1
|
Khatri P, Shakya KS, Kumar P. A probabilistic framework for identifying anomalies in urban air quality data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59534-59570. [PMID: 39358655 DOI: 10.1007/s11356-024-35006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Just as the value of crude oil is unlocked through refining, the true potential of air quality data is realized through systematic processing, analysis, and application. This refined data is critical for making informed decisions that may protect health and the environment. Perhaps ground-based air quality monitoring data often face quality control issues, notably outliers. The outliers in air quality data are reported as error and event-based. The error-based outliers are due to instrument failure, self-calibration, sensor drift over time, and the event based focused on the sudden change in meteorological conditions. The event-based outliers are meaningful while error-based outliers are noise that needs to be eliminated and replaced post-detection. In this study, we address error-based outlier detection in air quality data, particularly targeting particulate pollutants (PM2.5 and PM10) across various monitoring sites in Delhi. Our research specifically examines data from sites with less than 5% missing values and identifies four distinct types of error-based outliers: extreme values due to measurement errors, consecutive constant readings and low variance due to instrument malfunction, periodic outliers from self-calibration exceptions, and anomalies in the PM2.5/PM10 ratio indicative of issues with the instruments' dryer unit. We developed a robust methodology for outlier detection by fitting a non-linear filter to the data, calculating residuals between observed and predicted values, and then assessing these residuals using a standardized Z-score to determine their probability. Outliers are flagged based on a probability threshold established through sensitivity testing. This approach helps distinguish normal data points from suspicious ones, ensuring the refined quality of data necessary for accurate air quality modeling. This method is essential for improving the reliability of statistical and machine learning models that depend on high-quality environmental data.
Collapse
Affiliation(s)
- Priti Khatri
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India
| | - Kaushlesh Singh Shakya
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India
| | - Prashant Kumar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India.
| |
Collapse
|
2
|
Saxena P, Kumar A, Muzammil M, Bojjagani S, Patel DK, Kumari A, Khan AH, Kisku GC. Spatio-temporal distribution and source contributions of the ambient pollutants in Lucknow city, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:693. [PMID: 38963455 DOI: 10.1007/s10661-024-12832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Clean air is imperative to the survival of all life forms on the planet. However, recent times have witnessed enormous escalation in urban pollution levels. It is therefore, incumbent upon us to decipher measures to deal with it. In perspective, the present study was carried out to assess PM10 and PM2.5 loading, metallic constituents, gaseous pollutants, source contributions, health impact and noise level of nine-locations, grouped as residential, commercial, and industrial in Lucknow city for 2019-21. Mean concentrations during pre-monsoon for PM10, PM2.5, SO2 and NO2 were: 138.2 ± 35.2, 69.1 ± 13.6, 8.5 ± 3.3 and 32.3 ± 7.4 µg/m3, respectively, whereas post-monsoon concentrations were 143.0 ± 33.3, 74.6 ± 14.5, 12.5 ± 2.1, and 35.5 ± 6.3 µg/m3, respectively. Exceedance percentage of pre-monsoon PM10 over National Ambient Air Quality Standards (NAAQS) was 38.2% while that for post-monsoon was 43.0%; whereas corresponding values for PM2.5 were 15.2% and 24.3%. Post-monsoon season showed higher particulate loading owing to wintertime inversion and high humidity conditions. Order of elements associated with PM2.5 is Co < Cd < Cr < Ni < V < Be < Mo < Mn < Ti < Cu < Pb < Se < Sr < Li < B < As < Ba < Mg < Al < Zn < Ca < Fe < K < Na and that with PM10 is Co < Cd < Ni < Cr < V < Ti < Be < Mo < Cu < Pb < Se < Sr < Li < B < As < Mn < Ba < Mg < Al < Fe < Zn < K < Na < Ca. WHO AIRQ + ascertained 1654, 144 and 1100 attributable cases per 0.1 million of population to PM10 exposure in 2019-21. Source apportionment was carried out using USEPA-PMF and resolved 6 sources with highest percent contributions including road dust re-entrainment, biomass burning and vehicular emission. It is observed that residents of Lucknow city regularly face exposure to particulate pollutants and associated constituents making it imperative to develop pollution abetment strategies.
Collapse
Affiliation(s)
- Priya Saxena
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Ankit Kumar
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Muzammil
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sreekanth Bojjagani
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Division, ASSIST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Alka Kumari
- Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Altaf Husain Khan
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ganesh Chandra Kisku
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Drikvandi M, Goudarzi M, Molavinia S, Baboli Z, Goudarzi G. The impact of COVID-19 pandemic lockdowns on air quality index: a systematic review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1687-1700. [PMID: 37454284 DOI: 10.1080/09603123.2023.2234841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
During the outbreak of the novel coronavirus disease 2019 (COVID-19), many countries implemented lockdown policies to control its transmission. These restrictions provided an opportunity to rest and recover the environment. This systematic review (SR) aimed to evaluate the impact of COVID-19 lockdowns on the Air Quality Index (AQI) in countries worldwide. ScienceDirect and PubMed were searched using relevant keywords to identify studies published until March 2020. Overall, 20 studies were included in the SR based on the eligibility criteria. The results show that COVID-19-related lockdown policies positively affect AQI by restricting air-polluting activities, such as transportation, industry, and construction. However, it is important to note that these policies are ineffective in controlling sources of natural air pollution and local dust. The findings of this study emphasize the need for policymakers to approve legislation limiting the sources of air pollutants.
Collapse
Affiliation(s)
- Mehrsa Drikvandi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Mahdis Goudarzi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Shahrzad Molavinia
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeynab Baboli
- Department of Environmental Health Engineering, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Dubey A, Rasool A. Impact on Air Quality Index of India Due to Lockdown. PROCEDIA COMPUTER SCIENCE 2023; 218:969-978. [PMID: 36743785 PMCID: PMC9886323 DOI: 10.1016/j.procs.2023.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For the very first time, on 22-March-2020 the Indian government forced the only known method at that time to prevent the outburst of the COVID-19 pandemic which was restricting the social movements, and this led to imposing lockdown for a few days which was further extended for a few months. As the impact of lockdown, the major causes of air pollution were ceased which resulted in cleaner blue skies and hence improving the air quality standards. This paper presents an analysis of air quality particulate matter (PM)2.5, PM10, Nitrogen Dioxide (NO2), and Air quality index (AQI). The analysis indicates that the PM10 AQI value drops impulsively from (40-45%), compared before the lockdown period, followed by NO2 (27-35%), Sulphur Dioxide (SO2) (2-10%), PM2.5 (35-40%), but the Ozone (O3) rises (12-25%). To regulate air quality, many steps were taken at national and regional levels, but no effective outcome was received yet. Such short-duration lockdowns are against economic growth but led to some curative effects on AQI. So, this paper concludes that even a short period lockdown can result in significant improvement in Air quality.
Collapse
Affiliation(s)
- Aditya Dubey
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| | - Akhtar Rasool
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| |
Collapse
|
5
|
Siddiqui A, Chauhan P, Halder S, Devadas V, Kumar P. Effect of COVID-19-induced lockdown on NO 2 pollution using TROPOMI and ground-based CPCB observations in Delhi NCR, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:714. [PMID: 36044095 PMCID: PMC9428889 DOI: 10.1007/s10661-022-10362-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/11/2022] [Indexed: 05/21/2023]
Abstract
The present study investigates the reduction in nitrogen dioxide (NO2) levels using satellite-based (Sentinel-5P TROPOMI) and ground-based (Central Pollution Control Board) observations of 2020. The lockdown duration, monthly, seasonal and annual changes in NO2 were assessed comparing the similar time period in 2019. The study also examines the role of atmospheric parameters like wind speed, air temperature, relative humidity, solar radiation and atmospheric pressure in altering the monthly and annual values of the pollutant. It was ascertained that there was a mean reduction of ~ 61% (~ 66.5%), ~ 58% (~ 51%) in daily mean NO2 pollution during lockdown phase 1 when compared with similar period of 2019 and pre-lockdown phase in 2020 from ground-based (satellite-based) measurements. April month with ~ 57% (~ 57%), summer season with ~ 48% (~ 32%) decline and an annual reduction of ~ 20% (~ 18%) in tropospheric NO2 values were observed (p < 0.001) compared to similar time periods of 2019. It was assessed that the meteorological parameters remained almost similar during various parts of the year in 2019 and 2020, indicating a negligent role in reducing the values of atmospheric pollution, particularly NO2 in the study area. It was concluded that the halt in anthropogenic activities and associated factors was mainly responsible for the reduced values in the Delhi conglomerate. Similar work can be proposed for other pollutants to holistically describe the pollution scenario as an aftermath of COVID-19-induced lockdown.
Collapse
Affiliation(s)
- Asfa Siddiqui
- Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun, Uttarakhand, India, 248001.
| | - Prakash Chauhan
- Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun, Uttarakhand, India, 248001
- National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad, Telangana, India, 500037
| | - Suvankar Halder
- Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun, Uttarakhand, India, 248001
| | - V Devadas
- Indian Institute of Technology, Roorkee, Uttarakhand, India, 247667
| | - Pramod Kumar
- Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun, Uttarakhand, India, 248001
| |
Collapse
|
6
|
Silva ACT, Branco PTBS, Sousa SIV. Impact of COVID-19 Pandemic on Air Quality: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1950. [PMID: 35206139 PMCID: PMC8871899 DOI: 10.3390/ijerph19041950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023]
Abstract
With the emergence of the COVID-19 pandemic, several governments imposed severe restrictions on socio-economic activities, putting most of the world population into a general lockdown in March 2020. Although scattered, studies on this topic worldwide have rapidly emerged in the literature. Hence, this systematic review aimed to identify and discuss the scientifically validated literature that evaluated the impact of the COVID-19 pandemic and associated restrictions on air quality. Thus, a total of 114 studies that quantified the impact of the COVID-19 pandemic on air quality through monitoring were selected from three databases. The most evaluated countries were India and China; all the studies intended to evaluate the impact of the pandemic on air quality, mainly concerning PM10, PM2.5, NO2, O3, CO, and SO2. Most of them focused on the 1st lockdown, comparing with the pre- and post-lockdown periods and usually in urban areas. Many studies conducted a descriptive analysis, while others complemented it with more advanced statistical analysis. Although using different methodologies, some studies reported a temporary air quality improvement during the lockdown. More studies are still needed, comparing different lockdown and lifting periods and, in other areas, for a definition of better-targeted policies to reduce air pollution.
Collapse
Affiliation(s)
- Ana Catarina T. Silva
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.C.T.S.); (P.T.B.S.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Pedro T. B. S. Branco
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.C.T.S.); (P.T.B.S.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia I. V. Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.C.T.S.); (P.T.B.S.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
7
|
Trinadha Rao V, Suneel V, Raajvanshi I, Alex MJ, Thomas AP. Year-to-year variability of oil pollution along the Eastern Arabian Sea: The impact of COVID-19 imposed lock-downs. MARINE POLLUTION BULLETIN 2022; 175:113356. [PMID: 35144213 DOI: 10.1016/j.marpolbul.2022.113356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the year-to-year variability in the occurrence, abundance and sources of oil spills in the Eastern Arabian Sea (EAS) using sentinel-1 imagery and identified the potential oil spills vulnerable zones. The four consecutive year's data acquired from 2017 to 2020 (March-May) reveal three oil spill hot spot zones. The ship-based oil spills were dominant over zone's-1 (off Gujarat) and 3 (off Karnataka and Kerala), and the oil field based over zone-2 (off Maharashtra). The abundance of oil spills was significantly low in zone-1, only 14.30km2 (1.2%) during lock-down due to the covid-19 pandemic. Whereas, the year-to-year oil spills over zone's 2 and 3 are not significantly varied (170.29 km2 and 195.01 km2), further suggesting the influence of oil exploration and international tanker traffic are in operation during the lock-down. This study further recommends that manual clustering is the best method to study the distribution of unknown oil spills.
Collapse
Affiliation(s)
- V Trinadha Rao
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - V Suneel
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India.
| | - Istuti Raajvanshi
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India; TERI School of Advanced Studies, Vasant Kunj 110070, New Delhi, India
| | - M J Alex
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Antony P Thomas
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| |
Collapse
|
8
|
Ravindra K, Singh T, Vardhan S, Shrivastava A, Singh S, Kumar P, Mor S. COVID-19 pandemic: What can we learn for better air quality and human health? J Infect Public Health 2022; 15:187-198. [PMID: 34979337 PMCID: PMC8642828 DOI: 10.1016/j.jiph.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 lockdown resulted in improved air quality in many cities across the world. With the objective of what could be the new learning from the COVID-19 pandemic and subsequent lockdowns for better air quality and human health, a critical synthesis of the available evidence concerning air pollution reduction, the population at risk and natural versus anthropogenic emissions was conducted. Can the new societal norms adopted during pandemics, such as the use of face cover, awareness regarding respiratory hand hygiene, and physical distancing, help in reducing disease burden in the future? The use of masks will be more socially acceptable during the high air pollution episodes in lower and middle-income countries, which could help to reduce air pollution exposure. Although post-pandemic, some air pollution reduction strategies may be affected, such as car-pooling and the use of mass transit systems for commuting to avoid exposure to airborne infections like coronavirus. However, promoting non-motorized modes of transportation such as cycling and walking within cities as currently being enabled in Europe and other countries could overshadow such losses. This demand focus on increasing walkability in a town for all ages and populations, including for a differently-abled community. The study highlighted that for better health and sustainability there. is also a need to promote other measures such as work-from-home, technological infrastructure, the extension of smart cities, and the use of information technology.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Tanbir Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Shikha Vardhan
- Centre for Environmental & Occupational Health, Climate Change & Health, National Centre for Disease Control, Delhi, 110054, India
| | - Aakash Shrivastava
- Centre for Environmental & Occupational Health, Climate Change & Health, National Centre for Disease Control, Delhi, 110054, India
| | - Sujeet Singh
- Centre for Environmental & Occupational Health, Climate Change & Health, National Centre for Disease Control, Delhi, 110054, India
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
9
|
Singh BP, Kumar P. Spatio-temporal variation in fine particulate matter and effect on air quality during the COVID-19 in New Delhi, India. URBAN CLIMATE 2021; 40:101013. [PMID: 34722140 PMCID: PMC8549199 DOI: 10.1016/j.uclim.2021.101013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 05/21/2023]
Abstract
Novel Coronavirus disease has affected almost all the countries; which leads to the pandemic, impacting adversely on environment. The impact on environment during pre-and during lockdowns needs an attention to correlate the pollutants from industrial emissions and other factors. Therefore, the current study demonstrates the changes in fine particulate matter PM2.5, PM10 and effect on air quality during lockdown. The highest reduction was observed in lockdown I (25 March - 14 April) as compared to others lockdowns (between 15 April and 31st May 2020) due to the complete shutdown of industrial, transport, and construction activities. A significant reduction in PM2.5 and PM10 from 114.27 μg/m3 and 194.48 μg/m3 for pre-lockdown period to 41.41 μg/m3 and 86.81 μg/m3 for lockdown I was observed. The levels of air quality index fall under satisfactory category for lockdown I whereas satisfactory to moderate category for other lockdowns. The present study revealed a strong correlation between PM2.5 and PM10 levels during the pre-lockdown period (0.71) and through lockdown IV (0.76), which indicate that change in the PM10 level influences the PM2.5 level greatly. The findings of the present study could be scaled up nationwide and might be useful in formulating air pollution reduction policies in the future.
Collapse
Affiliation(s)
| | - Pramod Kumar
- Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
10
|
Dutta A, Dutta G. Association of air pollution and meteorological variables with the two waves of COVID-19 pandemic in Delhi: A critical analysis. Heliyon 2021; 7:e08468. [PMID: 34841120 PMCID: PMC8610833 DOI: 10.1016/j.heliyon.2021.e08468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/01/2021] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
Various countries across the globe have been affected by different COVID-19 waves at different points in time and with varying levels of virulence. With the backdrop of the two COVID-19 waves that broke out in Delhi, this study examines the variations in the concentrations of criteria pollutants, air quality, and meteorological variables across the waves and their influence on COVID-19 morbidity/mortality. Descriptive statistics, violin plots, and Spearman rank correlation tests were employed to assess the variations in environmental parameters and investigate their associations with COVID-19 incidence under the two waves. The susceptible-infected-recovered model and multiple linear regression were used to assess the wave-wise basic reproduction number (R0) and infection spreading trajectory of the virus. Our results show that the first wave in Delhi had three successive peaks and valleys, and the first peak of the second wave was the tallest, indicating the severity of per-day infection cases. During the analysed period (April 2020 and April 2021), concentrations of criteria pollutants varied across the waves, and air pollution was substantially higher during the second wave. In addition, the results revealed that during the second wave, NO2 maintained a significant negative relationship with COVID-19 (cases per day), while SO2 had a negative relationship with COVID-19 (cumulative cases) during the first wave. Our results also show a significant positive association of O3 with COVID-19 deaths during the first wave and cumulative cases and deaths during the second wave. The study indicates that a higher relative humidity in Delhi had a negative relation with COVID-19 cumulative cases and mortality during the first wave. The study confirms that the estimated R0 was marginally different during the two waves, and the spread of COVID-19 new cases followed a cubic growth trajectory. The findings of this study provide valuable information for policymakers in handling COVID-19 waves in various cities.
Collapse
Affiliation(s)
- Abhishek Dutta
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Gautam Dutta
- Department of Management Studies, Indian Institute of Foreign Trade, 1583, Madurdaha, Kolkata, West Bengal 700100, India
| |
Collapse
|
11
|
Robin RS, Purvaja R, Ganguly D, Hariharan G, Paneerselvam A, Sundari RT, Karthik R, Neethu CS, Saravanakumar C, Semanti P, Prasad MHK, Mugilarasan M, Rohan S, Arumugam K, Samuel VD, Ramesh R. COVID-19 restrictions and their influences on ambient air, surface water and plastic waste in a coastal megacity, Chennai, India. MARINE POLLUTION BULLETIN 2021; 171:112739. [PMID: 34304059 PMCID: PMC8458696 DOI: 10.1016/j.marpolbul.2021.112739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 05/06/2023]
Abstract
Anthropogenic activities experienced a pause due to the nationwide lockdown, imposed to contain the rapid spread of COVID-19 in the third week of March 2020. The impacts of suspension of industrial activities, vehicular transport and other businesses for three months (25 March-30 June) on the environmental settings of Chennai, a coastal megacity was assessed. A significant reduction in the key urban air pollutants [PM2.5 (66.5%), PM10 (39.5%), NO2 (94.1%), CO (29%), O3 (45.3%)] was recorded as an immediate consequence of the reduced anthropogenic activities. Comparison of water quality of an urban river Adyar, between pre-lockdown and lockdown, showed a substantial drop in the dissolved inorganic N (47%) and suspended particulate matter (41%) during the latter period. During the pandemic, biomedical wastes in India showed an overall surge of 17%, which were predominantly plastic. FTIR-ATR analysis confirmed the polymers such as polypropylene (25.4%) and polyester (15.4%) in the personal protective equipment.
Collapse
Affiliation(s)
- R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - D Ganguly
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - G Hariharan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - A Paneerselvam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - R T Sundari
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - R Karthik
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - C S Neethu
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - C Saravanakumar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - P Semanti
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - M H K Prasad
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - S Rohan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - K Arumugam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - V D Samuel
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India.
| |
Collapse
|