1
|
Kaye AD, Shah SS, Johnson CD, De Witt AS, Thomassen AS, Daniel CP, Ahmadzadeh S, Tirumala S, Bembenick KN, Kaye AM, Shekoohi S. Tacrolimus- and Mycophenolate-Mediated Toxicity: Clinical Considerations and Options in Management of Post-Transplant Patients. Curr Issues Mol Biol 2024; 47:2. [PMID: 39852117 PMCID: PMC11763814 DOI: 10.3390/cimb47010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
Tacrolimus and mycophenolate are important immunosuppressive agents used to prevent organ rejection in post-transplant patients. While highly effective, their use is associated with significant toxicity, requiring careful management. Tacrolimus, a calcineurin inhibitor, is linked to nephrotoxicity, neurotoxicity, metabolic disturbances such as diabetes mellitus and dyslipidemia, and cardiovascular complications such as hypertension and arrhythmias. Mycophenolate, a reversible inhibitor of inosine monophosphate dehydrogenase, frequently causes gastrointestinal disturbances, including diarrhea and colitis, as well as hematologic side effects like anemia and leukopenia, which increase infection risk. Therapeutic drug monitoring (TDM) and pharmacogenomics have emerged as essential strategies for mitigating these toxicities. TDM ensures tacrolimus trough levels are maintained within a therapeutic range, minimizing the risks of nephrotoxicity and rejection. Pharmacogenomic insights, such as CYP3A5 polymorphisms, allow for personalized tacrolimus dosing based on individual metabolic profiles. For mycophenolate, monitoring inosine monophosphate dehydrogenase activity provides a pharmacodynamic approach to dose optimization, reducing gastrointestinal and hematologic toxicities. Emerging tools, including dried blood spot sampling and pharmacokinetic modeling, offer innovative methods to simplify monitoring and enhance precision in outpatient settings. Despite their utility, the toxicity profiles of these drugs, including those of early immunosuppressants such as cyclosporine and azathioprine, necessitate further consideration of alternative immunosuppressants like sirolimus, everolimus, and belatacept. Although promising, these newer agents require careful patient selection and further research. Future directions in immunosuppressive therapy include integrating individual pharmacogenetic data to refine dosing, minimize side effects, and improve long-term graft outcomes. This narrative review underscores the importance of personalized medicine and advanced monitoring in optimizing post-transplant care.
Collapse
Affiliation(s)
- Alan D. Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, USA
| | - Shivam S. Shah
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (S.S.S.); (C.D.J.); (C.P.D.)
| | - Coplen D. Johnson
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (S.S.S.); (C.D.J.); (C.P.D.)
| | - Adalyn S. De Witt
- School of Medicine, Indiana University, 340 W 10th St., Indianapolis, IN 46202, USA
| | - Austin S. Thomassen
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (S.S.S.); (C.D.J.); (C.P.D.)
| | - Charles P. Daniel
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (S.S.S.); (C.D.J.); (C.P.D.)
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, USA
| | - Sridhar Tirumala
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, USA
| | - Kristin Nicole Bembenick
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, USA
| | - Adam M. Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy, University of the Pacific, 751 Brookside Road, Stockton, CA 95207, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
2
|
Li G, Xia LJ, Shu YQ, Wan L, Huang Q, Ma XY, Zhang HY, Zheng ZJ, Wang XR, Zhou SY, Gao A, Ren H, Lian XL, Xu D, Tang SQ, Liao XP, Qiu W, Sun J. Mechanisms of gastrointestinal toxicity in neuromyelitis optica spectrum disorder patients treated with mycophenolate mofetil: insights from a mouse model and human study. Microbiol Spectr 2024; 12:e0430723. [PMID: 38916339 PMCID: PMC11302255 DOI: 10.1128/spectrum.04307-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Mycophenolate mofetil (MMF) is commonly utilized for the treatment of neuromyelitis optica spectrum disorders (NMOSD). However, a subset of patients experience significant gastrointestinal (GI) adverse effects following MMF administration. The present study aims to elucidate the underlying mechanisms of MMF-induced GI toxicity in NMOSD. Utilizing a vancomycin-treated mouse model, we compiled a comprehensive data set to investigate the microbiome and metabolome in the GI tract to elucidate the mechanisms of MMF GI toxicity. Furthermore, we enrolled 17 female NMOSD patients receiving MMF, who were stratified into non-diarrhea NMOSD and diarrhea NMOSD (DNM) groups, in addition to 12 healthy controls. The gut microbiota of stool samples was analyzed using 16S rRNA gene sequencing. Vancomycin administration prevented weight loss and tissue injury caused by MMF, affecting colon metabolomes and microbiomes. Bacterial β-glucuronidase from Bacteroidetes and Firmicutes was linked to intestinal tissue damage. The DNM group showed higher alpha diversity and increased levels of Firmicutes and Proteobacteria. The β-glucuronidase produced by Firmicutes may be important in causing gastrointestinal side effects from MMF in NMOSD treatment, providing useful information for future research on MMF. IMPORTANCE Neuromyelitis optica spectrum disorder (NMOSD) patients frequently endure severe consequences like paralysis and blindness. Mycophenolate mofetil (MMF) effectively addresses these issues, but its usage is hindered by gastrointestinal (GI) complications. Through uncovering the intricate interplay among MMF, gut microbiota, and metabolic pathways, this study identifies specific gut bacteria responsible for metabolizing MMF into a potentially harmful form, thus contributing to GI side effects. These findings not only deepen our comprehension of MMF toxicity but also propose potential strategies, such as inhibiting these bacteria, to mitigate these adverse effects. This insight holds broader implications for minimizing complications in NMOSD patients undergoing MMF therapy.
Collapse
Affiliation(s)
- Gong Li
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Li-Juan Xia
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Qing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wan
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Qiao Huang
- Department of Neurology, Zhaoqing No. 2 People’s Hospital, Zhaoqing, China
| | - Xiao-Yu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hai-Yi Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zi-Jian Zheng
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xi-Ran Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Shi-Ying Zhou
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ang Gao
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xin-Lei Lian
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Dan Xu
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Sheng-Qiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xiao-Ping Liao
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Sun
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Yow HY, Ikawati M, Siswanto S, Hermawan A, Rahmat AK, Tan JSL, Tee YC, Ng KP, Ikawati Z. Influence of genetic polymorphisms on pharmacokinetics and treatment response of mycophenolic acid: a scoping review. Pharmacogenomics 2024; 25:259-288. [PMID: 38884938 PMCID: PMC11388138 DOI: 10.1080/14622416.2024.2344430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
This scoping review explores the impact of genetic polymorphisms on the pharmacokinetics and treatment responses of mycophenolic acid (MPA), an immunosuppressant. The study includes 83 articles from 1226 original studies, focusing on transplantation (n = 80) and autoimmune disorders (n = 3). Genetic variants in uridine 5'-diphospho-glucuronosyltransferase (UGT1A9, UGT1A8 and UGT2B7) and transmembrane transporters (ABCC2, SLCO1B1, SLCO1B3 and ABCB1) significantly affected MPA's pharmacokinetics and susceptibility to its adverse effect. Whereas variants in several genes including UGT1A9, UGT2B7, IMPDH1 and IMPDH2 have been associated with a higher risk of transplant rejection. However, there is a lack of studies on MPA's impact on autoimmune disorders and limited research on the Asian population. The findings underscore the need for further research on MPA's impact across different populations and diseases, particularly among other Asian ethnic groups, to advance personalized medicine in MPA therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Muthi Ikawati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Soni Siswanto
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
- Advanced Pharmaceutical Sciences Laboratory, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Alim Khodimul Rahmat
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Janet Sui-Ling Tan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ying-Chew Tee
- Rheumatology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kok-Peng Ng
- Nephrology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zullies Ikawati
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| |
Collapse
|
4
|
Truby LK, Maamari D, Saha A, Farr M, Abdulrahim J, Billia F, Peltz M, Khush KK, Wang TJ. Towards Allograft Longevity: Leveraging Omics Technologies to Improve Heart Transplant Outcomes. Curr Heart Fail Rep 2023; 20:493-503. [PMID: 37966542 DOI: 10.1007/s11897-023-00631-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
PURPOSE OF REVIEW Heart transplantation (HT) remains the optimal therapy for patients living with end-stage heart disease. Despite recent improvements in peri-transplant management, the median survival after HT has remained relatively static, and complications of HT, including infection, rejection, and allograft dysfunction, continue to impact quality of life and long-term survival. RECENT FINDINGS Omics technologies are becoming increasingly accessible and can identify novel biomarkers for, and reveal the underlying biology of, several disease states. While some technologies, such as gene expression profiling (GEP) and donor-derived cell-free DNA (dd-cfDNA), are routinely used in the clinical care of HT recipients, a number of emerging platforms, including pharmacogenomics, proteomics, and metabolomics, hold great potential for identifying biomarkers to aid in the diagnosis and management of post-transplant complications. Omics-based assays can improve patient and allograft longevity by facilitating a personalized and precision approach to post-HT care. The following article is a contemporary review of the current and future opportunities to leverage omics technologies, including genomics, transcriptomics, proteomics, and metabolomics in the field of HT.
Collapse
Affiliation(s)
- Lauren K Truby
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| | - Dimitri Maamari
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amit Saha
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Maryjane Farr
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | | | | | - Matthias Peltz
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Kiran K Khush
- Stanford University Medical Center, Palo Alto, CA, USA
| | - Thomas J Wang
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| |
Collapse
|
5
|
Pharmacogenetic Aspects of Drug Metabolizing Enzymes and Transporters in Pediatric Medicine: Study Progress, Clinical Practice and Future Perspectives. Paediatr Drugs 2023; 25:301-319. [PMID: 36707496 DOI: 10.1007/s40272-023-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
As the activity of certain drug metabolizing enzymes or transporter proteins can vary with age, the effect of ontogenetic and genetic variation on the activity of these enzymes is critical for the accurate prediction of treatment outcomes and toxicity in children. This makes pharmacogenetic research in pediatrics particularly important and urgently needed, but also challenging. This review summarizes pharmacogenetic studies on the effects of genetic polymorphisms on pharmacokinetic parameters and clinical outcomes in pediatric populations for certain drugs, which are commonly prescribed by clinicians across multiple therapeutic areas in a general hospital, organized from those with the most to the least pediatric evidence among each drug category. We also further discuss the research status of the gene-guided dosing regimens and clinical implementation of pediatric pharmacogenetics. More and more drug-gene interactions are demonstrated to have clinical validity for children, and pharmacogenomics in pediatrics have shown evidence-based benefits to enhance the efficacy and precision of existing drug dosing regimens in several therapeutic areas. However, the most important limitation to the implementation is the lack of high-quality, rigorous pediatric prospective clinical studies, so adequately powered interventional clinical trials that support incorporation of pharmacogenetics into the care of children are still needed.
Collapse
|
6
|
Liu Y, Zhang H, Li J, Liu L, Wu C, Fu Q, Huang M, Chen X, Wang C, Chen P. Pharmacokinetics of free and total mycophenolic acid in paediatric and adult renal transplant recipients: Exploratory analysis of the effects of clinical factors and gene variants. Basic Clin Pharmacol Toxicol 2022; 131:60-73. [PMID: 35567285 DOI: 10.1111/bcpt.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Clinical and genetic influencing factors on free fraction of mycophenolic acid (MPA) have rarely been discussed. The present study investigated whether the clinical and genetic factors could explain the variability in the pharmacokinetics of free MPA (fMPA) and total MPA (tMPA) in Chinese paediatric and adult renal transplant recipients. Twenty-eight paediatric and 31 adult patients were enrolled, and the concentrations of tMPA and fMPA were determined at 0 h (predose) and 0.5, 1, 1.5, 2, 4, 5, 8, 9, 10 and 12 h after mycophenolate mofetil administration. Genetic polymorphisms of UGTs (rs671448, rs1042597, rs2741049, rs62298861, rs7439366, rs12233719) and ABCC2 (rs717620) were simultaneously determined. The clinical and genetic data were analysed and reported. tMPA and fMPA concentrations adjusted for dose per body weight were consistently higher in adults than in paediatric patients. In the paediatric group, only albumin and time after transplantation correlated significantly with the MPA-free fraction variation, which could explain 32.4% of the variability. Besides, ABCC2 polymorphism, albumin and time after transplantation correlated significantly with the MPA-free fraction variation in adults, which could explain 56.9% of the variability. The influencing factors in the paediatric group are different from those in adults, which may be due to age-related transporter expression.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, First hospital of Nanchang, Nanchang, China.,Institule of Clinical Pharmacology, School of Pharmaceutical sciences, Sun Yat-sen University, Guangzhou, China
| | - Huanxi Zhang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenglin Wu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- Institule of Clinical Pharmacology, School of Pharmaceutical sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changxi Wang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pan Chen
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Shu Q, Fan Q, Hua B, Liu H, Wang S, Liu Y, Yao Y, Xie H, Ge W. Influence of SLCO1B1 521T>C, UGT2B7 802C>T and IMPDH1 -106G>A Genetic Polymorphisms on Mycophenolic Acid Levels and Adverse Reactions in Chinese Autoimmune Disease Patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:713-722. [PMID: 34188518 PMCID: PMC8233479 DOI: 10.2147/pgpm.s295964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
Introduction Mycophenolate mofetil (MMF), a new type of immunosuppressant, has emerged as a frontline agent for treating autoimmune diseases. Mycophenolic acid (MPA) is an active metabolite of MMF. MPA exposure varies greatly among individuals, which may lead to adverse drug reactions such as gastrointestinal side effects, infection, and leukopenia. Genetic factors play an important role in the variation of MPA levels and its side effects. Although many published studies have focused on MMF use in patients after organ transplant, studies that examine the use of MMF in patients with autoimmune diseases are still lacking. Methods This study will not only explore the genetic factors affecting MPA levels and adverse reactions but also investigate the relationships between UGT1A9 −118(dT)9/10, UGT1A9 - 1818T>C, UGT2B7 802C>T, SLCO1B1 521T>C, SLCO1B3 334T>G, IMPDH1 −106G>A and MPA trough concentration (MPA C0), along with adverse reactions among Chinese patients with autoimmune diseases. A total of 120 patients with autoimmune diseases were recruited. The MPA trough concentration was detected using the enzyme multiplied immunoassay technique (EMIT). Genotyping was performed using a real-time polymerase chain reaction (PCR) system and validated allelic discrimination assays. Clinical data were collected for the determination of side effects. Results SLCO1B1 521T>C demonstrated a significant association with MPA C0/d (p=0.003), in which patients with the CC type showed a higher MPA C0/d than patients with the TT type (p=0.001) or the CT type (p=0.000). No significant differences were found in MPA C0/d among the other SNPs. IMPDH1 −106G>A was found to be significantly related to infections (p=0.006). Subgroup analysis revealed that UGT2B7 802C>T was significantly related to Pneumocystis carinii pneumonia infection (p=0.036), while SLCO1B1 521T>C was associated with anemia (p=0.029). Conclusion For Chinese autoimmune disease patients, SLCO1B1 521T>C was correlated with MPA C0/d and anemia. IMPDH1 −106G>A was significantly related to infections. UGT2B7 802C>T was significantly related to Pneumocystis carinii pneumonia infection.
Collapse
Affiliation(s)
- Qing Shu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Qingqing Fan
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Bingzhu Hua
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Hang Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Shiying Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Yunxing Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Yao Yao
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Han Xie
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| |
Collapse
|
8
|
Oreschak K, Saba LM, Rafaels N, Ambardekar AV, Deininger KM, PageII R, Lindenfeld J, Aquilante CL. Variants in mycophenolate and CMV antiviral drug pharmacokinetic and pharmacodynamic genes and leukopenia in heart transplant recipients. J Heart Lung Transplant 2021; 40:917-925. [PMID: 34253456 DOI: 10.1016/j.healun.2021.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The objective was to assess the relationship between single nucleotide polymorphisms in mycophenolate and cytomegalovirus antiviral drug pharmacokinetic and pharmacodynamic genes and drug-induced leukopenia in adult heart transplant recipients. METHODS This retrospective analysis included n = 148 patients receiving mycophenolate and a cytomegalovirus antiviral drug. In total, 81 single nucleotide polymorphisms in 21 pharmacokinetic and 23 pharmacodynamic genes were selected for investigation. The primary and secondary outcomes were mycophenolate and/or cytomegalovirus antiviral drug-induced leukopenia, defined as a white blood cell count <3.0 × 109/L, in the first six and 12 months post-heart transplant, respectively. RESULTS Mycophenolate and/or cytomegalovirus antiviral drug-induced leukopenia occurred in 20.3% of patients. HNF1A rs1169288 A>C (p.I27L) was associated with drug-induced leukopenia (unadjusted p = 0.002; false discovery rate <20%) in the first six months post-transplant. After adjusting for covariates, HNF1A rs1169288 variant C allele carriers had significantly higher odds of leukopenia compared to A/A homozygotes (odds ratio 6.19; 95% CI 1.97-19.43; p = 0.002). Single nucleotide polymorphisms in HNF1A, SLC13A1, and MBOAT1 were suggestively associated (p < 0.05) with the secondary outcome but were not significant after adjusting for multiple comparisons. CONCLUSION Our data suggest genetic variation may play a role in the development of leukopenia in patients receiving mycophenolate and cytomegalovirus antiviral drugs after heart transplantation. Following replication, pharmacogenetic markers, such as HNF1A rs1169288, could help identify patients at higher risk of drug-induced leukopenia, allowing for more personalized immunosuppressant therapy and cytomegalovirus prophylaxis following heart transplantation.
Collapse
Affiliation(s)
- Kris Oreschak
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Nicholas Rafaels
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Amrut V Ambardekar
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kimberly M Deininger
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - RobertL PageII
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - JoAnn Lindenfeld
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA.
| |
Collapse
|
9
|
Na Takuathung M, Sakuludomkan W, Koonrungsesomboon N. The Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Mycophenolic Acid: Systematic Review and Meta-analysis. Clin Pharmacokinet 2021; 60:1291-1302. [PMID: 34105062 DOI: 10.1007/s40262-021-01037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mycophenolic acid (MPA) is among the most commonly prescribed medications for immunosuppression following organ transplantation. Highly variable MPA exposure and drug response are observed among individuals receiving the same dosage of the drug. Identification of candidate genes whose polymorphisms could be used to predict MPA exposure and clinical outcome is of clinical value. OBJECTIVES This study aimed to determine the impact of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of MPA in humans by means of a systematic review and meta-analysis. METHODS A systematic search was conducted on PubMed, EMBASE, Web of Sciences, Scopus, and the Cochrane Library databases. A meta-analysis was conducted to determine any associations between genetic polymorphisms and pharmacokinetic or pharmacodynamic parameters of MPA. Pooled-effect estimates were calculated by means of the random-effects model. RESULTS A total of 37 studies involving 3844 individuals were included in the meta-analysis. Heterozygous carriers of the UGT1A9 -275T>A polymorphism were observed to have a significantly lower MPA exposure than wild-type individuals. Four single nucleotide polymorphisms (SNPs), namely UGT1A9 -2152C>T, UGT1A8 518C>G, UGT2B7 211G>T, and SLCO1B1 521T>C, were also significantly associated with altered MPA pharmacokinetics. However, none of the investigated SNPs, including SNPs in the IMPDH gene, were found to be associated with the clinical efficacy of MPA. The only SNP that was associated with adverse outcomes was SLCO1B3 344T>G. CONCLUSIONS The present systematic review and meta-analysis identified six SNPs that were significantly associated with pharmacokinetic variability or adverse effects of MPA. Our findings represent the basis for future research and clinical implications with regard to the role of pharmacogenetics in MPA pharmacokinetics and drug response.
Collapse
Affiliation(s)
- Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - Wannachai Sakuludomkan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research (MSTR) Center, , Chiang Mai University, Muang, Chiang Mai, Thailand.
| |
Collapse
|
10
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Pharmacogenetics Biomarkers Predictive of Drug Pharmacodynamics as an Additional Tool to Therapeutic Drug Monitoring. Ther Drug Monit 2019; 41:121-130. [DOI: 10.1097/ftd.0000000000000591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Ponticelli C, Glassock RJ. Prevention of complications from use of conventional immunosuppressants: a critical review. J Nephrol 2019; 32:851-870. [PMID: 30927190 DOI: 10.1007/s40620-019-00602-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/21/2019] [Indexed: 01/08/2023]
Abstract
Synthetic immunosuppressive drugs are largely used in immune-related renal diseases and in kidney transplantation. Most of these drugs have a low therapeutic index (the ratio that compares the blood concentration at which a drug becomes toxic and the concentration at which the drug is effective), which means that the drug should be dosed carefully and the patient monitored frequently. In this review, we consider the categories of synthetic immunosuppressive agents more frequently and conventionally used in clinical nephrology: glucocorticoids, Aalkylating agents (cyclophosphamide, chlorambucil), purine synthesis inhibitors (azathioprine, mycophenolate salts) and calcineurin inhibitors (cyclosporine, tacrolimus). For each category the possible side effects will be reviewed, the general and specific measures to prevent or treat the adverse events will be suggested, and the more common mistakes that may increase the risk of toxicity will be described. However, the efficacy and safety of immunosuppressive agents depend not only on the pharmacologic characteristics of single drugs but can be influenced also by the clinical condition and genetic characteristics of the patient, by the typology and severity of the underlying disease and by the interaction with other concomitantly used drugs.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, Istituto Scientifico Ospedale Maggiore, Milan, Italy.
- , Via Ampere 126, 20131, Milan, Italy.
| | - Richard J Glassock
- The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Meng HY, Luo ZH, Hu B, Jin WL, Yan CK, Li ZB, Xue YY, Liu Y, Luo YE, Xu LQ, Yang H. SNPs affecting the clinical outcomes of regularly used immunosuppressants. Pharmacogenomics 2018. [PMID: 29517418 DOI: 10.2217/pgs-2017-0182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that genomic diversity may play a key role in different clinical outcomes, and the importance of SNPs is becoming increasingly clear. In this article, we summarize the bioactivity of SNPs that may affect the sensitivity to or possibility of drug reactions that occur among the signaling pathways of regularly used immunosuppressants, such as glucocorticoids, azathioprine, tacrolimus, mycophenolate mofetil, cyclophosphamide and methotrexate. The development of bioinformatics, including machine learning models, has enabled prediction of the proper immunosuppressant dosage with minimal adverse drug reactions for patients after organ transplantation or for those with autoimmune diseases. This article provides a theoretical basis for the personalized use of immunosuppressants in the future.
Collapse
Affiliation(s)
- Huan-Yu Meng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Bo Hu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Wan-Lin Jin
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Cheng-Kai Yan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Zhi-Bin Li
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yuan-Yuan Xue
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yu Liu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yi-En Luo
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Li-Qun Xu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW We are entering the era of personalized medicine, in which pharmacogenomics and biomarker-based assays can be used to tailor diagnostic tests and drug therapies to individual patients. This new approach to patient-specific care offers the potential to maximize the efficacy of available medical treatments while reducing the incidence of adverse side effects. Here, we present approaches to personalize the care of heart transplant recipients. RECENT FINDINGS Four strategies for personalized posttransplant care are described, including use of pharmacogenomic data to individualize the use of immunosuppressive drugs, immune monitoring to prevent acute rejection while reducing the long-term consequences of over immunosuppression, noninvasive surveillance for acute rejection, and targeted prophylaxis against opportunistic infections. SUMMARY The long-term survival of heart transplant recipients is limited by side effects of immunosuppressive drugs, including infectious complications, renal dysfunction, and malignancy. We discuss strategies to maximize the benefits of immunosuppressive and prophylactic therapies while minimizing their long-term toxicities.
Collapse
|
15
|
Varnell CD, Fukuda T, Kirby CL, Martin LJ, Warshaw BL, Patel HP, Chand DH, Barletta GM, Van Why SK, VanDeVoorde RG, Weaver DJ, Wilson A, Verghese PS, Vinks AA, Greenbaum LA, Goebel J, Hooper DK. Mycophenolate mofetil-related leukopenia in children and young adults following kidney transplantation: Influence of genes and drugs. Pediatr Transplant 2017; 21:10.1111/petr.13033. [PMID: 28869324 PMCID: PMC5905326 DOI: 10.1111/petr.13033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2017] [Indexed: 12/31/2022]
Abstract
MMF is commonly prescribed following kidney transplantation, yet its use is complicated by leukopenia. Understanding the genetics mediating this risk will help clinicians administer MMF safely. We evaluated 284 patients under 21 years of age for incidence and time course of MMF-related leukopenia and performed a candidate gene association study comparing the frequency of 26 SNPs between cases with MMF-related leukopenia and controls. We matched cases by induction, steroid duration, race, center, and age. We also evaluated the impact of induction and SNPs on time to leukopenia in all cases. Sixty-eight (24%) patients had MMF-related leukopenia, of which 59 consented for genotyping and 38 were matched with controls. Among matched pairs, no SNPs were associated with leukopenia. With non-depleting induction, UGT2B7-900A>G (rs7438135) was associated with increased risk of MMF-related leukopenia (P = .038). Time to leukopenia did not differ between patients by induction agent, but 2 SNPs (rs2228075, rs2278294) in IMPDH1 were associated with increased time to leukopenia. MMF-related leukopenia is common after transplantation. UGT2B7 may influence leukopenia risk especially in patients without lymphocyte-depleting induction. IMPDH1 may influence time course of leukopenia after transplant.
Collapse
Affiliation(s)
- Charles D. Varnell
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Tsuyoshi Fukuda
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cassie L. Kirby
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Barry L. Warshaw
- Division of Nephrology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Hiren P. Patel
- Division of Nephrology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Deepa H. Chand
- Division of Nephrology, University of Illinois College of Medicine, Peoria, IL, USA,Abbvie, North Chicago, IL, USA
| | | | - Scott K. Van Why
- Division of Pediatric Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rene G. VanDeVoorde
- Division of Nephrology, Monroe Carell Jr. Children’s Hospital, Nashville, TN, USA
| | - Donald J. Weaver
- Division of Nephrology, Levine Children’s Hospital, Charlotte, NC, USA
| | - Amy Wilson
- Division of Nephrology, Riley Hospital for Children, Indianapolis, IN, USA
| | - Priya S. Verghese
- Division of Pediatric Nephrology, University of Minnesota Masonic Children’s Hospital, Minneapolis, MN, USA
| | - Alexander A. Vinks
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Larry A. Greenbaum
- Division of Nephrology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Jens Goebel
- Division of Nephrology, Children’s Hospital Colorado, Aurora, CO, USA
| | - David K. Hooper
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA,James M. Anderson Center for Health Systems Excellence, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
16
|
Rodieux F, Gotta V, Pfister M, van den Anker JN. Causes and Consequences of Variability in Drug Transporter Activity in Pediatric Drug Therapy. J Clin Pharmacol 2017; 56 Suppl 7:S173-92. [PMID: 27385174 DOI: 10.1002/jcph.721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/26/2016] [Accepted: 02/11/2016] [Indexed: 01/06/2023]
Abstract
Drug transporters play a key role in mediating the uptake of endo- and exogenous substances into cells as well as their efflux. Therefore, variability in drug transporter activity can influence pharmaco- and toxicokinetics and be a determinant of drug safety and efficacy. In children, particularly in neonates and young infants, the contribution of tissue-specific drug transporters to drug absorption, distribution, and excretion may differ from that in adults. In this review 5 major factors and their interdependence that may influence drug transporter activity in children are discussed: developmental differences, genetic polymorphisms, pediatric comorbidities, interacting comedication, and environmental factors. Even if data are sparse, altered drug transporter activity due to those factors have been associated with clinically relevant differences in drug disposition, efficacy, and safety in pediatric patients. Single nucleotide polymorphisms in drug transporter-encoding genes were the most studied source of drug transporter variability in children. However, in the age group where drug transporter activity has been reported to differ from that in adults, namely neonates and young infants, hardly any studies have been performed. Longitudinal studies in this young population are required to investigate the age- and disease-dependent genotype-phenotype relationships and relevance of drug transporter drug-drug interactions. Physiologically based pharmacokinetic modeling approaches can integrate drug- and patient-specific parameters, including drug transporter ontogeny, and may further improve in silico predictions of pediatric-specific pharmacokinetics.
Collapse
Affiliation(s)
- Frédérique Rodieux
- Pediatric Pharmacology, University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Verena Gotta
- Pediatric Pharmacology, University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Marc Pfister
- Pediatric Pharmacology, University of Basel Children's Hospital (UKBB), Basel, Switzerland.,Quantitative Solutions/Certara, Menlo Park, CA, USA
| | - Johannes N van den Anker
- Pediatric Pharmacology, University of Basel Children's Hospital (UKBB), Basel, Switzerland.,Division of Pediatric Clinical Pharmacology, Children's National Health System, Washington, DC, USA.,Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Green DJ, Brooks MM, Burckart GJ, Chinnock RE, Canter C, Addonizio LJ, Bernstein D, Kirklin JK, Naftel DC, Girnita DM, Zeevi A, Webber SA. The Influence of Race and Common Genetic Variations on Outcomes After Pediatric Heart Transplantation. Am J Transplant 2017; 17:1525-1539. [PMID: 27931092 DOI: 10.1111/ajt.14153] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 01/25/2023]
Abstract
Significant racial disparity remains in the incidence of unfavorable outcomes following heart transplantation. We sought to determine which pediatric posttransplantation outcomes differ by race and whether these can be explained by recipient demographic, clinical, and genetic attributes. Data were collected for 80 black and 450 nonblack pediatric recipients transplanted at 1 of 6 centers between 1993 and 2008. Genotyping was performed for 20 candidate genes. Average follow-up was 6.25 years. Unadjusted 5-year rates for death (p = 0.001), graft loss (p = 0.015), acute rejection with severe hemodynamic compromise (p = 0.001), late rejection (p = 0.005), and late rejection with hemodynamic compromise (p = 0.004) were significantly higher among blacks compared with nonblacks. Black recipients were more likely to be older at the time of transplantation (p < 0.001), suffer from cardiomyopathy (p = 0.004), and have public insurance (p < 0.001), and were less likely to undergo induction therapy (p = 0.0039). In multivariate regression models adjusting for age, sex, cardiac diagnosis, insurance status, and genetic variations, black race remained a significant risk factor for all the above outcomes. These clinical and genetic variables explained only 8-19% of the excess risk observed for black recipients. We have confirmed racial differences in survival, graft loss, and several rejection outcomes following heart transplantation in children, which could not be fully explained by differences in recipient attributes.
Collapse
Affiliation(s)
- D J Green
- Pediatric Clinical Pharmacology Staff, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - M M Brooks
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - G J Burckart
- Pediatric Clinical Pharmacology Staff, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - R E Chinnock
- Department of Pediatrics, Loma Linda University, Loma Linda, CA
| | - C Canter
- Division of Cardiology, Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO
| | - L J Addonizio
- Division of Cardiology, Department of Pediatrics, Columbia University, New York, NY
| | - D Bernstein
- Division of Cardiology, Department of Pediatrics, Stanford University, Lucile Packard Children's Hospital, Palo Alto, CA
| | - J K Kirklin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - D C Naftel
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - D M Girnita
- Department of Pathology, Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA
| | - A Zeevi
- Department of Pathology, Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA
| | - S A Webber
- Department of Pediatrics, Vanderbilt University, Nashville, TN
| |
Collapse
|
18
|
Precision monitoring of immunotherapies in solid organ and hematopoietic stem cell transplantation. Adv Drug Deliv Rev 2017. [PMID: 28625828 DOI: 10.1016/j.addr.2017.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pharmacological immunotherapies are a key component of post-transplant therapy in solid-organ and hematopoietic stem cell transplantation. In current clinical practice, immunotherapies largely follow a one-size fits all approach, leaving a large portion of transplant recipients either over- or under-immunosuppressed, and consequently at risk of infections or immune-mediated complications. Our goal here is to review recent and rapid advances in precision and genomic medicine approaches to monitoring of post-transplant immunotherapies. We will discuss recent advances in precision measurements of pharmacological immunosuppression, measurements of the plasma and gut microbiome, strategies to monitor for allograft injury and post-transplant malignancies via circulating cell-free DNA, and comprehensive measurements of the B and T cell immune cell repertoire.
Collapse
|
19
|
Genvigir FDV, Nishikawa AM, Felipe CR, Tedesco-Silva H, Oliveira N, Salazar ABC, Medina-Pestana JO, Doi SQ, Hirata MH, Hirata RDC. Influence of ABCC2, CYP2C8, and CYP2J2 Polymorphisms on Tacrolimus and Mycophenolate Sodium-Based Treatment in Brazilian Kidney Transplant Recipients. Pharmacotherapy 2017; 37:535-545. [PMID: 28316087 DOI: 10.1002/phar.1928] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
STUDY OBJECTIVE To investigate the influence of single nucleotide polymorphisms (SNPs) in genes encoding metabolizing enzymes (CYP2C8, CYP2J2, and UGT2B7) and transporters (ABCC2 and ABCG2) on dose and dose-adjusted trough blood concentrations (C:D ratio), clinical outcomes, and occurrence of adverse events of tacrolimus and mycophenolate sodium in Brazilian kidney transplant recipients. DESIGN Pharmacogenetic analysis of patients enrolled in a previously published study. PATIENTS One hundred forty-eight adult kidney transplant recipients treated with tacrolimus, enteric-coated mycophenolate sodium, and prednisone for 90 days posttransplantation. MEASUREMENTS AND MAIN RESULTS ABCC2 c.-24C>T and c.3972C>T, ABCG2 c.421C>A, CYP2C8*3, CYP2J2 c.-76G>T, and UGT2B7 c.372A>G SNPs were determined by real-time polymerase chain reaction. The CYP3A5*3C SNP data were used to eliminate the confounding effect of this variant on the results. ABCC2 c.3972T allele carriers showed higher tacrolimus C:D values than did carriers of the c.3972CC genotype. The CYP2C8*3 variant was also associated with slightly higher tacrolimus C:D values and higher estimated glomerular filtration rate but only in CYP3A5-nonexpressing patients (CYP3A5*3C/*3C carriers). None of the SNPs were associated with mycophenolate sodium dose or episodes of biopsy-confirmed acute rejection or delayed graft function. The CYP2J2 c.-76T allele was associated with increased risk for treatment-induced nausea and/or vomiting (OR: 5.30, 95% confidence interval 1.49-18.79, p<0.05). CONCLUSION The ABCC2 c.3972C >T polymorphism affected tacrolimus C:D in Brazilian kidney transplant recipients. Further, CYP2C8*3 and CYP2J2 c.-76G>T SNPs influenced the renal function of these patients and the occurrence of adverse events during treatment with tacrolimus and mycophenolate sodium.
Collapse
Affiliation(s)
- Fabiana D V Genvigir
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alvaro M Nishikawa
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudia R Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Nagilla Oliveira
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Antony B C Salazar
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose O Medina-Pestana
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Sonia Q Doi
- School of Medicine, Uniformed Services University, Bethesda, Maryland
| | - Mario H Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosario D C Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
20
|
Pharmacogenetic Biomarkers Predictive of the Pharmacokinetics and Pharmacodynamics of Immunosuppressive Drugs. Ther Drug Monit 2016; 38 Suppl 1:S57-69. [DOI: 10.1097/ftd.0000000000000255] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Pouché L, Stojanova J, Marquet P, Picard N. New challenges and promises in solid organ transplantation pharmacogenetics: the genetic variability of proteins involved in the pharmacodynamics of immunosuppressive drugs. Pharmacogenomics 2016; 17:277-96. [PMID: 26799749 DOI: 10.2217/pgs.15.169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interindividual variability in immunosuppressive drug responses might be partly explained by genetic variants in proteins involved in the immune response or associated with IS pharmacodynamics. On a general basis, the pharmacogenetics of drug target proteins is less known and understood than that of proteins involved in drug disposition pathways. The aim of this review is to facilitate research related to the pharmacodynamics of the main immunosuppressive drugs used in solid organ transplantation. We elaborated a quality of evidence grading system based on a literature review and identified 'highly recommended', 'recommended' or 'potential' candidates for further research. It is likely that a number of additional rare variants might further explain drug response phenotypes in transplantation, and particularly the most severe ones. The advent of next-generation sequencing will help to identify those variants.
Collapse
Affiliation(s)
- Lucie Pouché
- Inserm, UMR 850, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,CHU Limoges, Department of Pharmacology, Toxicology & Pharmacovigilance, 2 Avenue Martin-Luther King, F-87042 Limoges, France
| | - Jana Stojanova
- Laboratory of Chemical Carcinogenesis & Pharmacogenetics, University of Chile, Santiago, Chile
| | - Pierre Marquet
- Inserm, UMR 850, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,CHU Limoges, Department of Pharmacology, Toxicology & Pharmacovigilance, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,Univ. Limoges, Faculty of Medicine & Pharmacy, 2 rue du Dr Marcland, F-87025 Limoges, France.,FHU SUPORT, 87000 Limoges, France
| | - Nicolas Picard
- Inserm, UMR 850, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,CHU Limoges, Department of Pharmacology, Toxicology & Pharmacovigilance, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,Univ. Limoges, Faculty of Medicine & Pharmacy, 2 rue du Dr Marcland, F-87025 Limoges, France.,FHU SUPORT, 87000 Limoges, France
| |
Collapse
|
22
|
Ruiz J, Herrero MJ, Bosó V, Megías JE, Hervás D, Poveda JL, Escrivá J, Pastor A, Solé A, Aliño SF. Impact of Single Nucleotide Polymorphisms (SNPs) on Immunosuppressive Therapy in Lung Transplantation. Int J Mol Sci 2015; 16:20168-82. [PMID: 26307985 PMCID: PMC4613195 DOI: 10.3390/ijms160920168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/13/2015] [Accepted: 08/13/2015] [Indexed: 01/08/2023] Open
Abstract
Lung transplant patients present important variability in immunosuppressant blood concentrations during the first months after transplantation. Pharmacogenetics could explain part of this interindividual variability. We evaluated SNPs in genes that have previously shown correlations in other kinds of solid organ transplantation, namely ABCB1 and CYP3A5 genes with tacrolimus (Tac) and ABCC2, UGT1A9 and SLCO1B1 genes with mycophenolic acid (MPA), during the first six months after lung transplantation (51 patients). The genotype was correlated to the trough blood drug concentrations corrected for dose and body weight (C0/Dc). The ABCB1 variant in rs1045642 was associated with significantly higher Tac concentration, at six months post-transplantation (CT vs. CC). In the MPA analysis, CT patients in ABCC2 rs3740066 presented significantly lower blood concentrations than CC or TT, three months after transplantation. Other tendencies, confirming previously expected results, were found associated with the rest of studied SNPs. An interesting trend was recorded for the incidence of acute rejection according to NOD2/CARD15 rs2066844 (CT: 27.9%; CC: 12.5%). Relevant SNPs related to Tac and MPA in other solid organ transplants also seem to be related to the efficacy and safety of treatment in the complex setting of lung transplantation.
Collapse
Affiliation(s)
- Jesus Ruiz
- Unidad de Farmacogenética, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
- Servicio de Farmacia, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
| | - María José Herrero
- Unidad de Farmacogenética, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
- Departamento Farmacología, Facultad de Medicina, Universidad de Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain.
| | - Virginia Bosó
- Unidad de Farmacogenética, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
- Servicio de Farmacia, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
| | - Juan Eduardo Megías
- Unidad de Farmacogenética, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
- Servicio de Farmacia, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
| | - David Hervás
- Unidad de Bioestadística, Instituto Investigación Sanitaria La Fe. Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
| | - Jose Luis Poveda
- Servicio de Farmacia, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
| | - Juan Escrivá
- Unidad de Trasplante Pulmonar, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
| | - Amparo Pastor
- Unidad de Trasplante Pulmonar, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
| | - Amparo Solé
- Unidad de Trasplante Pulmonar, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
| | - Salvador Francisco Aliño
- Unidad de Farmacogenética, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
- Departamento Farmacología, Facultad de Medicina, Universidad de Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain.
- Unidad de Farmacología Clínica, Área Clínica del Medicamento, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46010 Valencia, Spain.
| |
Collapse
|
23
|
Affiliation(s)
- Sara L Van Driest
- From Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Steven A Webber
- From Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
24
|
Abstract
The transplantation literature includes numerous papers that report associations between polymorphisms in genes encoding metabolizing enzymes and drug transporters, and pharmacokinetic data on immunosuppressive drugs. Most of these studies are retrospective in design, and although a substantial number report significant associations, pharmacogenetic tests are hardly used in clinical practice. One of the reasons for this poor implementation is the current lack of evidence of improved clinical outcome with pharmacogenetic testing. Furthermore, with efficient therapeutic drug monitoring it is possible to rapidly correct for the effect of genotypic deviations on pharmacokinetics, thereby decreasing the utility of genotype-based dosing. The future of pharmacogenetics will be in treatment models in which patient characteristics are combined with data on polymorphisms in multiple genes. These models should focus on pharmacodynamic parameters, variations in the expression of drug transporter proteins, and predictors of toxicity. Such models will provide more information than the relatively small candidate gene studies performed so far. For implementation of these models into clinical practice, linkage of genotype data to medication prescription systems within electronic health records will be crucial.
Collapse
|
25
|
Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol 2014; 88:1351-89. [PMID: 24792322 DOI: 10.1007/s00204-014-1247-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/15/2014] [Indexed: 12/22/2022]
Abstract
This review aims to provide an update of the literature on the pharmacology and toxicology of mycophenolate in solid organ transplant recipients. Mycophenolate is now the antimetabolite of choice in immunosuppressant regimens in transplant recipients. The active drug moiety mycophenolic acid (MPA) is available as an ester pro-drug and an enteric-coated sodium salt. MPA is a competitive, selective and reversible inhibitor of inosine-5'-monophosphate dehydrogenase (IMPDH), an important rate-limiting enzyme in purine synthesis. MPA suppresses T and B lymphocyte proliferation; it also decreases expression of glycoproteins and adhesion molecules responsible for recruiting monocytes and lymphocytes to sites of inflammation and graft rejection; and may destroy activated lymphocytes by induction of a necrotic signal. Improved long-term allograft survival has been demonstrated for MPA and may be due to inhibition of monocyte chemoattractant protein 1 or fibroblast proliferation. Recent research also suggested a differential effect of mycophenolate on the regulatory T cell/helper T cell balance which could potentially encourage immune tolerance. Lower exposure to calcineurin inhibitors (renal sparing) appears to be possible with concomitant use of MPA in renal transplant recipients without undue risk of rejection. MPA displays large between- and within-subject pharmacokinetic variability. At least three studies have now reported that MPA exhibits nonlinear pharmacokinetics, with bioavailability decreasing significantly with increasing doses, perhaps due to saturable absorption processes or saturable enterohepatic recirculation. The role of therapeutic drug monitoring (TDM) is still controversial and the ability of routine MPA TDM to improve long-term graft survival and patient outcomes is largely unknown. MPA monitoring may be more important in high-immunological recipients, those on calcineurin-inhibitor-sparing regimens and in whom unexpected rejection or infections have occurred. The majority of pharmacodynamic data on MPA has been obtained in patients receiving MMF therapy in the first year after kidney transplantation. Low MPA area under the concentration time from 0 to 12 h post-dose (AUC0-12) is associated with increased incidence of biopsy-proven acute rejection although AUC0-12 optimal cut-off values vary across study populations. IMPDH monitoring to identify individuals at increased risk of rejection shows some promise but is still in the experimental stage. A relationship between MPA exposure and adverse events was identified in some but not all studies. Genetic variants within genes involved in MPA metabolism (UGT1A9, UGT1A8, UGT2B7), cellular transportation (SLCOB1, SLCO1B3, ABCC2) and targets (IMPDH) have been reported to effect MPA pharmacokinetics and/or response in some studies; however, larger studies across different ethnic groups that take into account genetic linkage and drug interactions that can alter a patient's phenotype are needed before any clinical recommendations based on patient genotype can be formulated. There is little data on the pharmacology and toxicology of MPA in older and paediatric transplant recipients.
Collapse
|
26
|
Burckart GJ, Figg WD, Brooks MM, Green DJ, Troutman SM, Ferrell R, Chinnock R, Canter C, Addonizio L, Bernstein D, Kirklin JK, Naftel D, Price DK, Sissung TM, Girnita DM, Zeevi A, Webber SA. Multi-institutional Study of Outcomes After Pediatric Heart Transplantation: Candidate Gene Polymorphism Analysis of ABCC2. J Pediatr Pharmacol Ther 2014; 19:16-24. [PMID: 24782687 DOI: 10.5863/1551-6776-19.1.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Earlier studies have indicated that the pharmacokinetics of mycophenolic acid (MPA) is influenced by polymorphisms of ABCC2, which encodes for the membrane transporter MRP2. The ABCC2 rs717620 A allele has been associated with enterohepatic recirculation of MPA, and our previous work had correlated the discontinuance of MPA with this allele in pediatric heart transplant patients. Therefore, we hypothesized that the ABCC2 rs717620 A allele would be associated with poorer outcomes including rejection with hemodynamic compromise (RHC), graft failure, and death in the pediatric heart transplant (PHTx) population receiving MPA. METHODS PHTx recipients from 6 institutions in the Pediatric Heart Transplantation Study (PHTS) from the period of 1993-2009, receiving MPA therapy, were genotyped for ABCC2 rs717620. Genotyping was accomplished by direct sequencing. Demographic and outcome data were limited to the data routinely collected as part of the PHTS and included RHC and mortality. RESULTS Two hundred ninety patients were identified who received MPA at some point post transplantation, of which 200 carried the GG genotype, 81 carried the AG genotype, and 9 carried the AA genotype. Follow-up time after transplantation was 6 years. RHC occurred in 76 patients and 18 patients died. In the 281 patients followed up more than 1 year, late RHC (>1 year post transplantation) occurred in 42 patients. While both RHC and late RHC were associated with the ABCC2 rs717620 GG genotype (hazard ratios: 1.80 and 4.57, respectively, p<0.05) in all patients, this association was not significant in PHTx patients receiving only MPA as the antiproliferative agent from the time of transplant (n=142). CONCLUSIONS ABCC2 rs717620 polymorphisms varied within racial groups. As a candidate gene assessment, the ABCC2 rs717620 AG and AA genotypes may be associated with improved, rather than poorer, RHC in PHTx patients receiving MPA therapy. ABCC2 rs717620 polymorphisms should be included in any expanded pharmacogenomic analysis of outcomes after pediatric heart transplantation.
Collapse
Affiliation(s)
- Gilbert J Burckart
- Pediatric Clinical Pharmacology Staff, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - William D Figg
- Medical Pharmacology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Dionna J Green
- Pediatric Clinical Pharmacology Staff, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Sarah M Troutman
- Medical Pharmacology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert Ferrell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard Chinnock
- Department of Pediatrics, Loma Linda University, Loma Linda University Children's Hospital, Loma Linda, California
| | - Charles Canter
- Department of Pediatrics, Division of Cardiology, Washington University School of Medicine, St Louis Children's Hospital, St Louis, Missouri
| | - Linda Addonizio
- Department of Pediatrics, Division of Cardiology, Columbia University, New York Presbyterian Hospital, New York, New York
| | - Daniel Bernstein
- Department of Pediatrics, Division of Cardiology, Stanford University, Lucile Packard Children's Hospital, Palo Alto, California
| | - James K Kirklin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - David Naftel
- Department of Pathology, Thomas E Starzl Transplant Institute
| | - Douglas K Price
- Medical Pharmacology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tristan M Sissung
- Medical Pharmacology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Diana M Girnita
- Department of Pathology, Thomas E Starzl Transplant Institute
| | - Adriana Zeevi
- Department of Pathology, Thomas E Starzl Transplant Institute
| | - Steven A Webber
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
27
|
Kurzawski M, Droździk M. Pharmacogenetics in solid organ transplantation: genes involved in mechanism of action and pharmacokinetics of immunosuppressive drugs. Pharmacogenomics 2014; 14:1099-118. [PMID: 23837483 DOI: 10.2217/pgs.13.89] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Allogenic solid organ transplantation has become the routine procedure in patients with end stage organ disease. Although the transplanted organ compensates deficient body functions, its allogenic nature requires institution of immune tolerance, nowadays provided by immunosuppressive drug administration. Both the safety and efficacy of immunosuppressive treatment depend on many factors, and maintaining levels of immunosuppressants within therapeutic range is the essential target for success in graft function preservation. It is obvious that drug and metabolite concentrations depend on efficiency of individual patient metabolism. Recently, many studies were undertaken to investigate the relationship between genetic factors, drug pharmacokinetics and therapy outcome, and interindividual variability apparently can be explained, at least in part, by genetically determined polymorphisms of xenobiotic-metabolizing enzymes, transport proteins and also in some cases, drug targets. This review presents the recent state of knowledge in the field of pharmacogenetics related to solid organ transplantation.
Collapse
Affiliation(s)
- Mateusz Kurzawski
- Department of Experimental & Clinical Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland
| | | |
Collapse
|
28
|
Developmental Changes in the Processes Governing Oral Drug Absorption. PEDIATRIC FORMULATIONS 2014. [DOI: 10.1007/978-1-4899-8011-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Dostalek M, Gohh RY, Akhlaghi F. Inosine monophosphate dehydrogenase expression and activity are significantly lower in kidney transplant recipients with diabetes mellitus. Ther Drug Monit 2013; 35:374-83. [PMID: 23666569 PMCID: PMC4109137 DOI: 10.1097/ftd.0b013e3182852697] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inosine 5'-monophosphate dehydrogenase (IMPDH) is a target of the immunosuppressive drug, mycophenolic acid (MPA). A 12-hour clinical pharmacokinetic and pharmacodynamic study was conducted to compare IMPDH1 and IMPDH2 gene expression, IMPDHI and IMPDHII protein levels, and enzyme activity between kidney transplant recipients with respect to diabetes status. METHODS Nondiabetic (ND, n = 11) and diabetic (D, n = 9) kidney transplant recipients and on nontransplant nondiabetic (n = 10) and diabetic (n = 10) volunteers were included in the study. RESULTS Area under the effect curve values for gene expression: IMPDH1 [ND: 22.1 (13.8-31.3) versus D: 4.5 (2.3-6.5), P < 0.001] and IMPDH2 [ND: 15.3 (11.0-21.7) versus D: 6.1 (4.6-8.6), P < 0.001], protein level: IMPDHI [ND: 1.0 (0.5-1.3) versus 0.5 (0.4-0.7), P = 0.002] and IMPDHII [ND: 1.0 (0.6-1.6) versus D: 0.7 (0.6-0.8) P < 0.001] and enzyme activity [ND: 180 (105-245) versus D: 29.9 (15.3-35.6) µmole·s(-1)·mole(-1) adenosine monophosphate, P < 0.001] was significantly lower in transplant recipients with diabetes. Similar results were observed in nontransplanted volunteers. Kinetic studies of MPA-mediated suppression of IMPDH activity in nontransplanted individuals revealed an approximately 2.5-fold lower half-maximum effective concentration (EC50) for diabetic as compared with nondiabetic [ND: 50.2 (49.8-50.7) versus D: 15.8 (15.6-16.3) nmole/L, P = 0.004] volunteers. This difference was not related to several IMPDH gene variants. CONCLUSIONS This study indicates a significantly lower IMPDH gene expression, protein level, and enzyme activity in diabetic patients. Further clinical studies in a larger number of patients are warranted to verify whether MPA dosing must be optimized for kidney transplant recipients with diabetes mellitus.
Collapse
Affiliation(s)
- Miroslav Dostalek
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Reginald Y. Gohh
- Division of Organ Transplantation, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Fatemeh Akhlaghi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
30
|
|
31
|
Downing HJ, Pirmohamed M, Beresford MW, Smyth RL. Paediatric use of mycophenolate mofetil. Br J Clin Pharmacol 2013; 75:45-59. [PMID: 22519685 PMCID: PMC3555046 DOI: 10.1111/j.1365-2125.2012.04305.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/16/2012] [Indexed: 01/14/2023] Open
Abstract
A number of medications do not have a licence, or label, for use in the paediatric age group nor for the specific indication for which they are being used in children. Over recent years, mycophenolate mofetil has increasingly been used off-label (i.e. off-licence) in adults for a number of indications, including autoimmune conditions; progressively, this wider use has been extended to children. This review summarizes current use of mycophenolate mofetil (MMF) in children, looking at how MMF works, the pharmacokinetics, the clinical conditions for which it is used, the advantages it has when compared with other immunosuppressants and the unresolved issues remaining with use in children. The review aims to focus on off-label use in children so as to identify areas that require further research and investigation. The overall commercial value of MMF is limited because it has now come off patent in adults. Given the increasing knowledge of the pharmacodynamics, pharmacokinetics and pharmacogenomics demonstrating the clinical benefits of MMF, new, formal, investigator-led studies, including trials focusing on the use of MMF in children, would be of immense value.
Collapse
Affiliation(s)
- Heather J Downing
- Department of Women's and Children's Health, Institute of Translational Medicine, The University of Liverpool, Alder Hey Children's NHS Foundation TrustEaton Road, Liverpool L12 2AP, UK
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, The University of LiverpoolAshton Street, Liverpool L69 3GE, UK
| | - Michael W Beresford
- Department of Women's and Children's Health, Institute of Translational Medicine, The University of Liverpool, Alder Hey Children's NHS Foundation TrustEaton Road, Liverpool L12 2AP, UK
| | - Rosalind L Smyth
- Department of Women's and Children's Health, Institute of Translational Medicine, The University of Liverpool, Alder Hey Children's NHS Foundation TrustEaton Road, Liverpool L12 2AP, UK
| |
Collapse
|
32
|
Abstract
The field of heart transplantation has seen significant progress in the past 40 years. However, the breakthroughs in long-term outcome have seen stagnation in the past decade. Through advances in genomics and transcriptomics, there is hope that an era of personalized transplant therapy lies in the future. To see where heart transplantation truly fits into the long term, searching for and understanding the alternative approaches for heart failure therapy is both important and inevitable. The application of mechanical circulatory support has contributed to the largest advancement in treatment of end stage heart failure. It has already been approved for destination therapy of heart failure, and greater portability and ease of use of the device will be the future trend. Although it is still not prime time for stem cell therapy, clinical experiences have already suggested its potential therapeutic effects. And finally, whole organ engineering is on the horizon as new techniques have opened the way for this to proceed. In the end, progress on alternative therapies largely depends on our deeper understanding of the mechanisms of heart failure and how to prevent it.
Collapse
|
33
|
Abstract
Detailed knowledge regarding the influence of hepatic transport proteins on drug disposition has advanced at a rapid pace over the past decade. Efflux transport proteins located in the basolateral and apical (canalicular) membranes of hepatocytes play an important role in the hepatic elimination of many endogenous and exogenous compounds, including drugs and metabolites. This review focuses on the role of these efflux transporters in hepatic drug excretion. The impact of these proteins as underlying factors for disease is highlighted, and the importance of hepatic efflux proteins in the efficacy and toxicity of drugs is discussed. In addition, a brief overview of methodology to evaluate the function of hepatic efflux transport proteins is provided. Current challenges in predicting the impact of altered efflux protein function on systemic, intestinal, and hepatocyte exposure to drugs and metabolites are highlighted.
Collapse
|
34
|
Kransdorf EP, Kobashigawa JA. Genetic and genomic approaches to the detection of heart transplant rejection. Per Med 2012; 9:693-705. [PMID: 29776273 DOI: 10.2217/pme.12.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since Christiaan Barnard performed the first heart transplant in 1967, over 100,000 heart transplants have been performed worldwide. As was true then, rejection remains the major threat to the function and survival of the allograft. The development of the endomyocardial biopsy as a means to monitor for rejection has allowed heart transplantation to thrive as a therapy for patients with end-stage heart disease. The need for a noninvasive method of rejection surveillance led to the development of the first genetic test for allograft rejection, the AlloMap®. In this article, after presenting the pathological and clinical features of cardiac allograft rejection, the authors discuss the development and application of gene-expression testing for the detection of cardiac allograft rejection. We then explore emerging 'omic' approaches that will be the rejection detection methods of the future.
Collapse
Affiliation(s)
- Evan P Kransdorf
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Jon A Kobashigawa
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
35
|
Feingold B, Brooks MM, Zeevi A, Ohmann EL, Burckart GJ, Ferrell RE, Chinnock R, Canter C, Addonizio L, Bernstein D, Kirklin JK, Naftel DC, Webber SA. Renal function and genetic polymorphisms in pediatric heart transplant recipients. J Heart Lung Transplant 2012; 31:1003-8. [PMID: 22789135 DOI: 10.1016/j.healun.2012.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Common genetic variations influence rejection, infection, drug metabolism, and side effect profiles after pediatric heart transplantation. Reports in adults suggest that genetic background may influence post-transplant renal function. In this multicenter study, we investigated the association of genetic polymorphisms (GPs) in a panel of candidate genes on renal function in 453 pediatric heart transplant recipients. METHODS We performed genotyping for functional GPs in 19 candidate genes. Renal function was determined annually after transplantation by calculation of the estimated glomerular filtration rate (eGFR). Mixed-effects and Cox proportional hazard models were used to assess recipient characteristics and the effect of GPs on longitudinal eGFR and time to eGFR < 60 mL/min/1.73m(2). RESULTS Mean age at transplantation was 6.2 ± 6.1 years. Mean follow-up was 5.1 ± 2.5 years. Older age at transplant and black race were independently associated with post-transplant renal dysfunction. Univariate analyses showed FASL (C-843T) T allele (p = 0.014) and HO-1 (A326G) G allele (p = 0.0017) were associated with decreased renal function. After adjusting for age and race, these associations were attenuated (FASL, p = 0.075; HO-1, p = 0.053). We found no associations of other GPs with post-transplant renal function, including GPs in TGFβ1, CYP3A5, ABCB1, and ACE. CONCLUSIONS In this multicenter, large, sample of pediatric heart transplant recipients, we found no strong associations between GPs in 19 candidate genes and post-transplant renal function. Our findings contradict reported associations of CYP3A5 and TGFβ1 with renal function and suggest that genotyping for these GPs will not facilitate individualized immunosuppression for the purpose of protecting renal function after pediatric heart transplantation.
Collapse
Affiliation(s)
- Brian Feingold
- Pediatric Cardiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mooij MG, de Koning BAE, Huijsman ML, de Wildt SN. Ontogeny of oral drug absorption processes in children. Expert Opin Drug Metab Toxicol 2012; 8:1293-303. [PMID: 22686526 DOI: 10.1517/17425255.2012.698261] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION A large proportion of prescribed drugs to children are administered orally. Age-related change in factors affecting oral absorption can have consequences for drug dosing. AREAS COVERED For each process affecting oral drug absorption, a systematic search has been performed using Medline to identify relevant articles (from inception till February 2012) in humans. This review presents the findings on age-related changes of the following processes affecting oral drug absorption: gastric pH, gastrointestinal motility, bile salts, pancreatic function, intestinal pH, intestinal drug-metabolizing enzymes and transporter proteins. EXPERT OPINION Clinicians should bear in mind the ontogeny of oral drug absorption processes when prescribing oral drugs to children. The authors' review shows large information gaps on almost all drug absorption processes. It is important that more knowledge is acquired on intestinal transit time, intestinal pH and the ontogeny of intestinal drug-metabolizing enzymes and drug transporter proteins. Furthermore, the ultimate goal in this field should be to predict more precisely the oral disposition of drugs in children across the entire pediatric age range.
Collapse
Affiliation(s)
- Miriam G Mooij
- Erasmus MC-Sophia Children's Hospital, Department of Pediatric Surgery and Intensive Care, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
37
|
Feingold B, Zheng J, Law YM, Morrow WR, Hoffman TM, Schechtman KB, Dipchand AI, Canter CE. Risk factors for late renal dysfunction after pediatric heart transplantation: a multi-institutional study. Pediatr Transplant 2011; 15:699-705. [PMID: 22004544 PMCID: PMC3201752 DOI: 10.1111/j.1399-3046.2011.01564.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Renal dysfunction is a major determinant of outcome after HTx. Using a large, multi-institutional database, we sought to identify factors associated with late renal dysfunction after pediatric HTx. All patients in the PHTS database with eGFR ≥60 mL/min/1.73 m(2) at one yr post-HTx (n = 812) were analyzed by Cox regression for association with risk factors for eGFR <60 mL/min/1.73 m(2) at >1 yr after HTx. Freedom from late renal dysfunction was 71% and 57% at five and 10 yr. Multivariate risk factors for late renal dysfunction were earlier era of HTx (HR 1.84; p < 0.001), black race (HR 1.42; p = 0.048), rejection with hemodynamic compromise in the first year after HTx (HR 1.74; p = 0.038), and lowest quartile eGFR at one yr post-HTx (HR 1.83; p < 0.001). Renal function at HTx was not associated with onset of late renal dysfunction. Eleven patients (1.4%) required chronic dialysis and/or renal transplant during median follow-up of 4.1 yr (1.5-12.6). Late renal dysfunction is common after pediatric HTx, with blacks at increased risk. Decreased eGFR at one yr post-HTx, but not at HTx, predicts onset of late renal dysfunction. Future research on strategies to minimize late renal dysfunction after pediatric HTx may be of greatest benefit if focused on these subgroups.
Collapse
Affiliation(s)
- Brian Feingold
- Pediatric Cardiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA.
| | - Jie Zheng
- Biostatistics, Washington University, St. Louis, MO 63110
| | - Yuk M. Law
- Pediatric Cardiology, Seattle Children's Hospital, Seattle, WA 98105
| | | | - Timothy M Hoffman
- Nationwide Children's Heart Center, Nationwide Children's Hospital, Columbus, OH 43205
| | | | | | | | | |
Collapse
|
38
|
Shuker N, Bouamar R, Weimar W, van Schaik RHN, van Gelder T, Hesselink DA. ATP-binding cassette transporters as pharmacogenetic biomarkers for kidney transplantation. Clin Chim Acta 2011; 413:1326-37. [PMID: 21996082 DOI: 10.1016/j.cca.2011.09.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/21/2011] [Accepted: 09/27/2011] [Indexed: 01/11/2023]
Abstract
Immunosuppressive drugs used in organ transplantation are highly effective in preventing acute rejection. However, the clinical use of these drugs is complicated by the fact that they display highly variable pharmacokinetics and pharmacodynamics between individual patients. The influence of genetic variation on the interindividual variability in immunosuppressive drug disposition, efficacy, and toxicity has been explored in recent years. The polymorphically-expressed ATP-binding cassette (ABC) transporter proteins, in particular ABCB1 and ABCC2, have been investigated extensively because they play an important role in the absorption, distribution and elimination of many immunosuppressive drugs in use today. From these studies it can be concluded that polymorphisms in ABCB1 and ABCC2 have no consistent effect on immunosuppressant pharmacokinetics and toxicity although polymorphisms in ABCB1 appear to be related to the risk of developing calcineurin inhibitor-related nephrotoxicity. However, the latter needs to be replicated before an individual's ABCB1 genotype can become a useful marker that is applied in clinical practice. Future studies evaluating the influence of ABC transporter gene polymorphisms should explore the relationship with intracellular rather than systemic drug concentrations further in well-designed clinical studies. Until then, single-nucleotide polymorphisms in ABC transporter genes are not suitable to act as biomarkers for solid organ transplantation.
Collapse
Affiliation(s)
- Nauras Shuker
- Department of Hospital Pharmacy, Clinical Pharmacology Unit, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
OPINION STATEMENT Outcomes following cardiac transplantation in childhood continue to improve. Advances in immunosuppressive therapy over the past two decades likely have contributed to this trend. The evolution in the management of immunosuppression in children has been based on clinical experience rather than on evidence-based medicine; indeed, there have been no pivotal randomized controlled trials of any form of immunosuppression in pediatric thoracic transplantation. Important trends in immunosuppressive therapy and transplant outcomes have been obtained from large transplant registries. Several trends have been identified since the last review of this topic in this journal. First, there is increased knowledge of the pharmacodynamics and pharmacokinetics of immunosuppressive drugs in children, with notable advances in the field of pharmacogenomics. These studies help explain individual variations in drug exposure, efficacy, and adverse events. They also help explain racial and ethnic variations in drug metabolism and efficacy. Second, there have been clear trends in the use of specific immunosuppressive medications. Use of induction therapy, especially polyclonal T cell-depleting antibody preparations, has increased significantly in recent years. The calcineurin inhibitor (CNI) tacrolimus is being used as the cornerstone of maintenance therapy in lieu of cyclosporine in more and more centers. Mounting evidence suggests that use of adjunctive agents (notably mycophenolate mofetil [MMF]) may improve outcomes, including survival, suggesting that monotherapy with CNIs is not the ideal maintenance therapy. Despite its increased cost, MMF has largely replaced azathioprine as the adjunctive agent of choice. Inhibitors of the mammalian target of rapamycin (i.e., sirolimus and everolimus) have not yet assumed a major place as adjunctive agents, as their safety and efficacy have not been well established in children. With the improvements in immunosuppressive therapy, the justification for routine corticosteroid use is far from clear, and many centers have shown excellent outcomes with complete steroid avoidance. Third, there is increasing interest in the importance of anti-HLA antibodies as important risk factors for adverse graft and patient outcomes. This is generating intense interest in treatments that target B cells and plasma cells. Finally, there is increasing realization that the "one size fits all" approach to immunosuppressive therapy is an obsolete concept and that the ultimate goal is to tailor immunosuppressive therapy to the needs of the individual patient. The development of reliable biomarkers of the patient's immune response to the allograft will be essential for optimal individualized immunosuppressive management.
Collapse
|
40
|
Genetic determinants of mycophenolate-related anemia and leukopenia after transplantation. Transplantation 2011; 91:309-16. [PMID: 21107304 DOI: 10.1097/tp.0b013e318200e971] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mycophenolate-related anemia and leukopenia are well-known toxicities after transplantation. Toxicity leads to dose reduction, addition of colony-stimulating factors or erythropoietin, or discontinuation of immunosuppressive therapy. The causes of and risk factors associated with toxicity are unclear. METHODS We studied the association between mycophenolate-related anemia and leukopenia and 2724 single nucleotide polymorphisms (SNP) in 978 patients undergoing living or deceased donor kidney transplant. Patients were followed up to time of first anemia (hemoglobin<10 gm/dL or hematocrit<30%) or first leukopenia (white blood cell [WBC] count <3000 cells/mm), which required clinical intervention in the first 6 months after transplant. RESULTS Anemia occurred in 87 (9.5%) subjects and leukopenia in 224 (22.9%). In single SNP analyses, none of the SNPs were associated with time to leukopenia at a false discovery rate (FDR) of 20%. However, SNPs from the IL12A, HUS, CYP2C8 genes were associated with time to anemia, allowing for an FDR of 20%. To assess the independence of these SNPs as predictors of anemia, we conducted a multi-SNP analysis including one SNP from each of the three genes. All three SNPs were associated with time to anemia, after adjusting for recipient age, weight, posttransplant dialysis and antiviral drug use, and stratifying by clinical center. CONCLUSION Although these SNPs require validation in an independent population, our results suggest that genetics may play a role in risk of mycophenolate-related hematologic toxicity. This may ultimately provide for better management of maintenance immunosuppression and gives insights into potential mechanism(s) by which toxicity occurs.
Collapse
|
41
|
Sestak AL, Fürnrohr BG, Harley JB, Merrill JT, Namjou B. The genetics of systemic lupus erythematosus and implications for targeted therapy. Ann Rheum Dis 2011; 70 Suppl 1:i37-43. [PMID: 21339217 DOI: 10.1136/ard.2010.138057] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Observations of familial aggregation (λs=8-29) and a 40% identical twin concordance rate prompted recent work towards a comprehensive genetic analysis of systemic lupus erythematosus (SLE). Since 2007, the number of genetic effects known to be associated with human lupus has increased by fivefold, underscoring the complexity of inheritance that probably contributes to this disease. Approximately 35 genes associated with lupus have either been replicated in multiple samples or are near the threshold for genome-wide significance (p > 5 x 10⁻⁸). Some are rare variants that convincingly contribute to lupus only in specific subgroups. Strong associations have been found with a large haplotype block in the human leucocyte antigen region, with Fcγ receptors, and with genes coding for complement components, in which a single gene deletion may cause SLE in rare familial cases and copy number variation is more common in the larger population of SLE patients. Examples of newly discovered genes include ITGAM, STAT4 and MECP2/IRAK1. Ongoing studies to build models in which combinations of associated genes might contribute to specific disease manifestations should contribute to improved understanding of disease pathology. In addition, pharmacogenomic components of ongoing clinical trials are likely to provide insights into fundamental disease pathology as well as contributing to informed patient selection for targeted treatments and biomarkers to guide dosing and gauge responsiveness. Besides these potentially valuable new insights into the pathophysiology of an enigmatic, potentially deadly, and, as yet, unsolved disease, genetic studies are likely to suggest novel molecular targets for strategic development of safer and more effective therapeutics.
Collapse
Affiliation(s)
- Andrea L Sestak
- Rheumatology Division, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
42
|
Garat A, Cardenas CLL, Lionet A, Devos A, Glowacki F, Kenani A, Migot-Nabias F, Allorge D, Lo-Guidice JM, Broly F, Cauffiez C. Inter-ethnic variability of three functional polymorphisms affecting the IMPDH2 gene. Mol Biol Rep 2010; 38:5185-8. [PMID: 21181270 DOI: 10.1007/s11033-010-0668-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
Abstract
Human type II inosine monophosphate dehydrogenase (IMPDH2) is a key enzyme in the purine nucleotide biosynthetic pathway and constitutes a pivotal biological target for immunosuppressant and antiviral drugs. Several Single Nucleotide Polymorphisms (SNP) affecting the IMPDH2 gene sequence have been reported with potential functional relevance and could impact drugs response. We aimed to determine the frequency of three of these polymorphisms, namely g.3375C>T (Leu(263)Phe), c.-95T>G and IVS7+10T>C, in Caucasians, Tunisians, Peruvians and Black Africans (Gabonese and Senegalese). The g.3375C>T and c.-95T>G polymorphisms are rare with a Minor Allele Frequency ≤1.0% in our populations, whereas the third variant, IVS7+10T>C, is more frequent and displays large interethnic variations, with an allelic frequency ranging from 14.6% in the French Caucasian population studied to less than 2% in Black African and Peruvian populations. This ethnic-related data might contribute to a better understanding of the variability in clinical outcome and/or dose adjustments of drugs that are IMPDH inhibitors such as mycophenolic acid.
Collapse
Affiliation(s)
- Anne Garat
- Equipe D'accueil 4483, Faculté de Médecine de Lille, Pôle Recherche, 1 place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Ohmann EL, Burckart GJ, Chen Y, Pravica V, Brooks MM, Zeevi A, Webber SA. Inosine 5'-monophosphate dehydrogenase 1 haplotypes and association with mycophenolate mofetil gastrointestinal intolerance in pediatric heart transplant patients. Pediatr Transplant 2010; 14:891-5. [PMID: 20649757 PMCID: PMC2955782 DOI: 10.1111/j.1399-3046.2010.01367.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MMF, the most commonly used adjuvant immunosuppressant in pediatric heart transplantation, has frequent GI adverse events. SNPs in inosine 5'-monophosphate dehydrogenase I (IMPDH1) may contribute to MMF GI intolerance. Phased haplotypes may have more utility than individual SNPs in candidate gene association studies for complex traits. This study defined common IMPDH1 haplotypes and investigated whether these haplotypes influence MMF GI intolerance in 59 pediatric heart recipients. Genotypes were assessed by Taqman analysis of IMPDH1 rs2288553, rs2288549, rs2278293, rs2278294, and rs2228075, and haplotypes were inferred using Arlequin 3.01 software. GI intolerance was defined as diarrhea, vomiting, nausea, or abdominal pain requiring MMF dose holding for > 48 h or MMF discontinuation. GI intolerance occurred in 21 patients (35.6%). Ten IMPDH1 haplotypes were identified in this population. In univariable analyses, one haplotype was strongly associated with MMF GI intolerance with 59.1% of carriers of this haplotype experiencing MMF GI intolerance compared to 21.6% of non-carriers (p = 0.005). In this study, we identify a common IMPDH1 haplotype associated with MMF GI intolerance in a population of pediatric heart transplant patients. This haplotype of interest did not demonstrate stronger association with MMF GI intolerance than an individual IMPDH1 SNP.
Collapse
Affiliation(s)
- Erin L Ohmann
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gilbert J. Burckart
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD
| | - Yan Chen
- Department of Pharmacy, University of Southern California, Los Angeles, California
| | - Vera Pravica
- Department of Pharmacy, University of Southern California, Los Angeles, California
| | - Maria M. Brooks
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adriana Zeevi
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven A. Webber
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|