1
|
Müller M, Lurz F, Zajonz T, Edinger F, Yörüker U, Thul J, Schranz D, Akintürk H. Perioperative anesthetic management of patients with hypoplastic left heart syndrome undergoing the comprehensive stage II surgery-A review of 148 cases. Paediatr Anaesth 2024; 34:1223-1230. [PMID: 39244731 DOI: 10.1111/pan.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Patients with hypoplastic left heart syndrome undergo the comprehensive stage 2 procedure as the second stage in the hybrid approach toward Fontan circulation. The complexity of comprehensive stage 2 procedure is considered a potential limitation, and limited information is available on its anesthetic management. This study aims to address this gap. METHODS A single-center retrospective cohort study analyzed 148 HLHS patients who underwent comprehensive stage 2 procedure, divided into Group A (stable condition, n = 116) and Group B (requiring preoperative intravenous inotropic therapy, n = 32). Demographic data, intraoperative hemodynamics, anesthetic management, and postoperative outcomes were collected. RESULTS Etomidate (40%) was the most common induction agent, followed by esketamine (24%), midazolam (16%), and propofol (13%). Inhaled induction was rarely necessary (2%), occurring only in Group A patients. No statistical differences were found between groups for induction drug choice. Post-cardiopulmonary bypass management included moderate hypoventilation, inhaled nitric oxide (100%), and hemodynamic support with milrinone (97%) and norepinephrine (77%). Group B patients more frequently required additional levosimendan (20%) and epinephrine (18%). Extracorporeal membrane oxygenation was necessary in 8 patients (5%) with no between-group differences. Switching from fentanyl to remifentanil reduced postoperative ventilation time overall. However, Group B experienced significantly longer ventilation (6.3 vs. 3.5 h) and ICU stay (22 vs. 14 days). In-hospital mortality was 5% overall (Group A: 4%, Group B: 9%). Long-term survival analysis revealed a significant advantage for Group A. CONCLUSION The use of short-acting opioids and adjusted ventilation modes enables optimal pulmonary blood flow and rapid transition to spontaneous breathing. Differentiated hemodynamic support with milrinone, norepinephrine, supplemented by levosimendan and epinephrine in high-risk patients, can mitigate the effects on the preoperatively volume-loaded right ventricle. However, differences in long-term survival probability were observed between groups. TRIAL REGISTRATION Local ethics committee, Medical Faculty, Justus-Liebig-University-Giessen (Trial Code Number: 216/14).
Collapse
Affiliation(s)
- Matthias Müller
- Pediatric Cardiac Anesthesiology Service, Pediatric Heart Centre, Department of Anesthesiology Intensive Care Medicine, Pain Therapy, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Florian Lurz
- Pediatric Cardiac Anesthesiology Service, Pediatric Heart Centre, Department of Anesthesiology Intensive Care Medicine, Pain Therapy, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Thomas Zajonz
- Pediatric Cardiac Anesthesiology Service, Pediatric Heart Centre, Department of Anesthesiology Intensive Care Medicine, Pain Therapy, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Fabian Edinger
- Pediatric Cardiac Anesthesiology Service, Pediatric Heart Centre, Department of Anesthesiology Intensive Care Medicine, Pain Therapy, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Uygar Yörüker
- Department of Pediatric and Congenital Heart Surgery, Pediatric Heart Centre, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Josef Thul
- Department of Pediatric Cardiology, Pediatric Heart Centre, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Dietmar Schranz
- Department of Pediatric Cardiology, Pediatric Heart Centre, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Hakan Akintürk
- Department of Pediatric and Congenital Heart Surgery, Pediatric Heart Centre, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| |
Collapse
|
2
|
Amdani S, Conway J, George K, Martinez HR, Asante-Korang A, Goldberg CS, Davies RR, Miyamoto SD, Hsu DT. Evaluation and Management of Chronic Heart Failure in Children and Adolescents With Congenital Heart Disease: A Scientific Statement From the American Heart Association. Circulation 2024; 150:e33-e50. [PMID: 38808502 DOI: 10.1161/cir.0000000000001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
With continued medical and surgical advancements, most children and adolescents with congenital heart disease are expected to survive to adulthood. Chronic heart failure is increasingly being recognized as a major contributor to ongoing morbidity and mortality in this population as it ages, and treatment strategies to prevent and treat heart failure in the pediatric population are needed. In addition to primary myocardial dysfunction, anatomical and pathophysiological abnormalities specific to various congenital heart disease lesions contribute to the development of heart failure and affect potential strategies commonly used to treat adult patients with heart failure. This scientific statement highlights the significant knowledge gaps in understanding the epidemiology, pathophysiology, staging, and outcomes of chronic heart failure in children and adolescents with congenital heart disease not amenable to catheter-based or surgical interventions. Efforts to harmonize the definitions, staging, follow-up, and approach to heart failure in children with congenital heart disease are critical to enable the conduct of rigorous scientific studies to advance our understanding of the actual burden of heart failure in this population and to allow the development of evidence-based heart failure therapies that can improve outcomes for this high-risk cohort.
Collapse
|
3
|
Amdani S, Auerbach SR, Bansal N, Chen S, Conway J, Silva JPDA, Deshpande SR, Hoover J, Lin KY, Miyamoto SD, Puri K, Price J, Spinner J, White R, Rossano JW, Bearl DW, Cousino MK, Catlin P, Hidalgo NC, Godown J, Kantor P, Masarone D, Peng DM, Rea KE, Schumacher K, Shaddy R, Shea E, Tapia HV, Valikodath N, Zafar F, Hsu D. Research Gaps in Pediatric Heart Failure: Defining the Gaps and Then Closing Them Over the Next Decade. J Card Fail 2024; 30:64-77. [PMID: 38065308 DOI: 10.1016/j.cardfail.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 01/13/2024]
Abstract
Given the numerous opportunities and the wide knowledge gaps in pediatric heart failure, an international group of pediatric heart failure experts with diverse backgrounds were invited and tasked with identifying research gaps in each pediatric heart failure domain that scientists and funding agencies need to focus on over the next decade.
Collapse
Affiliation(s)
- Shahnawaz Amdani
- Department of Pediatric Cardiology, Cleveland Clinic Children's, Cleveland, Ohio.
| | - Scott R Auerbach
- Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neha Bansal
- Division of Pediatric Cardiology, Mount Sinai Kravis Children's Hospital, Icahn School of Medicine, New York, New York
| | - Sharon Chen
- Division of Pediatric Cardiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, California
| | - Jennifer Conway
- Division of Pediatric Cardiology, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Julie Pires DA Silva
- Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Jessica Hoover
- Department of Pediatric Cardiology, Cleveland Clinic Children's, Cleveland, Ohio
| | - Kimberly Y Lin
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Shelley D Miyamoto
- Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kriti Puri
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Jack Price
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Joseph Spinner
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Rachel White
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph W Rossano
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David W Bearl
- Department of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital, Nashville, Tennessee
| | - Melissa K Cousino
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Perry Catlin
- Department of Psychology, Marquette University, Milwaukee, Wisconsin
| | - Nicolas Corral Hidalgo
- Division of Pediatric Cardiology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Justin Godown
- Department of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital, Nashville, Tennessee
| | - Paul Kantor
- Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Daniele Masarone
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - David M Peng
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Kelly E Rea
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Kurt Schumacher
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Robert Shaddy
- Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Erin Shea
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - Henry Valora Tapia
- Division of Pediatric Cardiology, University of Utah. Salt Lake City, Utah
| | - Nishma Valikodath
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Farhan Zafar
- The Heart Institute, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Daphne Hsu
- Division of Pediatric Cardiology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
4
|
Williams K, Khan A, Lee YS, Hare JM. Cell-based therapy to boost right ventricular function and cardiovascular performance in hypoplastic left heart syndrome: Current approaches and future directions. Semin Perinatol 2023; 47:151725. [PMID: 37031035 PMCID: PMC10193409 DOI: 10.1016/j.semperi.2023.151725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Congenital heart disease remains one of the most frequently diagnosed congenital diseases of the newborn, with hypoplastic left heart syndrome (HLHS) being considered one of the most severe. This univentricular defect was uniformly fatal until the introduction, 40 years ago, of a complex surgical palliation consisting of multiple staged procedures spanning the first 4 years of the child's life. While survival has improved substantially, particularly in experienced centers, ventricular failure requiring heart transplant and a number of associated morbidities remain ongoing clinical challenges for these patients. Cell-based therapies aimed at boosting ventricular performance are under clinical evaluation as a novel intervention to decrease morbidity associated with surgical palliation. In this review, we will examine the current burden of HLHS and current modalities for treatment, discuss various cells therapies as an intervention while delineating challenges and future directions for this therapy for HLHS and other congenital heart diseases.
Collapse
Affiliation(s)
- Kevin Williams
- Department of Pediatrics, University of Miami Miller School of Medicine. Miami FL, USA; Batchelor Children's Research Institute University of Miami Miller School of Medicine. Miami FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA
| | - Yee-Shuan Lee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA; Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine. Miami FL, USA.
| |
Collapse
|
5
|
Birla AK, Brimmer S, Short WD, Olutoye OO, Shar JA, Lalwani S, Sucosky P, Parthiban A, Keswani SG, Caldarone CA, Birla RK. Current state of the art in hypoplastic left heart syndrome. Front Cardiovasc Med 2022; 9:878266. [PMID: 36386362 PMCID: PMC9651920 DOI: 10.3389/fcvm.2022.878266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a complex congenital heart condition in which a neonate is born with an underdeveloped left ventricle and associated structures. Without palliative interventions, HLHS is fatal. Treatment typically includes medical management at the time of birth to maintain patency of the ductus arteriosus, followed by three palliative procedures: most commonly the Norwood procedure, bidirectional cavopulmonary shunt, and Fontan procedures. With recent advances in surgical management of HLHS patients, high survival rates are now obtained at tertiary treatment centers, though adverse neurodevelopmental outcomes remain a clinical challenge. While surgical management remains the standard of care for HLHS patients, innovative treatment strategies continue to be developing. Important for the development of new strategies for HLHS patients is an understanding of the genetic basis of this condition. Another investigational strategy being developed for HLHS patients is the injection of stem cells within the myocardium of the right ventricle. Recent innovations in tissue engineering and regenerative medicine promise to provide important tools to both understand the underlying basis of HLHS as well as provide new therapeutic strategies. In this review article, we provide an overview of HLHS, starting with a historical description and progressing through a discussion of the genetics, surgical management, post-surgical outcomes, stem cell therapy, hemodynamics and tissue engineering approaches.
Collapse
Affiliation(s)
- Aditya K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
| | - Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Walker D. Short
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Oluyinka O. Olutoye
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Jason A. Shar
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, United States
| | - Suriya Lalwani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
| | - Philippe Sucosky
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, United States
| | - Anitha Parthiban
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
- Division of Pediatric Cardiology, Texas Children's Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Christopher A. Caldarone
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Broberg MCG, Cheifetz IM, Plummer ST. Current evidence for pharmacologic therapy following stage 1 palliation for single ventricle congenital heart disease. Expert Rev Cardiovasc Ther 2022; 20:627-636. [PMID: 35848073 DOI: 10.1080/14779072.2022.2103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Infants with single ventricle congenital heart disease are vulnerable to complications between stage 1 and stage 2 of palliation. Pharmaceutical treatment during this period is varied and often dependent on institutional practices as there is little evidence supporting a particular treatment path. AREAS COVERED This review focuses on medical management of patients following stage I palliation. We performed a scoping review of the current literature regarding angiotensin converting enzyme inhibitors and digoxin treatment in the interstage period. In addition, we discuss other medication classes frequently used in these patients. EXPERT OPINION Due to significant heterogeneity of anatomy, rarity of disease, and other confounding factors, there is limited evidence to support most commonly used medications within the interstage period. Digoxin is associated with improved mortality within the interstage period and should be considered; however, no large randomized controlled trial exists supporting its use. Prevention of thrombotic complication with aspirin is also associated with improved outcomes and should be considered unless a contraindication exists. The addition of other prescriptions in this patient population should be considered only after an evaluation of the risks and benefits of each medication, recognizing the burden and risk of polypharmacy in this fragile patient population.
Collapse
Affiliation(s)
- Meredith C G Broberg
- Department of Pediatrics, Division of Pediatric Cardiac Critical Care, University Hospitals Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ira M Cheifetz
- Department of Pediatrics, Division of Pediatric Cardiac Critical Care, University Hospitals Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Department of Pediatrics, Division of Pediatric Cardiology, University Hospitals Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sarah T Plummer
- Department of Pediatrics, Division of Pediatric Cardiology, University Hospitals Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Medical Therapies for Heart Failure in Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2022; 9:jcdd9050152. [PMID: 35621863 PMCID: PMC9143150 DOI: 10.3390/jcdd9050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Significant surgical and medical advances over the past several decades have resulted in a growing number of infants and children surviving with hypoplastic left heart syndrome (HLHS) and other congenital heart defects associated with a single systemic right ventricle (RV). However, cardiac dysfunction and ultimately heart failure (HF) remain the most common cause of death and indication for transplantation in this population. Moreover, while early recognition and treatment of single ventricle-related complications are essential to improving outcomes, there are no proven therapeutic strategies for single systemic RV HF in the pediatric population. Importantly, prototypical adult HF therapies have been relatively ineffective in mitigating the need for cardiac transplantation in HLHS, likely due to several unique attributes of the failing HLHS myocardium. Here, we discuss the most commonly used medical therapies for the treatment of HF symptoms in HLHS and other single systemic RV patients. Additionally, we provide an overview of potential novel therapies for systemic ventricular failure in the HLHS and related populations based on fundamental science, pre-clinical, clinical, and observational studies in the current literature.
Collapse
|
8
|
Gasparini M, Cox N. Role of cardiac magnetic resonance strain analysis in patients with hypoplastic left heart syndrome in evaluating right ventricular (dys)function: a systematic review. Eur J Cardiothorac Surg 2021; 60:497-505. [PMID: 34331061 DOI: 10.1093/ejcts/ezab105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/08/2020] [Accepted: 01/07/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Right ventricular dysfunction predicts death in patients with hypoplastic left heart syndrome (HLHS), but differences in morphology and loading conditions make calculation of the ejection fraction (EF), a challenging measure of its function. Our goal was to evaluate how strain measurements with cardiac magnetic resonance feature tracking could be used to evaluate right ventricular function in patients with HLHS. METHODS A systematic search of the literature was performed by 2 independent researchers using the terms 'population', 'intervention', 'comparison', 'outcome' and 'time criteria'. PubMed and the Ovid database were searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS Our review included 8 studies with 608 participants with ventricular strain values obtained using cardiac magnetic resonance feature tracking. After stage I palliation, global strain was reduced in patients after a hybrid procedure and a right ventricle-to-pulmonary artery conduit compared with a modified Blalock-Taussig shunt despite similar EFs. Global longitudinal strain did not differ between stage II and stage III (Fontan) palliation. Fontan patients had significantly impaired global longitudinal and circumferential strain compared to the left ventricular strain of the controls. Studies of Fontan patients that included patients with HLHS who were part of a cohort with a single right ventricle showed impaired global circumferential strain compared with the cohort with a single left ventricle, with controls, and over time. In this group, impaired global circumferential strain was associated with major adverse cardiac events. CONCLUSIONS Cardiac magnetic resonance feature tracking can be used in patients with HLHS to evaluate RV strain and demonstrate differences between surgical strategies, over time and compared with controls. It could be used alongside clinical symptoms and EF values to detect ventricular dysfunction.
Collapse
Affiliation(s)
- Marisa Gasparini
- Department of Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Natasha Cox
- Department of Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Woulfe KC, Walker LA. Physiology of the Right Ventricle Across the Lifespan. Front Physiol 2021; 12:642284. [PMID: 33737888 PMCID: PMC7960651 DOI: 10.3389/fphys.2021.642284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 01/27/2023] Open
Abstract
The most common cause of heart failure in the United States is ischemic left heart disease; accordingly, a vast amount of work has been done to elucidate the molecular mechanisms underlying pathologies of the left ventricle (LV) as a general model of heart failure. Until recently, little attention has been paid to the right ventricle (RV) and it has commonly been thought that the mechanical and biochemical properties of the RV are similar to those of the LV. However, therapies used to treat LV failure often fail to improve ventricular function in RV failure underscoring, the need to better understand the unique physiologic and pathophysiologic properties of the RV. Importantly, hemodynamic stresses (such as pressure overload) often underlie right heart failure further differentiating RV failure as unique from LV failure. There are significant structural, mechanical, and biochemical properties distinctive to the RV that influences its function and it is likely that adaptations of the RV occur uniquely across the lifespan. We have previously reviewed the adult RV compared to the LV but there is little known about differences in the pediatric or aged RV. Accordingly, in this mini-review, we will examine the subtle distinctions between the RV and LV that are maintained physiologically across the lifespan and will highlight significant knowledge gaps in our understanding of pediatric and aging RV. Consideration of how RV function is altered in different disease states in an age-specific manner may enable us to define RV function in health and importantly, in response to pathology.
Collapse
Affiliation(s)
- Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Jain PN, Robertson M, Lasa JJ, Shekerdemian L, Guffey D, Zhang Y, Lingappan K, Checchia P, Coarfa C. Altered metabolic and inflammatory transcriptomics after cardiac surgery in neonates with congenital heart disease. Sci Rep 2021; 11:4965. [PMID: 33654130 PMCID: PMC7925649 DOI: 10.1038/s41598-021-83882-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
The study examines the whole blood transcriptome profile before and after cardiopulmonary bypass (CPB) in neonates with hypoplastic left heart syndrome (HLHS), a severe form of congenital heart disease, that can develop low cardiac output syndrome (LCOS). Whole blood mRNA transcriptome profiles of 13 neonates with HLHS before and after their first palliative surgery were analyzed to determine differentially expressed genes and pathways. The median age and weight at surgery were 4 days and 3.2 kg, respectively. Of the 13 patients, 8 developed LCOS. There was no significant difference between CPB, aortic cross clamp, deep hypothermic cardiac arrest times between patients that develop LCOS and those that do not. Upon comparing differential gene expression profiles between patients that develop LCOS and those that do not in pre-operative samples, 1 gene was up-regulated and 13 were down regulated. In the post-operative samples, 4 genes were up-regulated, and 4 genes were down regulated when patients that develop LCOS were compared to those that do not. When comparing post-operative samples to pre-operative samples in the patients that do not develop LCOS, 1484 genes were up-regulated, and 1388 genes were down regulated; while patients that developed LCOS had 2423 up-regulated genes, and 2414 down regulated genes for the same pre to post-operative comparison. Pathway analysis revealed differential regulation of inflammatory pathways (IL signaling, PDGF, NOTCH1, NGF, GPCR) and metabolic pathways (heme metabolism, oxidative phosphorylation, protein metabolism including amino acid and derivatives, fatty acid metabolism, TCA cycle and respiratory electron transport chain). By identifying altered transcriptome profiles related to inflammation and metabolism in neonates with HLHS who develop LCOS after CPB, this study opens for exploration novel pathways and potential therapeutic targets to improve outcomes in this high-risk population.
Collapse
Affiliation(s)
- Parag N Jain
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | | | - Javier J Lasa
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Lara Shekerdemian
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Yuhao Zhang
- Baylor College of Medicine, Houston, TX, USA
| | - Krithika Lingappan
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Paul Checchia
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | |
Collapse
|
11
|
Mienert T, Esmaeili A, Steinbrenner B, Khalil M, Müller M, Akintuerk H, Kerst G, Schranz D. Cardiovascular Drug Therapy during Interstage After Hybrid Approach: A Single-Center Experience in 51 Newborns with Hypoplastic Left Heart. Paediatr Drugs 2021; 23:195-202. [PMID: 33713024 PMCID: PMC7997825 DOI: 10.1007/s40272-021-00438-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Newborns with hypoplastic left heart (HLH) are usually palliated with the Norwood procedure or a hybrid stage I procedure. Hybrid is our preferred approach. Given the critical relationship between stage I, interstage, and comprehensive stage II or advanced biventricular repair, we hypothesized that appropriate drug treatment is a significant therapeutic cornerstone, especially for the management of the high-risk interstage. METHODS We report a single-center observational study addressing the cardiovascular effects of, in particular, oral β-blockers and the additional use of angiotensin-converting enzyme (ACE) and mineralocorticoid inhibitors. RESULTS In total, 51 newborns-30 with HLH syndrome (HLHS) and 21 with HLH complex (HLHC)-with a median bodyweight of 3.0 kg (range 1.9-4.4; nine with bodyweight ≤ 2500 g) underwent an uneventful "Giessen hybrid approach" using a newly approved duct stent. All patients were discharged home with a single, double or triple therapy consisting of ß-blockers, ACE and mineralocorticoid inhibitors; 90% of the patients received bisoprolol, 10% received propranolol, 72% received lisinopril, and 78% received spironolactone. Resting heart rate decreased from 138 bpm (range 112-172; n = 51) at admission to 123 bpm (range 99-139; n = 51) at discharge and 110 bpm before stage II/biventricular repair/heart transplantation (range 90-140; n = 37) accompanied by favorable bodyweight gain. No side effects were evident. CONCLUSION In view of drug risk/benefit profiles, as well as the variable morphology and hemodynamics, the highly selective β1-adrenoceptor blocker bisoprolol is our preferred drug for treatment of HLHS/HLHC in the interstage. We avoid using ACE inhibitor monotherapy and exclude potential risks for coronary and cerebral perfusion pressure beforehand.
Collapse
Affiliation(s)
- Tino Mienert
- Pediatric Heart Center, Justus-Liebig University, Feulgenstrasse 12, 35385, Giessen, Germany
| | | | - Blanka Steinbrenner
- Pediatric Heart Center, Justus-Liebig University, Feulgenstrasse 12, 35385, Giessen, Germany
| | - Markus Khalil
- Pediatric Heart Center, Justus-Liebig University, Feulgenstrasse 12, 35385, Giessen, Germany
| | - Matthias Müller
- Pediatric Heart Center, Justus-Liebig University, Feulgenstrasse 12, 35385, Giessen, Germany
| | - Hakan Akintuerk
- Pediatric Heart Center, Justus-Liebig University, Feulgenstrasse 12, 35385, Giessen, Germany
| | - Gunter Kerst
- Pediatric Cardiology, University Clinic, Aachen, Germany
| | - Dietmar Schranz
- Pediatric Heart Center, Justus-Liebig University, Feulgenstrasse 12, 35385, Giessen, Germany.
- Pediatric Cardiology, University Clinic, Frankfurt, Germany.
| |
Collapse
|
12
|
An evidence-based review of the use of vasoactive and inotropic medications in post-operative paediatric patients after cardiac surgery with cardiopulmonary bypass from 2000 to 2020. Cardiol Young 2020; 30:1757-1771. [PMID: 33213604 DOI: 10.1017/s1047951120004151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Infants with moderate-to-severe CHD frequently undergo cardiopulmonary bypass surgery in childhood. Morbidity and mortality are highest in those who develop post-operative low cardiac output syndrome. Vasoactive and inotropic medications are mainstays of treatment for these children, despite limited evidence supporting their use. METHODS To help inform clinical practice, as well as the conduct of future trials, we performed a systematic review of existing literature on inotropes and vasoactives in children after cardiac surgery using the PubMed and EMBASE databases. We included studies from 2000 to 2020, and the patient population was defined as birth - 18 years of age. Two reviewers independently reviewed studies to determine final eligibility. RESULTS The final analysis included 37 papers. Collectively, selected studies reported on 12 different vasoactive and inotropic medications in 2856 children. Overall evidence supporting the use of these drugs in children after cardiopulmonary bypass was limited. The majority of studies were small with 30/37 (81%) enrolling less than 100 patients, 29/37 (78%) were not randomised, and safety and efficacy endpoints differed widely, limiting the ability to combine data for meta-analyses. CONCLUSION Vasoactive and inotropic support remain critical parts of post-operative care for children after cardiopulmonary bypass surgery. There is a paucity of data for the selection and dosing of vasoactives and inotropes for these patients. Despite the knowledge gaps that remain, numerous recent innovations create opportunities to rethink the conduct of clinical trials in this high-risk population.
Collapse
|
13
|
Rubinstein J, Woo JG, Garcia AM, Alsaied T, Li J, Lunde PK, Moore RA, Laasmaa M, Sammons A, Mays WA, Miyamoto SD, Louch WE, Veldtman GR. Probenecid Improves Cardiac Function in Subjects with a Fontan Circulation and Augments Cardiomyocyte Calcium Homeostasis. Pediatr Cardiol 2020; 41:1675-1688. [PMID: 32770262 PMCID: PMC7704717 DOI: 10.1007/s00246-020-02427-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
Subjects with functionally univentricular circulation who have completed staged single ventricle palliation, with the final stage culminating in the Fontan procedure, are often living into adulthood. However, high morbidity and mortality remain prevalent in these patients, as diastolic and systolic dysfunction of the single systemic ventricle are linked to Fontan circulatory failure. We presently investigated the effects of probenecid in post-Fontan patients. Used for decades for the treatment of gout, probenecid has been shown in recent years to positively influence cardiac function via effects on the Transient Receptor Potential Vanilloid 2 (TRPV2) channel in cardiomyocytes. Indeed, we observed that probenecid improved cardiac function and exercise performance in patients with a functionally univentricular circulation. This was consistent with our findings from a retrospective cohort of patients with single ventricle physiology where TRPV2 expression was increased. Experiments in isolated cardiomyocytes associated these positive actions to augmentation of diastolic calcium homeostasis.
Collapse
Affiliation(s)
- Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health & Disease, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| | - Jessica G Woo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anastacia M Garcia
- Department of Pediatrics, Division of Cardiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tarek Alsaied
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Per Kristian Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Ryan A Moore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Amanda Sammons
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wayne A Mays
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shelley D Miyamoto
- Department of Pediatrics, Division of Cardiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Gruschen R Veldtman
- Adult Congenital Heart Disease Service, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Hu H, Jiang M, Cao Y, Zhang Z, Jiang B, Tian F, Feng J, Dou Y, Gorospe M, Zheng M, Zheng L, Yang Z, Wang W. HuR regulates phospholamban expression in isoproterenol-induced cardiac remodelling. Cardiovasc Res 2020; 116:944-955. [PMID: 31373621 DOI: 10.1093/cvr/cvz205] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/30/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022] Open
Abstract
AIMS The elevated expression of phospholamban (PLB) has been observed in heart failure and cardiac remodelling, inhibiting the affinity of Ca2+ pump to Ca2+ thereby impairing heart relaxation. However, the mechanisms underlying the regulation of PLB remains to be further studied. The present study aims to test the role of RNA-binding protein HuR in the regulation of PLB and the impact of this regulatory process in cardiac remodelling. METHODS AND RESULTS A mouse model specifically deleted HuR in cardiomyocytes were used for testing the role of HuR in regulating PLB during isoproterenol (ISO)-induced cardiac remodelling. HuR deficiency did not significantly influence the phenotype and function of mouse heart under static status. However, deletion of HuR in cardiomyocytes mitigated the effect of ISO in inducing PLB expression and reducing β1-AR expression, in turn aggravating ISO-induced myocardial hypertrophy and cardiac fibrosis. In H9C2 cells, association of HuR with PLB and β1-AR mRNAs stabilized PLB mRNA and destabilized β1-AR mRNA, respectively. CONCLUSION HuR stabilizes PLB mRNA and destabilizes β1-AR mRNA. The HuR-PLB and HuR-β1-AR regulatory processes impact on ISO-induced cardiac remodelling.
Collapse
Affiliation(s)
- Han Hu
- >Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Mingyang Jiang
- Department of Cardiology, State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Yangpo Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road Beijing, 100191, China
| | - Zhuojun Zhang
- >Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Bin Jiang
- >Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Feng Tian
- Department of Laboratory Animal Science, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road Beijing, 100191, China
| | - Yali Dou
- Department of Pathology and Biological Chemistry, University of Michigan, 1301 Catherine Street, Ann Arbor, MI 48105, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Ming Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road Beijing, 100191, China
| | - Lemin Zheng
- Institute of Cardiovascular Research, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Zhongzhou Yang
- Department of Cardiology, State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Wengong Wang
- >Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
15
|
Abstract
Hypoplastic left heart syndrome (HLHS) is a complex form of congenital heart disease defined by anatomic and functional inadequacy of the left side of the heart with nonviability of the left ventricle to perform systemic perfusion. Lethal if not treated, a strategy for survival currently is well established, with continuing improvement in outcomes over the past 30 years. Prenatal diagnosis, good newborn care, improved surgical skills, specialized postoperative care, and unique strategies for interstage monitoring all have contributed to increasing likelihood of survival. The unique life with a single right ventricle and a Fontan circulation is a focused area of investigation.
Collapse
|
16
|
Liu H, Zhang CH, Ammanamanchi N, Suresh S, Lewarchik C, Rao K, Uys GM, Han L, Abrial M, Yimlamai D, Ganapathy B, Guillermier C, Chen N, Khaladkar M, Spaethling J, Eberwine JH, Kim J, Walsh S, Choudhury S, Little K, Francis K, Sharma M, Viegas M, Bais A, Kostka D, Ding J, Bar-Joseph Z, Wu Y, Yechoor V, Moulik M, Johnson J, Weinberg J, Reyes-Múgica M, Steinhauser ML, Kühn B. Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Sci Transl Med 2020; 11:11/513/eaaw6419. [PMID: 31597755 PMCID: PMC8132604 DOI: 10.1126/scitranslmed.aaw6419] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/10/2019] [Accepted: 08/30/2019] [Indexed: 12/28/2022]
Abstract
One million patients with congenital heart disease (CHD) live in the United States. They have a lifelong risk of developing heart failure. Current concepts do not sufficiently address mechanisms of heart failure development specifically for these patients. Here, analysis of heart tissue from an infant with tetralogy of Fallot with pulmonary stenosis (ToF/PS) labeled with isotope-tagged thymidine demonstrated that cardiomyocyte cytokinesis failure is increased in this common form of CHD. We used single-cell transcriptional profiling to discover that the underlying mechanism of cytokinesis failure is repression of the cytokinesis gene ECT2, downstream of β-adrenergic receptors (β-ARs). Inactivation of the β-AR genes and administration of the β-blocker propranolol increased cardiomyocyte division in neonatal mice, which increased the number of cardiomyocytes (endowment) and conferred benefit after myocardial infarction in adults. Propranolol enabled the division of ToF/PS cardiomyocytes in vitro. These results suggest that β-blockers could be evaluated for increasing cardiomyocyte division in patients with ToF/PS and other types of CHD.
Collapse
Affiliation(s)
- Honghai Liu
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Cheng-Hai Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Niyatie Ammanamanchi
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Sangita Suresh
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Lewarchik
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Krithika Rao
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Gerrida M Uys
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lu Han
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Maryline Abrial
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Dean Yimlamai
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Balakrishnan Ganapathy
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Christelle Guillermier
- Division of Genetics and Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nathalie Chen
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Mugdha Khaladkar
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, 301A/B Lynch Laboratory, 433 S University Avenue, Philadelphia, PA 19104, USA
| | - Jennifer Spaethling
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James H Eberwine
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, 301A/B Lynch Laboratory, 433 S University Avenue, Philadelphia, PA 19104, USA
| | - Stuart Walsh
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sangita Choudhury
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Little
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kimberly Francis
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Mahesh Sharma
- Division of Cardiothoracic Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melita Viegas
- Pediatric Cardiothoracic Surgery, UPMC Children's Hospital of Pittsburgh and Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Abha Bais
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA.,Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Ding
- Computational Biology Department and Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ziv Bar-Joseph
- Computational Biology Department and Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA.,Rangos Research Center Animal Imaging Core, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Vijay Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15238, USA
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jennifer Johnson
- Division of Cardiology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.,Neonatal-Perinatal Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA 15213, USA
| | - Jacqueline Weinberg
- Division of Cardiology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Miguel Reyes-Múgica
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Matthew L Steinhauser
- Division of Genetics and Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bernhard Kühn
- Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA. .,McGowan Institute of Regenerative Medicine, Pittsburgh, PA 15219, USA.,Pediatric Institute for Heart Regeneration and Therapeutics, Pittsburgh, PA 15224, USA
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The goal of this paper is to provide an overview of contemporary knowledge specific to the causes, management, and outcome of heart failure in children. RECENT FINDINGS While recently there have been subtle improvements in heart failure outcomes in children, these improvements lag significantly behind that of adults. There is a growing body of literature suggesting that pediatric heart failure is a unique disease process with age- and disease-specific myocardial adaptations. In addition, the heterogenous etiologies of heart failure in children contribute to differential response to therapies and challenge the ability to obtain meaningful results from prospective clinical trials. Consideration of novel clinical trial designs with achievable but clinically relevant endpoints and focused study of the mechanisms underlying pediatric heart failure secondary to cardiomyopathies and structural heart disease are essential if we hope to advance care and identify targeted and effective therapies.
Collapse
Affiliation(s)
| | - Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA
| | - Roni M Jacobsen
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA
| | - Shelley D Miyamoto
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
18
|
Garcia AM, Beatty JT, Nakano SJ. Heart failure in single right ventricle congenital heart disease: physiological and molecular considerations. Am J Physiol Heart Circ Physiol 2020; 318:H947-H965. [PMID: 32108525 PMCID: PMC7191494 DOI: 10.1152/ajpheart.00518.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Because of remarkable surgical and medical advances over the past several decades, there are growing numbers of infants and children living with single ventricle congenital heart disease (SV), where there is only one functional cardiac pumping chamber. Nevertheless, cardiac dysfunction (and ultimately heart failure) is a common complication in the SV population, and pharmacological heart failure therapies have largely been ineffective in mitigating the need for heart transplantation. Given that there are several inherent risk factors for ventricular dysfunction in the setting of SV in addition to probable differences in molecular adaptations to heart failure between children and adults, it is perhaps not surprising that extrapolated adult heart failure medications have had limited benefit in children with SV heart failure. Further investigations into the molecular mechanisms involved in pediatric SV heart failure may assist with risk stratification as well as development of targeted, efficacious therapies specific to this patient population. In this review, we present a brief overview of SV anatomy and physiology, with a focus on patients with a single morphological right ventricle requiring staged surgical palliation. Additionally, we discuss outcomes in the current era, risk factors associated with the progression to heart failure, present state of knowledge regarding molecular alterations in end-stage SV heart failure, and current therapeutic interventions. Potential avenues for improving SV outcomes, including identification of biomarkers of heart failure progression, implications of personalized medicine and stem cell-derived therapies, and applications of novel models of SV disease, are proposed as future directions.
Collapse
Affiliation(s)
- Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Jonathan-Thomas Beatty
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Stephanie J Nakano
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
19
|
Nakano SJ, Miyamoto SD, Price JF, Rossano JW, Cabrera AG. Pediatric Heart Failure: An Evolving Public Health Concern. J Pediatr 2020; 218:217-221. [PMID: 31740144 PMCID: PMC7662928 DOI: 10.1016/j.jpeds.2019.09.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/24/2019] [Accepted: 09/16/2019] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Jack F. Price
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX
| | - Joseph W. Rossano
- Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
20
|
Garcia AM, McPhaul JC, Sparagna GC, Jeffrey DA, Jonscher R, Patel SS, Sucharov CC, Stauffer BL, Miyamoto SD, Chatfield KC. Alteration of cardiolipin biosynthesis and remodeling in single right ventricle congenital heart disease. Am J Physiol Heart Circ Physiol 2020; 318:H787-H800. [PMID: 32056460 DOI: 10.1152/ajpheart.00494.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite advances in both medical and surgical therapies, individuals with single ventricle heart disease (SV) remain at high risk for the development of heart failure (HF). However, the molecular mechanisms underlying remodeling and eventual HF in patients with SV are poorly characterized. Cardiolipin (CL), an inner mitochondrial membrane phospholipid, is critical for proper mitochondrial function, and abnormalities in CL content and composition are known in various cardiovascular disease etiologies. The purpose of this study was to investigate myocardial CL content and composition in failing and nonfailing single right ventricle (RV) samples compared with normal control RV samples, to assess mRNA expression of CL biosynthetic and remodeling enzymes, and to quantitate relative mitochondrial copy number. A cross-sectional analysis of RV myocardial tissue from 22 failing SV (SVHF), 9 nonfailing SV (SVNF), and 10 biventricular control samples (BVNF) was performed. Expression of enzymes involved in CL biosynthesis and remodeling were analyzed using RT-qPCR and relative mitochondrial DNA copy number determined by qPCR. Normal phase high-pressure liquid chromatography coupled to electrospray ionization mass spectrometry was used to quantitate total and specific CL species. While mitochondrial copy number was not significantly different between groups, total CL content was significantly lower in SVHF myocardium compared with BVNF controls. Despite having lower total CL content however, the relative percentage of the major tetralinoleoyl CL species is preserved in SVHF samples relative to BVNF controls. Correspondingly, expression of enzymes involved in CL biosynthesis and remodeling were upregulated in SVHF samples when compared with both SVNF samples and BVNF controls.NEW & NOTEWORTHY The mechanisms underlying heart failure in the single ventricle (SV) congenital heart disease population are largely unknown. In this study we identify alterations in cardiac cardiolipin metabolism, composition, and content in children with SV heart disease. These findings suggest that cardiolipin could be a novel therapeutic target in this unique population of patients.
Collapse
Affiliation(s)
- Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Jessica C McPhaul
- Division of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Genevieve C Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Danielle A Jeffrey
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Raleigh Jonscher
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Sonali S Patel
- Division of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Division of Cardiology, Denver Health Medical Center, Denver, Colorado
| | - Shelley D Miyamoto
- Division of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Kathryn C Chatfield
- Division of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
21
|
Saraf A, Book WM, Nelson TJ, Xu C. Hypoplastic left heart syndrome: From bedside to bench and back. J Mol Cell Cardiol 2019; 135:109-118. [PMID: 31419439 PMCID: PMC10831616 DOI: 10.1016/j.yjmcc.2019.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 02/09/2023]
Abstract
Hypoplastic Left Heart Syndrome (HLHS) is a complex Congenital Heart Disease (CHD) that was almost universally fatal until the advent of the Norwood operation in 1981. Children with HLHS who largely succumbed to the disease within the first year of life, are now surviving to adulthood. However, this survival is associated with multiple comorbidities and HLHS infants have a higher mortality rate as compared to other non-HLHS single ventricle patients. In this review we (a) discuss current clinical challenges associated in the care of HLHS patients, (b) explore the use of systems biology in understanding the molecular framework of this disease, (c) evaluate induced pluripotent stem cells as a translational model to understand molecular mechanisms and manipulate them to improve outcomes, and (d) investigate cell therapy, gene therapy, and tissue engineering as a potential tool to regenerate hypoplastic cardiac structures and improve outcomes.
Collapse
Affiliation(s)
- Anita Saraf
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Wendy M Book
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Timothy J Nelson
- Division of General Internal Medicine, Center for Regenerative Medicine, Pediatric Cardiothoracic Surgery, Division of Cardiovascular Diseases, Transplant Center, Division of Biomedical Statistics and Informatics, Division of Pediatric Cardiology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Garcia AM, Nakano SJ, Karimpour-Fard A, Nunley K, Blain-Nelson P, Stafford NM, Stauffer BL, Sucharov CC, Miyamoto SD. Phosphodiesterase-5 Is Elevated in Failing Single Ventricle Myocardium and Affects Cardiomyocyte Remodeling In Vitro. Circ Heart Fail 2019; 11:e004571. [PMID: 30354365 DOI: 10.1161/circheartfailure.117.004571] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Single ventricle (SV) congenital heart disease is fatal without intervention, and eventual heart failure is a major cause of morbidity and mortality. Although there are no proven medical therapies for the treatment or prevention of heart failure in the SV heart disease population, phosphodiesterase-5 inhibitors (PDE5i), such as sildenafil, are increasingly used. Although the pulmonary vasculature is the primary target of PDE5i therapy in patients with SV heart disease, the effects of PDE5i on the SV heart disease myocardium remain largely unknown. We sought to determine PDE5 expression and activity in the single right ventricle of SV heart disease patients relative to nonfailing controls and to determine whether PDE5 impacts cardiomyocyte remodeling using a novel serum-based in vitro model. Methods and Results PDE5 expression (n=9 nonfailing; n=7 SV heart disease), activity (n=8 nonfailing; n=9 SV heart disease), and localization (n=3 SV heart disease) were determined in explanted human right ventricle myocardium. PDE5 is expressed in SV heart disease cardiomyocytes, and PDE5 protein expression and activity are increased in SV heart disease right ventricle compared with nonfailing right ventricle. Isolated neonatal rat ventricular myocytes were treated for 72 hours with nonfailing or SV heart disease patient serum±sildenafil. Reverse transcription quantitative polymerase chain reaction (n=5 nonfailing; n=12 SV heart disease) and RNA sequencing (n=3 nonfailing; n=3 SV heart disease) were performed on serum-treated neonatal rat ventricular myocytes and demonstrated that treatment with SV heart disease sera results in pathological gene expression changes that are attenuated with PDE5i. Conclusions PDE5 is increased in failing SV heart disease myocardium, and pathological gene expression changes in SV heart disease serum-treated neonatal rat ventricular myocytes are abrogated by PDE5i. These results suggest that PDE5 represents an intriguing myocardial therapeutic target in this population.
Collapse
Affiliation(s)
- Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora (A.M.G., S.J.N., S.D.M.)
| | - Stephanie J Nakano
- Division of Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora (A.M.G., S.J.N., S.D.M.)
| | | | - Karin Nunley
- Division of Cardiology, Department of Medicine (K.N., P.B.-N., N.M.S., B.L.S., C.C.S.)
| | - Penny Blain-Nelson
- Division of Cardiology, Department of Medicine (K.N., P.B.-N., N.M.S., B.L.S., C.C.S.)
| | - Natalie M Stafford
- Division of Cardiology, Department of Medicine (K.N., P.B.-N., N.M.S., B.L.S., C.C.S.)
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine (K.N., P.B.-N., N.M.S., B.L.S., C.C.S.)
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine (K.N., P.B.-N., N.M.S., B.L.S., C.C.S.)
| | - Shelley D Miyamoto
- Division of Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora (A.M.G., S.J.N., S.D.M.)
| |
Collapse
|
23
|
Chatfield KC, Sparagna GC, Chau S, Phillips EK, Ambardekar AV, Aftab M, Mitchell MB, Sucharov CC, Miyamoto SD, Stauffer BL. Elamipretide Improves Mitochondrial Function in the Failing Human Heart. JACC Basic Transl Sci 2019; 4:147-157. [PMID: 31061916 PMCID: PMC6488757 DOI: 10.1016/j.jacbts.2018.12.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 01/28/2023]
Abstract
Mitochondrial function is impaired in explanted failing pediatric and adult human hearts. Elamipretide is a novel mitochondria-targeted drug that is targeted to cardiolipin on the inner mitochondrial membrane and improves coupling of the electron transport chain. Treatment of explanted human hearts with elamipretide improves human cardiac mitochondrial function. The study provides novel methods to evaluate the influence of compounds on mitochondria in the human heart and provides proof of principle for the use of elamipretide to improve mitochondrial energetics in failing myocardium due to multiple etiologies and irrespective of age.
Negative alterations of mitochondria are known to occur in heart failure (HF). This study investigated the novel mitochondrial-targeted therapeutic agent elamipretide on mitochondrial and supercomplex function in failing human hearts ex vivo. Freshly explanted failing and nonfailing ventricular tissue from children and adults was treated with elamipretide. Mitochondrial oxygen flux, complex (C) I and CIV activities, and in-gel activity of supercomplex assembly were measured. Mitochondrial function was impaired in the failing human heart, and mitochondrial oxygen flux, CI and CIV activities, and supercomplex-associated CIV activity significantly improved in response to elamipretide treatment. Elamipretide significantly improved failing human mitochondrial function.
Collapse
Affiliation(s)
- Kathryn C Chatfield
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, Colorado
| | - Genevieve C Sparagna
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Sarah Chau
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Elisabeth K Phillips
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Amrut V Ambardekar
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Muhammad Aftab
- Department of Surgery/Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado.,Department of Surgery, Veterans Administration Hospital, Denver, Colorado
| | - Max B Mitchell
- Department of Surgery/Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Carmen C Sucharov
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, Colorado
| | - Brian L Stauffer
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine/Division of Cardiology, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
24
|
Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy. Pediatr Res 2017; 82:642-649. [PMID: 28549058 PMCID: PMC5599335 DOI: 10.1038/pr.2017.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/07/2017] [Indexed: 01/11/2023]
Abstract
BackgroundHistone deacetylase (HDAC) inhibitors are promising therapeutics for various forms of cardiac diseases. The purpose of this study was to assess cardiac HDAC catalytic activity and expression in children with single ventricle (SV) heart disease of right ventricular morphology, as well as in a rodent model of right ventricular hypertrophy (RVH).MethodsHomogenates of right ventricle (RV) explants from non-failing controls and children born with a SV were assayed for HDAC catalytic activity and HDAC isoform expression. Postnatal 1-day-old rat pups were placed in hypoxic conditions, and echocardiographic analysis, gene expression, HDAC catalytic activity, and isoform expression studies of the RV were performed.ResultsClass I, IIa, and IIb HDAC catalytic activity and protein expression were elevated in the hearts of children born with a SV. Hypoxic neonatal rats demonstrated RVH, abnormal gene expression, elevated class I and class IIb HDAC catalytic activity, and protein expression in the RV compared with those in the control.ConclusionsThese data suggest that myocardial HDAC adaptations occur in the SV heart and could represent a novel therapeutic target. Although further characterization of the hypoxic neonatal rat is needed, this animal model may be suitable for preclinical investigations of pediatric RV disease and could serve as a useful model for future mechanistic studies.
Collapse
|
25
|
Yang C, Xu Y, Yu M, Lee D, Alharti S, Hellen N, Ahmad Shaik N, Banaganapalli B, Sheikh Ali Mohamoud H, Elango R, Przyborski S, Tenin G, Williams S, O’Sullivan J, Al-Radi OO, Atta J, Harding SE, Keavney B, Lako M, Armstrong L. Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet 2017; 26:3031-3045. [PMID: 28521042 PMCID: PMC5886295 DOI: 10.1093/hmg/ddx140] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is among the most severe forms of congenital heart disease. Although the consensus view is that reduced flow through the left heart during development is a key factor in the development of the condition, the molecular mechanisms leading to hypoplasia of left heart structures are unknown. We have generated induced pluripotent stem cells (iPSC) from five HLHS patients and two unaffected controls, differentiated these to cardiomyocytes and identified reproducible in vitro cellular and functional correlates of the HLHS phenotype. Our data indicate that HLHS-iPSC have a reduced ability to give rise to mesodermal, cardiac progenitors and mature cardiomyocytes and an enhanced ability to differentiate to smooth muscle cells. HLHS-iPSC-derived cardiomyocytes are characterised by a lower beating rate, disorganised sarcomeres and sarcoplasmic reticulum and a blunted response to isoprenaline. Whole exome sequencing of HLHS fibroblasts identified deleterious variants in NOTCH receptors and other genes involved in the NOTCH signalling pathway. Our data indicate that the expression of NOTCH receptors was significantly downregulated in HLHS-iPSC-derived cardiomyocytes alongside NOTCH target genes confirming downregulation of NOTCH signalling activity. Activation of NOTCH signalling via addition of Jagged peptide ligand during the differentiation of HLHS-iPSC restored their cardiomyocyte differentiation capacity and beating rate and suppressed the smooth muscle cell formation. Together, our data provide firm evidence for involvement of NOTCH signalling in HLHS pathogenesis, reveal novel genetic insights important for HLHS pathology and shed new insights into the role of this pathway during human cardiac development.
Collapse
Affiliation(s)
- Chunbo Yang
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Min Yu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - David Lee
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Sameer Alharti
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Nicola Hellen
- NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Noor Ahmad Shaik
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Hussein Sheikh Ali Mohamoud
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Ramu Elango
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | | | - Gennadiy Tenin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Simon Williams
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Osman O Al-Radi
- Department of Surgery, King Abdulaziz University, Saudi Arabia
| | - Jameel Atta
- Department of Surgery, King Abdulaziz University, Saudi Arabia
| | - Sian E. Harding
- NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
26
|
Hinton RB, Ware SM. Heart Failure in Pediatric Patients With Congenital Heart Disease. Circ Res 2017; 120:978-994. [PMID: 28302743 DOI: 10.1161/circresaha.116.308996] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is a complex clinical syndrome resulting from diverse primary and secondary causes and shared pathways of disease progression, correlating with substantial mortality, morbidity, and cost. HF in children is most commonly attributable to coexistent congenital heart disease, with different risks depending on the specific type of malformation. Current management and therapy for HF in children are extrapolated from treatment approaches in adults. This review discusses the causes, epidemiology, and manifestations of HF in children with congenital heart disease and presents the clinical, genetic, and molecular characteristics that are similar or distinct from adult HF. The objective of this review is to provide a framework for understanding rapidly increasing genetic and molecular information in the challenging context of detailed phenotyping. We review clinical and translational research studies of HF in congenital heart disease including at the genome, transcriptome, and epigenetic levels. Unresolved issues and directions for future study are presented.
Collapse
Affiliation(s)
- Robert B Hinton
- From the Department of Pediatrics and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| | - Stephanie M Ware
- From the Department of Pediatrics and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis.
| |
Collapse
|
27
|
Nakano SJ, Sucharov J, van Dusen R, Cecil M, Nunley K, Wickers S, Karimpur-Fard A, Stauffer BL, Miyamoto SD, Sucharov CC. Cardiac Adenylyl Cyclase and Phosphodiesterase Expression Profiles Vary by Age, Disease, and Chronic Phosphodiesterase Inhibitor Treatment. J Card Fail 2016; 23:72-80. [PMID: 27427220 DOI: 10.1016/j.cardfail.2016.07.429] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pediatric heart failure (HF) patients have a suboptimal response to traditional HF medications, although phosphodiesterase-3 inhibition (PDE3i) has been used with greater success than in the adult HF population. We hypothesized that molecular alterations specific to children with HF and HF etiology may affect response to treatment. METHODS AND RESULTS Adenylyl cyclase (AC) and phosphodiesterase (PDE) isoforms were quantified by means of quantitative real-time polymerase chain reaction in explanted myocardium from adults with dilated cardiomyopathy (DCM), children with DCM, and children with single-ventricle congenital heart disease of right ventricular morphology (SRV). AC and PDE expression profiles were uniquely regulated in each subject group and demonstratde distinct changes in response to chronic PDE3i. There was unique up-regulation of AC5 in adult DCM with PDE3i (fold change 2.415; P = .043), AC2 in pediatric DCM (fold change 2.396; P = .0067), and PDE1C in pediatric SRV (fold change 1.836; P = .032). Remarkably, PDE5A expression was consistently increased across all age and disease groups. CONCLUSIONS Unique regulation of AC and PDE isoforms supports a differential molecular adaptation to HF in children compared with adults, and may help identify mechanisms specific to the pathogenesis of pediatric HF. Greater understanding of these differences will help optimize medical therapies based on age and disease process.
Collapse
Affiliation(s)
- Stephanie J Nakano
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Denver, Aurora, Colorado
| | | | | | | | - Karin Nunley
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | | | | | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado; Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, Denver, Colorado
| | - Shelley D Miyamoto
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Denver, Aurora, Colorado
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
28
|
Myocardial Response to Milrinone in Single Right Ventricle Heart Disease. J Pediatr 2016; 174:199-203.e5. [PMID: 27181939 PMCID: PMC4925285 DOI: 10.1016/j.jpeds.2016.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/02/2016] [Accepted: 04/05/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Empiric treatment with milrinone, a phosphodiesterase (PDE) 3 inhibitor, has become increasingly common in patients with single ventricle heart disease of right ventricular (RV) morphology (SRV); our objective was to characterize the myocardial response to PDE3 inhibition (PDE3i) in the pediatric population with SRV. STUDY DESIGN Cyclic adenosine monophosphate levels, PDE activity, and phosphorylated phospholamban (PLN) were determined in explanted human ventricular myocardium from nonfailing pediatric donors (n = 10) and pediatric patients transplanted secondary to SRV. Subjects with SRV were further classified by PDE3i treatment (n = 13 with PDE3i and n = 12 without PDE3i). RESULTS In comparison with nonfailing RV myocardium (n = 8), cyclic adenosine monophosphate levels are lower in patients with SRV treated with PDE3i (n = 12, P = .021). Chronic PDE3i does not alter total PDE or PDE3 activity in SRV myocardium. Compared with nonfailing RV myocardium, SRV myocardium (both with and without PDE3i) demonstrates equivalent phosphorylated PLN at the protein kinase A phosphorylation site. CONCLUSIONS As evidenced by preserved phosphorylated PLN, the molecular adaptation associated with SRV differs significantly from that demonstrated in pediatric heart failure because of dilated cardiomyopathy. These alterations support a pathophysiologically distinct mechanism of heart failure in pediatric patients with SRV, which has direct implications regarding the presumed response to PDE3i treatment in this population.
Collapse
|
29
|
Schranz D, Voelkel NF. "Nihilism" of chronic heart failure therapy in children and why effective therapy is withheld. Eur J Pediatr 2016; 175:445-55. [PMID: 26895877 PMCID: PMC4806719 DOI: 10.1007/s00431-016-2700-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/06/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Major advances in chronic heart failure (cHF) therapy have been achieved and documented in adult patients, while research regarding the mechanisms and therapy of cHF in children has lagged behind. Based on receptor physiological studies and pharmacological knowledge, treatment with specific ß1-adrenergic receptor blocker (ARB), tissue angiotensin-converting enzyme inhibitor (ACE-I), and mineralocorticoid antagonists have to be recommended in children despite lack of sufficient data derived from prospective randomized studies. At our institution, bisoprolol, lisinopril, and spironolactone have been firmly established to treat systolic cHF, hypoplastic left heart syndrome (HLHS) following hybrid approach and congenital left-right shunt diseases, latest in patients where surgery has to be delayed. Chronic therapy with long-acting diuretics and fluid restriction are not advocated because short-term effects are achieved at the expense of further neuro-humoral stimulation. It remains unclear why diuretics are recommended although evidence-based studies, documenting long-term benefit, are missing. However, that is true for all currently used drugs for pediatric cHF. CONCLUSION This review focuses on the prevailing "nihilism" of cHF therapy in children with the goal to encourage physicians to treat pediatric cHF with a rationally designed therapy, which combines available agents that have been shown to improve survival in adult patients with cHF. Because of the lack of clinical trials, which generate the needed evidence, surrogate variables like heart and respiratory rate, weight gain, image-derived data, and biomarkers should be monitored and used instead. The recommended pharmacological therapy for systolic heart failure is also provided as the basis for utilizing reversible pulmonary arterial banding (PAB) as a novel strategy in young children with dilative cardiomyopathy (DCM) with preserved right ventricular function. WHAT IS KNOWN • Heart failure (HF) in children is a serious public health concern. • HF has numerous etiologies, but unspecific symptoms. • HF interplays among neuro-humoral, and molecular abnormalities. • Pediatric cHF-therapy is currently based on loop-diuretics, fluid restriction and digoxin. What is New: • Cardiac function analysis has to include cardiac synchrony and VVI. • Considering enormous potential of cardiac regeneration, therapy has to extend with selective ß1-ARB, tissue ACE-I and mineralocorticoid blockers, loop-diuretics avoided as ever possible. • Inhibition of the endogenous neuro-humoral stimulation is monitored by surrogate parameters as heart and breath rate and systolic and diastolic blood pressure. • Advocated HF therapy serves for regenerative strategies as reversible Pulmonary Artery Banding in DCM.
Collapse
Affiliation(s)
- Dietmar Schranz
- />Pediatric Heart Center, Justus-Liebig University Clinic, Feulgenstr. 12, 30385 Giessen, Germany
| | - Norbert F. Voelkel
- />School of Pharmacy, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
30
|
Sucharov CC, Sucharov J, Karimpour-Fard A, Nunley K, Stauffer BL, Miyamoto SD. Micro-RNA expression in hypoplastic left heart syndrome. J Card Fail 2014; 21:83-8. [PMID: 25291457 DOI: 10.1016/j.cardfail.2014.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 09/15/2014] [Accepted: 09/29/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Micro-RNAs (miRNAs) are important regulators of gene expression through interaction with the 3'UTR of target messenger RNAs (mRNAs). The role of miRNAs has been extensively studied in adult human and nonhuman animal models of heart disease. Hypoplastic left heart syndrome (HLHS) is the most common form of severe congenital heart disease and is an important cause of morbidity and mortality in infants and children. The objective of this work was to analyze the miRNA profile in HLHS patients. METHODS AND RESULTS miRNA profile was determined in the right ventricle with the use of miRNA array, and expression was validated with the use of reverse-transcription polymerase chain reaction (RT-PCR). Based on bioinformatics analysis, targets were selected and their expression analyzed with the use of RT-PCR.We found that the miRNA profile of HLHS is novel, with few similarities between pediatric and adult idiopathic dilated cardiomyopathy. Moreover, our analysis identified putative targets for these miRNAs that are known to be important for cardiac development and disease, and that miRNAs and their putative targets are antithetically regulated. We also found that miRNA expression changes with stage of surgery, suggesting that volume unloading of the ventricle has important consequences for gene expression. CONCLUSIONS Our data suggest a unique miRNA profile for HLHS that may be associated with defects in cardiac development and disease.
Collapse
Affiliation(s)
- Carmen C Sucharov
- Division of Cardiology, Denver Department of Medicine, University of Colorado, Aurora, Colorado.
| | | | - Anis Karimpour-Fard
- Center for Computational Pharmacology, University of Colorado School of Medicine, Aurora, Colorado
| | - Karin Nunley
- Division of Cardiology, Denver Department of Medicine, University of Colorado, Aurora, Colorado
| | - Brian L Stauffer
- Division of Cardiology, Denver Department of Medicine, University of Colorado, Aurora, Colorado; Division of Cardiology, Denver Health and Hospital Authority, Denver, Colorado
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado.
| |
Collapse
|
31
|
Arnold RR, Loukanov T, Gorenflo M. Hypoplastic left heart syndrome - unresolved issues. Front Pediatr 2014; 2:125. [PMID: 25426478 PMCID: PMC4225740 DOI: 10.3389/fped.2014.00125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/27/2014] [Indexed: 12/03/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is one of the most challenging congenital heart defects. At present, it is expected that - at best - 70% of newborns with HLHS will reach adulthood. This review addresses the problems of right ventricular (RV) failure and insufficient growth of pulmonary vasculature in these patients. In order to further improve long-term prognosis translational research to control RV function, growth of pulmonary arteries and progress in chronic circulatory support are clearly needed to provide a further improvement for adults with HLHS.
Collapse
Affiliation(s)
- Raoul Roman Arnold
- Clinic for Paediatric and Congenital Cardiac Cardiology, University Medical Centre , Heidelberg , Germany
| | - Tsvetomir Loukanov
- Congenital Cardiac Surgery Section, Clinic for Cardiothoracic Surgery, University Medical Centre , Heidelberg , Germany
| | - Matthias Gorenflo
- Clinic for Paediatric and Congenital Cardiac Cardiology, University Medical Centre , Heidelberg , Germany
| |
Collapse
|