrast, the N2a assay showed a good correlation with TEFs based on acute toxicity in mice, except for CTX3C. These findings, obtained with calibrated toxin standards, provide important insights into evaluating the total toxicity of CTXs using functional assays.
Collapse
Affiliation(s)
- Toshiaki Yokozeki
- Japan Food Research Laboratories, Osaka Saito Laboratory, 7-4-41 Saitoasagi, Ibaraki shi, Osaka, 567-0085, Japan; Osaka Prefecture University, Department of Biological Science, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan; Osaka Metropolitan University, Department of Biological Chemistry, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan
| | - Yuka Hama
- Osaka Prefecture University, Department of Biological Science, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan
| | - Kazuhiro Fujita
- Japan Food Research Laboratories, Osaka Saito Laboratory, 7-4-41 Saitoasagi, Ibaraki shi, Osaka, 567-0085, Japan
| | - Tomoji Igarashi
- Japan Food Research Laboratories, Tama Laboratory, 6-11-10 Nagayama, Tama-shi, Tokyo, 206-0025, Japan
| | - Masahiro Hirama
- Osaka Prefecture University, Department of Biological Science, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan; Osaka Metropolitan University, Department of Biological Chemistry, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan
| | - Takeshi Tsumuraya
- Osaka Prefecture University, Department of Biological Science, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan; Osaka Metropolitan University, Department of Biological Chemistry, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan.
| |
Collapse
|
8
|
Mudge EM, Miles CO, Ivanova L, Uhlig S, James KS, Erdner DL, Fæste CK, McCarron P, Robertson A. Algal ciguatoxin identified as source of ciguatera poisoning in the Caribbean. CHEMOSPHERE 2023; 330:138659. [PMID: 37044143 DOI: 10.1016/j.chemosphere.2023.138659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Ciguatera poisoning (CP) is a severe seafood-borne disease, caused by the consumption of reef fish contaminated with Caribbean ciguatoxins (C-CTXs) in the Caribbean and tropical Atlantic. However, C-CTXs have not been identified from their presumed algal source, so the relationship to the CTXs in fish causing illness remains unknown. This has hindered the development of detection methods, diagnostics, monitoring programs, and limited fundamental knowledge on the environmental factors that regulate C-CTX production. In this study, in vitro and chemical techniques were applied to unambiguously identify a novel C-CTX analogue, C-CTX5, from Gambierdiscus silvae and Gambierdiscus caribaeus strains from the Caribbean. Metabolism in vitro by fish liver microsomes converted algal C-CTX5 into C-CTX1/2, the dominant CTX in ciguatoxic fish from the Caribbean. Furthermore, C-CTX5 from G. silvae was confirmed to have voltage-gated sodium-channel-specific activity. This finding is crucial for risk assessment, understanding the fate of C-CTXs in food webs, and is a prerequisite for development of effective analytical methods and monitoring programs. The identification of an algal precursor produced by two Gambierdiscus species is a major breakthrough for ciguatera research that will foster major advances in this important seafood safety issue.
Collapse
Affiliation(s)
- Elizabeth M Mudge
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada.
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Lada Ivanova
- Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Silvio Uhlig
- Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Keiana S James
- School of Marine & Environmental Sciences, University of South Alabama, 600 Clinic Drive, AL, 36688, USA; Marine Ecotoxicology Group, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, Dauphin Island, AL, 36528, USA
| | - Deana L Erdner
- Marine Science Institute, University of Texas at Austin, 750 Channel View Dr, Port Aransas, TX, 78373, USA
| | - Christiane K Fæste
- Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Alison Robertson
- School of Marine & Environmental Sciences, University of South Alabama, 600 Clinic Drive, AL, 36688, USA; Marine Ecotoxicology Group, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, Dauphin Island, AL, 36528, USA.
| |
Collapse
|
9
|
Tartaglione L, Loeffler CR, Miele V, Varriale F, Varra M, Monti M, Varone A, Bodi D, Spielmeyer A, Capellacci S, Penna A, Dell'Aversano C. Dereplication of Gambierdiscusbalechii extract by LC-HRMS and in vitro assay: First description of a putative ciguatoxin and confirmation of 44-methylgambierone. CHEMOSPHERE 2023; 319:137940. [PMID: 36702405 DOI: 10.1016/j.chemosphere.2023.137940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Marine toxins have a significant impact on seafood resources and human health. Up to date, mainly based on bioassays results, two genera of toxic microalgae, Gambierdiscus and Fukuyoa have been hypothesized to produce a suite of biologically active compounds, including maitotoxins (MTXs) and ciguatoxins (CTXs) with the latter causing ciguatera poisoning (CP) in humans. The global ubiquity of these microalgae and their ability to produce (un-)known bioactive compounds, necessitates strategies for screening, identifying, and reducing the number of target algal species and compounds selected for structural elucidation. To accomplish this task, a dereplication process is necessary to screen and profile algal extracts, identify target compounds, and support the discovery of novel bioactive chemotypes. Herein, a dereplication strategy was applied to a crude extract of a G. balechii culture to investigate for bioactive compounds with relevance to CP using liquid chromatography-high resolution mass spectrometry, in vitro cell-based bioassay, and a combination thereof via a bioassay-guided micro-fractionation. Three biologically active fractions exhibiting CTX-like and MTX-like toxicity were identified. A naturally incurred fish extract (Sphyraena barracuda) was used for confirmation where standards were unavailable. Using this approach, a putative I/C-CTX congener in G. balechii was identified for the first time, 44-methylgambierone was confirmed at 8.6 pg cell-1, and MTX-like compounds were purported. This investigative approach can be applied towards other harmful algal species of interest. The identification of a microalgal species herein, G. balechii (VGO920) which was found capable of producing a putative I/C-CTX in culture is an impactful advancement for global CP research. The large-scale culturing of G. balechii could be used as a source of I/C-CTX reference material not yet commercially available, thus, fulfilling an analytical gap that currently hampers the routine determination of CTXs in various environmental and human health-relevant matrices.
Collapse
Affiliation(s)
- Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Christopher R Loeffler
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy; Institute for Endocrinology and Experimental Oncology "G. Salvatore," National Research Council, Via P. Castellino 111, 80131, Naples, Italy; German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Valentina Miele
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Fabio Varriale
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Michela Varra
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Marcello Monti
- Institute for Endocrinology and Experimental Oncology "G. Salvatore," National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Alessia Varone
- Institute for Endocrinology and Experimental Oncology "G. Salvatore," National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Dorina Bodi
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Astrid Spielmeyer
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Samuela Capellacci
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, Urbino, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, Urbino, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
10
|
Facile Synthesis of Molecularly Imprinted Ratiometric Fluorescence Sensor for Ciguatoxin P-CTX-3C Detection in Fish. Foods 2022. [PMCID: PMC9601512 DOI: 10.3390/foods11203239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Ciguatoxin (CTX) detection methods are essential due to the serious hazard that bioaccumulation in fish and transmission along the food chain poses to human health. We report the rapid and simple development of a dual-emitting, molecularly imprinted, ratiometric fluorescence sensor (MIPs@BCDs/RCDs@SiO2) to detect ciguatoxin P-CTX-3C with high sensitivity and selectivity. The sensor was fabricated via sol–gel polymerization using monensin as the fragmentary dummy template molecule, blue carbon dots (BCDs) as the response signal, and red carbon dots (RCDs) as the reference signal. The fluorescence emission of BCDs was selectively quenched in the presence of P-CTX-3C, leading to a favorable linear correlation between the fluorescence intensity ratio (I440/I675) and the P-CTX-3C concentration in the range of 0.001–1 ng/mL with a lower detection limit of 3.3 × 10−4 ng/mL. According to LC-MS measurement results, the proposed sensor can rapidly detect ciguatoxin P-CTX-3C in coral reef fish samples with satisfactory recoveries and standard deviations. This study provides a promising strategy for rapid trace analysis of marine toxins and other macromolecular pollutants in complex matrices.
Collapse
|
11
|
Darius HT, Revel T, Viallon J, Sibat M, Cruchet P, Longo S, Hardison DR, Holland WC, Tester PA, Litaker RW, McCall JR, Hess P, Chinain M. Comparative Study on the Performance of Three Detection Methods for the Quantification of Pacific Ciguatoxins in French Polynesian Strains of Gambierdiscus polynesiensis. Mar Drugs 2022; 20:md20060348. [PMID: 35736151 PMCID: PMC9229625 DOI: 10.3390/md20060348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Gambierdiscus and Fukuyoa dinoflagellates produce a suite of secondary metabolites, including ciguatoxins (CTXs), which bioaccumulate and are further biotransformed in fish and marine invertebrates, causing ciguatera poisoning when consumed by humans. This study is the first to compare the performance of the fluorescent receptor binding assay (fRBA), neuroblastoma cell-based assay (CBA-N2a), and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the quantitative estimation of CTX contents in 30 samples, obtained from four French Polynesian strains of Gambierdiscus polynesiensis. fRBA was applied to Gambierdiscus matrix for the first time, and several parameters of the fRBA protocol were refined. Following liquid/liquid partitioning to separate CTXs from other algal compounds, the variability of CTX contents was estimated using these three methods in three independent experiments. All three assays were significantly correlated with each other, with the highest correlation coefficient (r2 = 0.841) found between fRBA and LC-MS/MS. The CBA-N2a was more sensitive than LC-MS/MS and fRBA, with all assays showing good repeatability. The combined use of fRBA and/or CBA-N2a for screening purposes and LC-MS/MS for confirmation purposes allows for efficient CTX evaluation in Gambierdiscus. These findings, which support future collaborative studies for the inter-laboratory validation of CTX detection methods, will help improve ciguatera risk assessment and management.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-484
| | - Taina Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Manoëlla Sibat
- IFREMER, PHYTOX, Laboratoire METALG, F-44000 Nantes, France; (M.S.); (P.H.)
| | - Philippe Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Sébastien Longo
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Donnie Ransom Hardison
- National Oceanic and Atmospheric Administration, Center for Coastal Fisheries and Habitat Research, Beaufort, NC 28516, USA; (D.R.H.); (W.C.H.)
| | - William C. Holland
- National Oceanic and Atmospheric Administration, Center for Coastal Fisheries and Habitat Research, Beaufort, NC 28516, USA; (D.R.H.); (W.C.H.)
| | | | - R. Wayne Litaker
- CSS, Inc. Under Contract to National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, National Ocean Service, Beaufort, NC 28516, USA;
| | - Jennifer R. McCall
- Center for Marine Science, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA;
| | - Philipp Hess
- IFREMER, PHYTOX, Laboratoire METALG, F-44000 Nantes, France; (M.S.); (P.H.)
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| |
Collapse
|
12
|
Dembitsky VM. Natural Polyether Ionophores and Their Pharmacological Profile. Mar Drugs 2022; 20:292. [PMID: 35621943 PMCID: PMC9144361 DOI: 10.3390/md20050292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
This review is devoted to the study of the biological activity of polyether ionophores produced by bacteria, unicellular marine algae, red seaweeds, marine sponges, and coelenterates. Biological activities have been studied experimentally in various laboratories, as well as data obtained using QSAR (Quantitative Structure-Activity Relationships) algorithms. According to the data obtained, it was shown that polyether toxins exhibit strong antibacterial, antimicrobial, antifungal, antitumor, and other activities. Along with this, it was found that natural polyether ionophores exhibit such properties as antiparasitic, antiprotozoal, cytostatic, anti-mycoplasmal, and antieczema activities. In addition, polyethers have been found to be potential regulators of lipid metabolism or inhibitors of DNA synthesis. Further study of the mechanisms of action and the search for new polyether ionophores and their derivatives may provide more effective therapeutic natural polyether ionophores for the treatment of cancer and other diseases. For some polyether ionophores, 3D graphs are presented, which demonstrate the predicted and calculated activities. The data presented in this review will be of interest to pharmacologists, chemists, practical medicine, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
13
|
Darius HT, Paillon C, Mou-Tham G, Ung A, Cruchet P, Revel T, Viallon J, Vigliola L, Ponton D, Chinain M. Evaluating Age and Growth Relationship to Ciguatoxicity in Five Coral Reef Fish Species from French Polynesia. Mar Drugs 2022; 20:md20040251. [PMID: 35447924 PMCID: PMC9027493 DOI: 10.3390/md20040251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Ciguatera poisoning (CP) results from the consumption of coral reef fish or marine invertebrates contaminated with potent marine polyether compounds, namely ciguatoxins. In French Polynesia, 220 fish specimens belonging to parrotfish (Chlorurus microrhinos, Scarus forsteni, and Scarus ghobban), surgeonfish (Naso lituratus), and groupers (Epinephelus polyphekadion) were collected from two sites with contrasted risk of CP, i.e., Kaukura Atoll versus Mangareva Island. Fish age and growth were assessed from otoliths’ yearly increments and their ciguatoxic status (negative, suspect, or positive) was evaluated by neuroblastoma cell-based assay. Using permutational multivariate analyses of variance, no significant differences in size and weight were found between negative and suspect specimens while positive specimens showed significantly greater size and weight particularly for E. polyphekadion and S. ghobban. However, eating small or low-weight specimens remains risky due to the high variability in size and weight of positive fish. Overall, no relationship could be evidenced between fish ciguatoxicity and age and growth characteristics. In conclusion, size, weight, age, and growth are not reliable determinants of fish ciguatoxicity which appears to be rather species and/or site-specific, although larger fish pose an increased risk of poisoning. Such findings have important implications in current CP risk management programs.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-484
| | - Christelle Paillon
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - Gérard Mou-Tham
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - André Ung
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Philippe Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Taina Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Laurent Vigliola
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - Dominique Ponton
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, c/o Institut Halieutique et des Sciences Marines (IH.SM), Université de Toliara, Rue Dr. Rabesandratana, P.O. Box 141, Toliara 601, Madagascar;
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| |
Collapse
|
14
|
Otero P, Silva M. Emerging Marine Biotoxins in European Waters: Potential Risks and Analytical Challenges. Mar Drugs 2022; 20:199. [PMID: 35323498 PMCID: PMC8955394 DOI: 10.3390/md20030199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Harmful algal blooms pose a challenge regarding food safety due to their erratic nature and forming circumstances which are yet to be disclosed. The best strategy to protect human consumers is through legislation and monitoring strategies. Global warming and anthropological intervention aided the migration and establishment of emerging toxin producers into Europe's temperate waters, creating a new threat to human public health. The lack of information, standards, and reference materials delay effective solutions, being a matter of urgent resolution. In this work, the recent findings of the presence of emerging azaspiracids, spirolildes, pinnatoxins, gymnodimines, palitoxins, ciguatoxins, brevetoxins, and tetrodotoxins on European Coasts are addressed. The information concerning emerging toxins such as new matrices, locations, and toxicity assays is paramount to set the risk assessment guidelines, regulatory levels, and analytical methodology that would protect the consumers.
Collapse
Affiliation(s)
- Paz Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
15
|
Extraction and LC-MS/MS Analysis of Ciguatoxins: A Semi-Targeted Approach Designed for Fish of Unknown Origin. Toxins (Basel) 2021; 13:toxins13090630. [PMID: 34564634 PMCID: PMC8473320 DOI: 10.3390/toxins13090630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Ciguatoxins (CTXs) are polyether marine biotoxins that can cause ciguatera poisoning (CP) after the consumption of fish or invertebrates containing sub ppb levels; concentrations that present a challenge for current extraction and analysis methods. Here, a newly developed and (partly) validated single-day extraction protocol is presented. First, the fish sample is broken-down by enzymatic digestion, followed by extraction and extract clean-up by defatting and two solid-phase extractions. Final extracts were investigated using two different CTX-analysis methods; an in vitro cytotoxicity assay (N2a-assay) and by LC-MS/MS. Validation was performed for both fillet and freeze-dried samples of snapper, parrotfish, and grouper spiked with CTX1B, 52-epi-54-deoxyCTX1B, 54-deoxyCTX1B, and CTX3C. Based on recovery rates (35–88%) and matrix effects (66–116%) determined by LC-MS/MS, the enzyme protocol is applicable to various matrices. The protocol was applied to naturally contaminated fish tissue (Lutjanus bohar) obtained during a CP incident in Germany. Several potential CTX congeners were identified by a two-tier LC-MS/MS approach (screening of sodium adducts, high-resolution or low-resolution confirmation via ammonium adducts). Inclusion of >30 known CTX congeners into the LC-MS/MS methods and single-day sample preparation make the method suitable for analysis of ciguatera suspect samples at sub ppb levels also with undisclosed CTX profiles.
Collapse
|
16
|
Loeffler CR, Tartaglione L, Friedemann M, Spielmeyer A, Kappenstein O, Bodi D. Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3027. [PMID: 33804281 PMCID: PMC7999458 DOI: 10.3390/ijerph18063027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Globally, the livelihoods of over a billion people are affected by changes to marine ecosystems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non-bacterial seafood-related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single-cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food-web via complex pathways. Ciguatera-derived food insecurity is particularly extreme for small island-nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these complexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse-gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human-health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future-oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine.
Collapse
Affiliation(s)
- Christopher R. Loeffler
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- CoNISMa—National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Miriam Friedemann
- Department Exposure, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Astrid Spielmeyer
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Oliver Kappenstein
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Dorina Bodi
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| |
Collapse
|