1
|
Jeong JC, Gelman AE, Chong AS. Update on the immunological mechanisms of primary graft dysfunction and chronic lung allograft dysfunction. Curr Opin Organ Transplant 2024; 29:412-419. [PMID: 39422603 PMCID: PMC11537820 DOI: 10.1097/mot.0000000000001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
PURPOSE OF REVIEW Primary graft dysfunction (PGD) and chronic lung allograft dysfunction (CLAD) are the leading causes of graft loss in lung transplant recipients. The development of mouse lung transplant models has allowed for the genetic dissection of cellular and molecular pathways that prevent graft survival. This review provides an overview into recent mechanistic insights into PGD and CLAD. RECENT FINDINGS Mouse orthotopic lung transplant models and investigations of human lung transplant recipeints have revealed new molecular and cellular targets that promote PGD and CLAD. Donor and recipient-derived innate immune cells promote PGD and CLAD. PGD is driven by communication between classical monocytes and tissue-resident nonclassical monocytes activating alveolar macrophages to release chemokines that recruit neutrophils. Products of cell damage trigger neutrophil NET release, which together with NK cells, antibodies and complement, that further promote PGD. The development of CLAD involves circuits that activate B cells, CD8 + T cells, classical monocytes, and eosinophils. SUMMARY Effective targeted management of PGD and CLAD in lung transplant recipient to improve their long-term outcome remains a critical unmet need. Current mechanistic studies and therapeutic studies in mouse models and humans identify new possibilities for prevention and treatment.
Collapse
Affiliation(s)
- Jong Cheol Jeong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| | - Andrew E. Gelman
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anita S Chong
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Wong A, Duong A, Wilson G, Yeung J, MacParland S, Han H, Cypel M, Keshavjee S, Liu M. Ischemia-reperfusion responses in human lung transplants at the single-cell resolution. Am J Transplant 2024; 24:2199-2211. [PMID: 39197591 DOI: 10.1016/j.ajt.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Ischemia-reperfusion is an unavoidable step of organ transplantation. Development of therapeutics for lung injury during transplantation has proved challenging; understanding lung injury from human data at the single-cell resolution is required to accelerate the development of therapeutics. Donor lung biopsies from 6 human lung transplant cases were collected at the end of cold preservation and 2-hour reperfusion and underwent single-cell RNA sequencing. Donor and recipient origin of cells from the reperfusion timepoint were deconvolved. Gene expression profiles were: (1) compared between each donor cell type between timepoints and (2) compared between donor and recipient cells. Inflammatory responses from donor lung macrophages were found after reperfusion with upregulation of multiple cytokines and chemokines, especially IL-1β and IL-1α. Significant inflammatory responses were found in alveolar epithelial cells (featured by CXCL8) and lung endothelial cells (featured by IL-6 upregulation). Different inflammatory responses were noted between donor and recipient monocytes and CD8+ T cells. The inflammatory signals and differences between donor and recipient cells observed provide insight into the cellular and molecular mechanisms of ischemia-reperfusion induced lung injury. Further investigations may lead to the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Aaron Wong
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allen Duong
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Wilson
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Yeung
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sonya MacParland
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hong Han
- Centre for Discovery in Cancer Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Tamaki T, Natsume T, Katoh A, Shigenari A, Shiina T, Nakajima N, Saito K, Fukuzawa T, Otake M, Enya S, Kangawa A, Imai T, Tamaki M, Uchiyama Y. Skeletal Muscle-Derived Stem Cell Transplantation Accelerates the Recovery of Peripheral Nerve Gap Injury under 50% and 100% Allogeneic Compatibility with the Swine Leucocyte Antigen. Biomolecules 2024; 14:939. [PMID: 39199327 PMCID: PMC11353188 DOI: 10.3390/biom14080939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Pig skeletal muscle-derived stem cells (SK-MSCs) were transplanted onto the common peroneal nerve with a collagen tube as a preclinical large animal experiment designed to address long nerve gaps. In terms of therapeutic usefulness, a human family case was simulated by adjusting the major histocompatibility complex to 50% and 100% correspondences. Swine leukocyte antigen (SLA) class I haplotypes were analyzed and clarified, as well as cell transplantation. Skeletal muscle-derived CD34+/45- (Sk-34) cells were injected into bridged tubes in two groups (50% and 100%) and with non-cell groups. Therapeutic effects were evaluated using sedentary/general behavior-based functional recovery score, muscle atrophy ratio, and immunohistochemistry. The results indicated that a two-Sk-34-cell-transplantation group showed clearly and significantly favorable functional recovery compared to a non-cell bridging-only group. Supporting functional recovery, the morphological reconstitution of the axons, endoneurium, and perineurium was predominantly evident in the transplanted groups. Thus, Sk-34 cell transplantation is effective for the regeneration of peripheral nerve gap injury. Additionally, 50% and 100% SLA correspondences were therapeutically similar and not problematic, and no adverse reaction was found in the 50% group. Therefore, the immunological response to Sk-MSCs is considered relatively low. The possibility of the Sk-MSC transplantation therapy may extend to the family members beyond the autologous transplantation.
Collapse
Affiliation(s)
- Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Toshiharu Natsume
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Akira Katoh
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (A.S.); (T.S.)
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (A.S.); (T.S.)
| | - Nobuyuki Nakajima
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Urology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Kosuke Saito
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Otolaryngology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Tsuyoshi Fukuzawa
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Radiation Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masayoshi Otake
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa 439-0037, Shizuoka, Japan; (M.O.); (S.E.); (A.K.)
| | - Satoko Enya
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa 439-0037, Shizuoka, Japan; (M.O.); (S.E.); (A.K.)
| | - Akihisa Kangawa
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa 439-0037, Shizuoka, Japan; (M.O.); (S.E.); (A.K.)
| | - Takeshi Imai
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Miyu Tamaki
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshiyasu Uchiyama
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
4
|
Sun X, Huang A, Zhang H, Song N, Huang Z, Xin G, Wang Z, Liu M, Jiang K, Huang L. L-Alanyl-L-Glutamine Alleviated Ischemia-Reperfusion Injury and Primary Graft Dysfunction in Rat Lung Transplants. Transplantation 2024:00007890-990000000-00835. [PMID: 39054570 DOI: 10.1097/tp.0000000000005144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND Concern of ischemia-reperfusion injury reduces utilization of donor lungs. We hypothesized adding L-alanyl-L-glutamine (L-AG) to preservation solution may protect donor lungs from ischemia-reperfusion injury through its multiple cytoprotective effects. METHODS A lung transplantation cell culture model was used on human lung epithelial cells and pulmonary microvascular endothelial cells, and the effects of adding different concentrations of L-AG on basic cellular function were tested. Rat donor lungs were preserved at 4 °C with 8 mmol/L L-AG for 12 h followed by 4 h reperfusion or monitored for 3 d. Lung function, lung histology, inflammation, and cell death biomarker were tested. Computerized tomography scan was used and metabolomic analysis was performed on lung tissues. RESULTS Cold preservation with L-AG improved cell viability and inhibited apoptosis in cell culture. Rat donor lungs treated with L-AG during cold storage showed decreased peak airway pressure, higher dynamic compliance and oxygenation ability, reduced lung injury, apoptosis, and oxidative stress during reperfusion. L-AG treatment significantly changed 130 metabolites during reperfusion, with enhanced amino acid biosynthesis and tricarboxylic acid cycle. Furthermore, cold storage with L-AG decreased primary graft dysfunction grade, improved oxygenation, reduced pulmonary atelectasis, sign of infection, and pneumothorax in a rat left lung transplant 3-d survival model. CONCLUSIONS Adding L-AG to cold preservation solution reduced lung injury and alleviated primary graft dysfunction by inhibiting inflammation, oxidative stress, and cell death with modified metabolic activities.
Collapse
Affiliation(s)
- Xiangfu Sun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Naicheng Song
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihong Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaojie Xin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaokai Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Jochmans I, Lerut E, Monbaliu D, Pirenne J. Impact of a Single Dose of Alpha-1-Antitrypsin in a Rat Model of Bilateral Kidney Ischemia Reperfusion Injury. J Surg Res 2024; 299:179-187. [PMID: 38759334 DOI: 10.1016/j.jss.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
INTRODUCTION Renal ischemia reperfusion injury is a major cause of perioperative acute kidney injury. Alpha-1-antitrypsin (AAT), a protease inhibitor, might improve outcomes by reducing inflammation and apoptosis. We investigated the effects of a single intravenous dose of AAT immediately before ischemia in a rat bilateral renal clamping model. METHODS Both renal pedicles of male Sprague-Dawley rats were clamped (45 min). Plasma and renal tissue were collected at 3 h, 24 h, and 7 d. Intravenous AAT (60 mg/kg) was administered 5 min before clamping. Controls received saline. Shams underwent surgery without clamping or injection. Kidney function was assessed by plasma creatinine; injury by aspartate aminotransferase, heart-type-fatty-acid-binding-protein, and histopathology. Renal gene expression of tumor necrosis factor α, interleukin (IL)-6, heat shock protein 70, Chemokine (C-X-C motif) ligand 2, cyclo-oxygenase 2, endothelin-1, IL-10, heme oxygenase 1, B-cell lymphoma 2, and bcl-2-like protein 4 were determined by quantitative reverse transcriptase polymerase chain reaction. RESULTS None of the 3 h and 24 h end points were different between Control and AAT. In Sham, survival was 100% (6/6), 33% in Control (2/6), and 83% (5/6) in AAT (overall log-rank 0.03). At 7 d, plasma creatinine was lower with higher glomerular filtration rate in surviving AAT treated animals compared to Control (P < 0.001, P 0.03, respectively). These also had lower tumor necrosis factor α and IL-6 gene expression (P 0.001, P < 0.001, respectively). CONCLUSIONS These data suggest that a single intravenous dose of AAT immediately before ischemia might affect proinflammatory gene expression, glomerular filtration rate and animal survival at 1 wk after reperfusion despite an absence of improvement in early renal function and injury. These findings deserve further investigating in sufficiently powered studies including both sexes.
Collapse
Affiliation(s)
- Ina Jochmans
- Lab of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium; Translational Cell & Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| | - Evelyne Lerut
- Translational Cell & Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Lab of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Lab of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Bai X, Gao J, Guan X, Narum DE, Fornis LB, Griffith DE, Gao B, Sandhaus RA, Huang H, Chan ED. Analysis of alpha-1-antitrypsin (AAT)-regulated, glucocorticoid receptor-dependent genes in macrophages reveals a novel host defense function of AAT. Physiol Rep 2024; 12:e16124. [PMID: 39016119 PMCID: PMC11252833 DOI: 10.14814/phy2.16124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Alpha-1-antitrypsin (AAT) plays a homeostatic role in attenuating excessive inflammation and augmenting host defense against microbes. We demonstrated previously that AAT binds to the glucocorticoid receptor (GR) resulting in significant anti-inflammatory and antimycobacterial consequences in macrophages. Our current investigation aims to uncover AAT-regulated genes that rely on GR in macrophages. We incubated control THP-1 cells (THP-1control) and THP-1 cells knocked down for GR (THP-1GR-KD) with AAT, performed bulk RNA sequencing, and analyzed the findings. In THP-1control cells, AAT significantly upregulated 408 genes and downregulated 376 genes. Comparing THP-1control and THP-1GR-KD cells, 125 (30.6%) of the AAT-upregulated genes and 154 (41.0%) of the AAT-downregulated genes were significantly dependent on GR. Among the AAT-upregulated, GR-dependent genes, CSF-2 that encodes for granulocyte-monocyte colony-stimulating factor (GM-CSF), known to be host-protective against nontuberculous mycobacteria, was strongly upregulated by AAT and dependent on GR. We further quantified the mRNA and protein of several AAT-upregulated, GR-dependent genes in macrophages and the mRNA of several AAT-downregulated, GR-dependent genes. We also discussed the function(s) of selected AAT-regulated, GR-dependent gene products largely in the context of mycobacterial infections. In conclusion, AAT regulated several genes that are dependent on GR and play roles in host immunity against mycobacteria.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of MedicineRocky Mountain Regional Veterans Affairs Medical CenterAuroraColoradoUSA
- Department of Academic AffairsNational Jewish HealthDenverColoradoUSA
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Junfeng Gao
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
| | - Xiaoyu Guan
- Department of Biostatistics and InformaticsUniversity of Colorado School of Public Health Anschutz Medical CampusAuroraColoradoUSA
| | - Drew E. Narum
- Department of Academic AffairsNational Jewish HealthDenverColoradoUSA
| | | | - David E. Griffith
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of MedicineNational Jewish HealthDenverColoradoUSA
| | - Bifeng Gao
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Robert A. Sandhaus
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of MedicineNational Jewish HealthDenverColoradoUSA
| | - Hua Huang
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Edward D. Chan
- Department of MedicineRocky Mountain Regional Veterans Affairs Medical CenterAuroraColoradoUSA
- Department of Academic AffairsNational Jewish HealthDenverColoradoUSA
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
7
|
Dasí F. Alpha-1 antitrypsin deficiency. Med Clin (Barc) 2024; 162:336-342. [PMID: 37993348 DOI: 10.1016/j.medcli.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a rare hereditary condition caused by decreased plasma and tissue levels of alpha-1 antitrypsin (AAT) that can lead to serious lung and liver disease in children and adults. AATD patients face challenges such as under diagnosis, clinical variability, and limited treatment options for liver disease. Early detection and biomarkers for predicting outcomes are needed to improve patient outcome. Currently, the only approved pharmacological therapy is augmentation therapy, which can delay the progression of emphysema. However, alternative strategies such as gene therapy, induced pluripotent stem cells, and prevention of AAT polymerization inside hepatocytes are being investigated. This review aims to summarize and update current knowledge on AATD, identify areas of controversy, and formulate questions for further research.
Collapse
Affiliation(s)
- Francisco Dasí
- Universitat de València, Facultad de Medicina, Departamento de Fisiología, IIS INCLIVA, Valencia, Spain.
| |
Collapse
|
8
|
Jenkins JA, Verdiner R, Omar A, Farina JM, Wilson R, D’Cunha J, Reck Dos Santos PA. Donor and recipient risk factors for the development of primary graft dysfunction following lung transplantation. Front Immunol 2024; 15:1341675. [PMID: 38380332 PMCID: PMC10876853 DOI: 10.3389/fimmu.2024.1341675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Primary Graft Dysfunction (PGD) is a major cause of both short-term and long-term morbidity and mortality following lung transplantation. Various donor, recipient, and technical risk factors have been previously identified as being associated with the development of PGD. Here, we present a comprehensive review of the current literature as it pertains to PGD following lung transplantation, as well as discussing current strategies to mitigate PGD and future directions. We will pay special attention to recent advances in lung transplantation such as ex-vivo lung perfusion, thoracoabdominal normothermic regional perfusion, and up-to-date literature published in the interim since the 2016 ISHLT consensus statement on PGD and the COVID-19 pandemic.
Collapse
Affiliation(s)
- J. Asher Jenkins
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Ricardo Verdiner
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Ashraf Omar
- Division of Pulmonology and Critical Care Medicine, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Juan Maria Farina
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Renita Wilson
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Jonathan D’Cunha
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | | |
Collapse
|
9
|
Wang H, Gou W, Nietert PJ, Hirsch J, Wang J, Allawi A, Mortadha AS, Cook K, Overstreet M, Wei H, Adams D, Lancaster WP, Morgan KA, Strange C. Alpha-1 Antitrypsin Augmentation Therapy in Chronic Pancreatitis Patients Undergoing Total Pancreatectomy and Islet Autotransplantation: A Randomized, Controlled Study. Cell Transplant 2024; 33:9636897241243014. [PMID: 38659255 PMCID: PMC11044796 DOI: 10.1177/09636897241243014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Stress-induced islet graft loss during the peri-transplantation period reduces the efficacy of islet transplantation. In this prospective, randomized, double-blind clinical trial, we evaluated the safety and efficacy of 60 mg/kg human alpha-1 antitrypsin (AAT) or placebo infusion weekly for four doses beginning before surgery in chronic pancreatitis (CP) patients undergoing total pancreatectomy and islet autotransplantation (TP-IAT). Subjects were followed for 12 months post-TP-IAT. The dose of AAT was safe, as there was no difference in the types and severity of adverse events in participants from both groups. There were some biochemical signals of treatment effect with a higher oxygen consumption rate in AAT islets before transplantation and a lower serum C-peptide (an indicator of islet death) in the AAT group at 15 min after islet infusion. Findings per the statistical analysis plan using a modified intention to treat analysis showed no difference in the C-peptide area under the curve (AUC) following a mixed meal tolerance test at 12 months post-TP-IAT. There was no difference in the secondary and exploratory outcomes. Although AAT therapy did not show improvement in C-peptide AUC in this study, AAT therapy is safe in CP patients and there are experiences gained on optimal clinical trial design in this challenging disease.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Paul J Nietert
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Jason Hirsch
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Jingjing Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Ahmed Allawi
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Abd S Mortadha
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Kelsey Cook
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Morgan Overstreet
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Hua Wei
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - David Adams
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - William P Lancaster
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Katherine A Morgan
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
10
|
Chao BT, Sage AT, Yeung JC, Bai X, Ma J, Martinu T, Liu M, Cypel M, Van Raemdonck D, Ceulemans LJ, Neyrinck A, Verleden S, Keshavjee S. Identification of regional variation in gene expression and inflammatory proteins in donor lung tissue and ex vivo lung perfusate. J Thorac Cardiovasc Surg 2023; 166:1520-1528.e3. [PMID: 37482240 DOI: 10.1016/j.jtcvs.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE Diagnosing lung injury is a challenge in lung transplantation. It has been unclear if a single biopsy specimen is truly representative of the entire organ. Our objective was to investigate lung inflammatory biomarkers using human lung tissue biopsies and ex vivo lung perfusion perfusate. METHODS Eight human donor lungs declined for transplantation were air inflated, flash frozen, and partitioned from apex to base. Biopsies were then sampled throughout the lung. Perfusate was sampled from 4 lung lobes in 8 additional donor lungs subjected to ex vivo lung perfusion. The levels of interleukin-6, interleukin-8, interleukin-10, and interleukin-1β were measured using quantitative reverse transcription polymerase chain reaction from lung biopsies and enzyme-linked immunosorbent assay from ex vivo lung perfusion perfusate. RESULTS The median intra-biopsy equal-variance P value was .50 for messenger RNA biomarkers in tissue biopsies. The median intra-biopsy coefficient of variance was 18%. In donors with no apparent focal injuries, the biopsies in each donor showed no difference in various lung slices, with a coefficient of variance of 20%. The exception was biopsies from the lingula and injured focal areas that demonstrated larger differences. Cytokines in ex vivo lung perfusion perfusate showed minimal variation among different lobes (coefficient of variance = 4.9%). CONCLUSIONS Cytokine gene expression in lung biopsies was consistent, and the biopsy analysis reflects the whole lung, except when specimens were collected from the lingula or an area of focal injury. Ex vivo lung perfusion perfusate also provides a representative measurement of lung inflammation from the draining lobe. These results will reassure clinicians that a lung biopsy or an ex vivo lung perfusion perfusate sample can be used to inform donor lung selection.
Collapse
Affiliation(s)
- Bonnie T Chao
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T Sage
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan C Yeung
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Bai
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jin Ma
- Biostatistics Research Unit, University Health Network, Toronto, Ontario, Canada
| | - Tereza Martinu
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dirk Van Raemdonck
- BREATHE, Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- BREATHE, Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Arne Neyrinck
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Stijn Verleden
- BREATHE, Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium
| | - Shaf Keshavjee
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Jeon JE, Huang L, Zhu Z, Wong A, Keshavjee S, Liu M. Acellular ex vivo lung perfusate silences pro-inflammatory signaling in human lung endothelial and epithelial cells. J Transl Med 2023; 21:729. [PMID: 37845763 PMCID: PMC10580637 DOI: 10.1186/s12967-023-04601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion injury is a key complication following lung transplantation. The clinical application of ex vivo lung perfusion (EVLP) to assess donor lung function has significantly increased the utilization of "marginal" donor lungs with good clinical outcomes. The potential of EVLP on improving organ quality and ameliorating ischemia-reperfusion injury has been suggested. METHODS To determine the effects of ischemia-reperfusion and EVLP on gene expression in human pulmonary microvascular endothelial cells and epithelial cells, cell culture models were used to simulate cold ischemia (4 °C for 18 h) followed by either warm reperfusion (DMEM + 10% FBS) or EVLP (acellular Steen solution) at 37 °C for 4 h. RNA samples were extracted for bulk RNA sequencing, and data were analyzed for significant differentially expressed genes and pathways. RESULTS Endothelial and epithelial cells showed significant changes in gene expressions after ischemia-reperfusion or EVLP. Ischemia-reperfusion models of both cell types showed upregulated pro-inflammatory and downregulated cell metabolism pathways. EVLP models, on the other hand, exhibited downregulation of cell metabolism, without any inflammatory signals. CONCLUSION The commonly used acellular EVLP perfusate, Steen solution, silenced the activation of pro-inflammatory signaling in both human lung endothelial and epithelial cells, potentially through the lack of serum components. This finding could establish the basic groundwork of studying the benefits of EVLP perfusate as seen from current clinical practice.
Collapse
Affiliation(s)
- Jamie E Jeon
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lei Huang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiyuan Zhu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Department of Otolaryngology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Aaron Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Huang L, Vellanki RN, Zhu Z, Wouters BG, Keshavjee S, Liu M. De Novo Design and Development of a Nutrient-Rich Perfusate for Ex Vivo Lung Perfusion with Cell Culture Models. Int J Mol Sci 2023; 24:13117. [PMID: 37685927 PMCID: PMC10487937 DOI: 10.3390/ijms241713117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Ex vivo lung perfusion (EVLP) has increased donor lung utilization through assessment of "marginal" lungs prior to transplantation. To develop it as a donor lung reconditioning platform, prolonged EVLP is necessary, and new perfusates are required to provide sufficient nutritional support. Human pulmonary microvascular endothelial cells and epithelial cells were used to test different formulas for basic cellular function. A selected formula was further tested on an EVLP cell culture model, and cell confluence, apoptosis, and GSH and HSP70 levels were measured. When a cell culture medium (DMEM) was mixed with a current EVLP perfusate-Steen solution, DMEM enhanced cell confluence and migration and reduced apoptosis in a dose-dependent manner. A new EVLP perfusate was designed and tested based on DMEM. The final formula contains 5 g/L Dextran-40 and 7% albumin and is named as D05D7A solution. It inhibited cold static storage and warm reperfusion-induced cell apoptosis, improved cell confluence, and enhanced GSH and HSP70 levels in human lung cells compared to Steen solution. DMEM-based nutrient-rich EVLP perfusate could be a promising formula to prolong EVLP and support donor lung repair, reconditioning and further improve donor lung quality and quantity for transplantation with better clinical outcome.
Collapse
Affiliation(s)
- Lei Huang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (L.H.); (Z.Z.); (S.K.)
| | - Ravi N. Vellanki
- Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON M5G 1L7, Canada; (R.N.V.); (B.G.W.)
| | - Zhiyuan Zhu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (L.H.); (Z.Z.); (S.K.)
| | - Bradly G. Wouters
- Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON M5G 1L7, Canada; (R.N.V.); (B.G.W.)
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (L.H.); (Z.Z.); (S.K.)
- Departments of Surgery, Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (L.H.); (Z.Z.); (S.K.)
- Departments of Surgery, Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1A8, Canada
| |
Collapse
|
13
|
Korkmaz-Icöz S, Abulizi S, Li K, Korkmaz B, Georgevici AI, Sayour AA, Loganathan S, Canoglu H, Karck M, Szabó G. Preservation solution Custodiol containing human alpha-1-antitrypsin improves graft recovery after prolonged cold ischemic storage in a rat model of heart transplantation. Front Immunol 2023; 14:1155343. [PMID: 37426668 PMCID: PMC10323193 DOI: 10.3389/fimmu.2023.1155343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The shortage of available donor hearts and the risk of ischemia/reperfusion injury restrict heart transplantation (HTX). Alpha-1-antitrypsin (AAT), a well-characterized inhibitor of neutrophil serine protease, is used in augmentation therapy to treat emphysema due to severe AAT deficiency. Evidence demonstrates its additional anti-inflammatory and tissue-protective effects. We hypothesized that adding human AAT in a preservation solution reduces graft dysfunction in a rat model of HTX following extended cold ischemic storage. Methods The hearts from isogenic Lewis donor rats were explanted, stored for either 1h or 5h in cold Custodiol supplemented with either vehicle (1h ischemia, n=7 or 5h ischemia, n=7 groups) or 1 mg/ml AAT (1h ischemia+AAT, n=7 or 5h ischemia+AAT, n=9 groups) before heterotopic HTX. Left-ventricular (LV) graft function was evaluated in vivo 1.5h after HTX. Immunohistochemical detection of myeloperoxydase (MPO) was performed in myocardial tissue and expression of 88 gene quantified with PCR was analyzed both statistical and with machine-learning methods. Results After HTX, LV systolic function (dP/dtmax 1h ischemia+AAT 4197 ± 256 vs 1h ischemia 3123 ± 110; 5h ischemia+AAT 2858 ± 154 vs 5h ischemia 1843 ± 104mmHg/s, p<0.05) and diastolic function (dP/dtmin 5h ischemia+AAT 1516 ± 68 vs 5h ischemia 1095 ± 67mmHg/s, p<0.05) at an intraventricular volume of 90µl were improved in the AAT groups compared with the corresponding vehicle groups. In addition, the rate pressure product (1h ischemia+AAT 53 ± 4 vs 1h ischemia 26 ± 1; 5h ischemia+AAT 37 ± 3 vs 5h ischemia 21 ± 1mmHg*beats/min at an intraventricular volume of 90µl; p<0.05) was increased in the AAT groups compared with the corresponding vehicle groups. Moreover, the 5h ischemia+AAT hearts exhibited a significant reduction in MPO-positive cell infiltration in comparison to the 5h ischemia group. Our computational analysis shows that ischemia+AAT network displays higher homogeneity, more positive and fewer negative gene correlations than the ischemia+placebo network. Discussion We provided experimental evidence that AAT protects cardiac grafts from prolonged cold ischemia during HTX in rats.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Sophia Abulizi
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Kunsheng Li
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, “Research Center for Respiratory Diseases” and University of Tours, Tours, France
| | - Adrian-Iustin Georgevici
- Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
- Department of Anaesthesiology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Alex Ali Sayour
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Hansa Canoglu
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| |
Collapse
|
14
|
Mariscal A, Tikkanen J, Calderone L, Hough O, Chen M, Martinu T, Juvet S, Cypel M, Liu M, Keshavjee S. Alpha-1-Antitrypsin Safely Promotes Rapid Recovery of Pigs after Lung Transplantation. Am J Transplant 2023:S1600-6135(23)00370-2. [PMID: 37004914 DOI: 10.1016/j.ajt.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Andrea Mariscal
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jussi Tikkanen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lindsay Calderone
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Hough
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Manyin Chen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Conde B, Costa F, Gomes J, Lopes AP, Mineiro MA, Rodrigues O, Santos C, Semedo L, Sucena M, Guimarães C. Expert Perspectives on the Management of Alpha 1-Antitrypsin Deficiency. ACTA MEDICA PORT 2023; 36:49-54. [PMID: 35848753 DOI: 10.20344/amp.18497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 01/05/2023]
Abstract
Alpha 1-antitrypsin deficiency is an inherited autosomal codominant disorder, which predisposes patients to lung and/or liver disease. Even though it is considered rare, it is one of the most frequent genetic disorders worldwide, albeit remaining underdiagnosed. Several organizations and societies, including the Portuguese Society of Pulmonology have been elaborating guidelines and recommendations for the diagnosis and management of alpha 1-antitrypsin deficiency. Nevertheless, some important matters are yet to be included in those, mainly due to lack of robust scientific evidence, and continue to represent a point of discussion. This article reviews some important scientific publications and expresses the perspectives of a group of Portuguese experts regarding the management of alpha 1-antitrypsin deficiency, namely in terms of the pre and neonatal diagnosis, the impact of the COVID-19 pandemic, the validity of replacement therapy in lung transplant-receiving, and finally, alternative strategies of alpha 1-antitrypsin deficiency treatment to improve the patients' quality of life.
Collapse
Affiliation(s)
- Bebiana Conde
- Centro Hospitalar Trás-os-Montes e Alto Douro. Vila Real; Universidade de Trás-os-Montes e Alto Douro. Vila Real. Portugal
| | - Filipa Costa
- Serviço de Pneumologia. Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| | - Joana Gomes
- Serviço de Pneumologia. Centro Hospitalar e Universitário do Porto. Porto. Portugal
| | - António Paulo Lopes
- Serviço de Pneumologia. Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| | | | - Orlando Rodrigues
- Serviço de Genética Médica. Hospital Pediátrico do Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| | - Cristina Santos
- Serviço de Pneumologia. Centro Hospitalar e Universitário Lisboa Norte. Lisboa. Portugal
| | - Luísa Semedo
- Serviço de Pneumologia. Centro Hospitalar Universitário Lisboa Central. Lisboa. Portugal
| | - Maria Sucena
- Serviço de Pneumologia. Centro Hospitalar e Universitário do Porto. Porto. Portugal
| | - Catarina Guimarães
- Serviço de Pneumologia. Hospital Senhora da Oliveira. Guimarães. Portugal
| |
Collapse
|
16
|
Rogers MP, Fishberger G, Martini N, Baldwin M, Wang L, Chen W, Liu R, Lozonschi L. Orthotopic Heart Auto-Transplantation in a Swine Model. WORLD JOURNAL OF CARDIOVASCULAR SURGERY 2022; 12:200-206. [PMID: 36909676 PMCID: PMC10003613 DOI: 10.4236/wjcs.2022.129017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIM The porcine heart bears the best resemblance to the human heart and remains the preferred preclinical model for anatomical, physiological, and medical device studies. In an effort to study phenomena related strictly to ischemia reperfusion and donor preservation protocols, it is essential to avoid the immune responses related to allotransplantation. Orthotopic auto-transplantation is a unique strategy to the field of cardiac transplantation for ex vivo experimentation. Nevertheless, auto-transplantation carries its own technical challenges related to insufficient length of the great vessels that are to be transected and re-anastomosed. METHODS A novel method for orthotopic cardiac auto-transplantation in the porcine model was developed and was described herein. Porcine models were used for ex vivo experimentation of a novel device to study ischemia reperfusion injury. RESULTS A total of five porcine models were used for ex vivo experimentation of a novel device to mitigate ischemia reperfusion injury and determine effects of donor preservation. Modifications to routine cardiac transplantation protocols to allow for successful auto-transplantation are described. CONCLUSION Orthotopic cardiac auto-transplantation in the porcine model is a plausible and technically feasible method for reliable study of ischemia reperfusion injury and donor preservation protocols. Here, we describe methods for both direct orthotopic porcine cardiac auto-transplantations as well as a simplified protocol that can be substituted for full surgical auto-transplantation for the studies of preservation of donor hearts.
Collapse
Affiliation(s)
- Michael P. Rogers
- Division of Cardiothoracic Surgery, Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Gregory Fishberger
- Division of Cardiothoracic Surgery, Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nick Martini
- Division of Cardiothoracic Surgery, Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Margaret Baldwin
- Department of Comparative Medicine, University of South Florida, Tampa, FL, USA
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Wei Chen
- Department of Physics, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lucian Lozonschi
- Division of Cardiothoracic Surgery, Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
17
|
Abd HA, Kasim AA, Shareef LG. Serum levels of α1-antitrypsin, interleukin-1β and interleukin-6 in Iraqi COVID-19 patients: A cross-sectional study. F1000Res 2022; 11:921. [DOI: 10.12688/f1000research.124473.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Background: More than half of the individuals diagnosed with coronavirus disease 2019 (COVID-19) have been found to have high levels of interleukin (IL)-6. A recent report showed that more elevated serum IL-6 level predicts COVID-19 disease severity and patients’ clinical outcomes. Therefore, this study aimed to compare the serum levels of α1-antitrypsin (AAT), IL-1β, and IL-6 between COVID-19 patients and healthy individuals. Methods: During the data collection phase, 90 individuals were enrolled, 45 healthy controls, and 45 patients confirmed with COVID-19 using reverse transcription-quantitative PCR (RT-qPCR) at a specialized isolation hospital in Baghdad between November 2021 and March 2022. In this cross-sectional research, venous blood samples were taken, and serum was isolated and stored for quantitative ELISA measurements of AAT, IL-1β, and IL-6 (ELISA). IBM SPSS version 24 was used to analyze the data. Results: This study revealed a significant increase in the serum levels of AAT, IL-1β, and IL-6 in the COVID-19 patients' group compared to the healthy control group with p-values < 0.001 for each of these markers. Conclusions: AAT concentrations were higher during COVID-19; this elevation is essential during infection. IL-1β and IL-6 levels were also elevated during the infection period; however, dysregulated high levels may lead to cytokine release syndrome. Therefore, these three biomarkers can be regarded as diagnostically crucial parameters.
Collapse
|
18
|
Cell Death and Ischemia-Reperfusion Injury in Lung Transplantation. J Heart Lung Transplant 2022; 41:1003-1013. [DOI: 10.1016/j.healun.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
|
19
|
Fromme M, Schneider CV, Trautwein C, Brunetti-Pierri N, Strnad P. Alpha-1 antitrypsin deficiency: A re-surfacing adult liver disorder. J Hepatol 2022; 76:946-958. [PMID: 34848258 DOI: 10.1016/j.jhep.2021.11.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
Alpha-1 antitrypsin deficiency (AATD) arises from mutations in the SERPINA1 gene encoding alpha-1 antitrypsin (AAT) that lead to AAT retention in the endoplasmic reticulum of hepatocytes, causing proteotoxic liver injury and loss-of-function lung disease. The homozygous Pi∗Z mutation (Pi∗ZZ genotype) is responsible for the majority of severe AATD cases and can precipitate both paediatric and adult liver diseases, while the heterozygous Pi∗Z mutation (Pi∗MZ genotype) is an established genetic modifier of liver disease. We review genotype-related hepatic phenotypes/disease predispositions. We also describe the mechanisms and factors promoting the development of liver disease, as well as approaches to evaluate the extent of liver fibrosis. Finally, we discuss emerging diagnostic and therapeutic approaches for the clinical management of this often neglected disorder.
Collapse
Affiliation(s)
- Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078 Naples, Italy; Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany.
| |
Collapse
|
20
|
Nakagiri T, Wrenger S, Sivaraman K, Ius F, Goecke T, Zardo P, Grau V, Welte T, Haverich A, Knöfel AK, Janciauskiene S. α1-Antitrypsin attenuates acute rejection of orthotopic murine lung allografts. Respir Res 2021; 22:295. [PMID: 34789247 PMCID: PMC8597316 DOI: 10.1186/s12931-021-01890-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Background α1-Antitrypsin (AAT) is an acute phase glycoprotein, a multifunctional protein with proteinase inhibitory, anti-inflammatory and cytoprotective properties. Both preclinical and clinical experiences show that the therapy with plasma purified AAT is beneficial for a broad spectrum of inflammatory conditions. The potential effects of AAT therapy have recently been highlighted in lung transplantation (LuTx) as well. Methods We used a murine fully mismatched orthotopic single LuTx model (BALB/CJ as donors and C57BL/6 as recipients). Human AAT preparations (5 mg, n = 10) or vehicle (n = 5) were injected to the recipients subcutaneously prior to and intraperitoneally immediately after the LuTx. No immune suppressive drugs were administered. Three days after the transplantation, the mice were sacrificed, and biological samples were assessed. Results Histological analysis revealed significantly more severe acute rejection in the transplanted lungs of controls than in AAT treated mice (p < 0.05). The proportion of neutrophil granulocytes, B cells and the total T helper cell populations did not differ between two groups. There was no significant difference in serum CXCL1 (KC) levels. However, when compared to controls, human AAT was detectable in the serum of mice treated with AAT and these mice had a higher serum anti-elastase activity, and significantly lower proportion of Th1 and Th17 among all Th cells. Cleaved caspase-3-positive cells were scarce but significantly less abundant in allografts from recipients treated with AAT as compared to those treated with vehicle. Conclusion Therapy with AAT suppresses the acute rejection after LuTx in a mouse model. The beneficial effects seem to involve anti-protease and immunomodulatory activities of AAT.
Collapse
Affiliation(s)
- Tomoyuki Nakagiri
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sabine Wrenger
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | | | - Fabio Ius
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Tobias Goecke
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Patrick Zardo
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Veronika Grau
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University Giessen, German Center for Lung Research, Giessen, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Ann-Kathrin Knöfel
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
21
|
Saren G, Wong A, Lu YB, Baciu C, Zhou W, Zamel R, Soltanieh S, Sugihara J, Liu M. Ischemia-Reperfusion Injury in a Simulated Lung Transplant Setting Differentially Regulates Transcriptomic Profiles between Human Lung Endothelial and Epithelial Cells. Cells 2021; 10:cells10102713. [PMID: 34685693 PMCID: PMC8534993 DOI: 10.3390/cells10102713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
Current understanding of mechanisms of ischemia-reperfusion-induced lung injury during lung preservation and transplantation is mainly based on clinical observations and animal studies. Herein, we used cell and systems biology approaches to explore these mechanisms at transcriptomics levels, especially by focusing on the differences between human lung endothelial and epithelial cells, which are crucial for maintaining essential lung structure and function. Human pulmonary microvascular endothelial cells and human lung epithelial cells were cultured to confluent, subjected to different cold ischemic times (CIT) to mimic static cold storage with preservation solution, and then subjected to warm reperfusion with a serum containing culture medium to simulate lung transplantation. Cell morphology, viability, and transcriptomic profiles were studied. Ischemia-reperfusion injury induced a CIT time-dependent cell death, which was associated with dramatic changes in gene expression. Under normal control conditions, endothelial cells showed gene clusters enriched in the vascular process and inflammation, while epithelial cells showed gene clusters enriched in protein biosynthesis and metabolism. CIT 6 h alone or after reperfusion had little effect on these phenotypic characteristics. After CIT 18 h, protein-biosynthesis-related gene clusters disappeared in epithelial cells; after reperfusion, metabolism-related gene clusters in epithelial cells and multiple gene clusters in the endothelial cells also disappeared. Human pulmonary endothelial and epithelial cells have distinct phenotypic transcriptomic signatures. Severe cellular injury reduces these gene expression signatures in a cell-type-dependent manner. Therapeutics that preserve these transcriptomic signatures may represent new treatment to prevent acute lung injury during lung transplantation.
Collapse
Affiliation(s)
- Gaowa Saren
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
| | - Aaron Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1X8, Canada
| | - Yun-Bi Lu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Cristina Baciu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
| | - Wenyong Zhou
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
| | - Ricardo Zamel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
| | - Sahar Soltanieh
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
| | - Junichi Sugihara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1X8, Canada
- Department of Surgery, Medicine and Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1X8, Canada
- Correspondence:
| |
Collapse
|
22
|
Dong L, Yin L, Li R, Xu L, Xu Y, Han X, Qi Y. Dioscin alleviates lung ischemia/reperfusion injury by regulating FXR-mediated oxidative stress, apoptosis, and inflammation. Eur J Pharmacol 2021; 908:174321. [PMID: 34252440 DOI: 10.1016/j.ejphar.2021.174321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Dioscin showed various pharmacological effects in our previous studies; however, the effects and mechanisms against lung ischemia/reperfusion injury (LI/RI) have not been reported. Hypoxia/reoxygenation (H/R) models were established using A549 and primary AEC-II cells, while LI/RI models were established in rats and mice. The effects of dioscin on oxidative stress, inflammation and apoptosis in vivo and in vitro were investigated. The mechanisms were investigated focus on dioscin regulating FXR/LKB1 signaling pathway. Dioscin improved cell viability and mitochondrial membrane potential, reduced reactive oxygen species level, and inhibited H/R-mediated cell apoptosis. It also significantly decreased the lung wet/dry weight ratio, ameliorated levels of oxidative stress indicators, and enhanced the mitochondrial membrane potential and inhibited cell apoptosis in vivo. The results of mechanism research showed that dioscin activated FXR/LKB1 signals by increasing the expression of p-LKB1 and p-AMPKα, promoting the nuclear translocation of Nrf2, up-regulating the levels of HO-1, NQO1 and GCLC, expressed against oxidative stress. Furthermore, dioscin reduced Cyt C released, decreased the expression levels of Caspase-9 and Caspase-3 during apoptosis. Dioscin suppressed inflammation by inhibiting NF-κB translocation, reducing the expression levels of NF-κB, HMGB1, COX-2, IL-1β, IL-6 and TNF-α. The transfection of FXR or LKB1 siRNA further confirmed that the protective effect of dioscin against LI/RI was attributable to the regulation of FXR/LKB1 signaling pathway. Our research showed that dioscin exhibited potent activity against LI/RI, by adjusting the levels of FXR/LKB1-mediated oxidative stress, apoptosis, and inflammation, and should be considered as a new candidate for treating LI/RI.
Collapse
Affiliation(s)
- Lile Dong
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Ruomiao Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China.
| |
Collapse
|
23
|
Edinger F, Schmitt C, Koch C, McIntosh JM, Janciauskiene S, Markmann M, Sander M, Padberg W, Grau V. Application of alpha1-antitrypsin in a rat model of veno-arterial extracorporeal membrane oxygenation. Sci Rep 2021; 11:15849. [PMID: 34349162 PMCID: PMC8339069 DOI: 10.1038/s41598-021-95119-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-saving intervention for patients suffering from respiratory or cardiac failure. The ECMO-associated morbidity and mortality depends to a large extent on the underlying disease and is often related to systemic inflammation, consecutive immune paralysis and sepsis. Here we tested the hypothesis that human α1-antitrypsin (SERPINA1) due to its anti-protease and anti-inflammatory functions may attenuate ECMO-induced inflammation. We specifically aimed to test whether intravenous treatment with α1-antitrypsin reduces the release of cytokines in response to 2 h of experimental ECMO. Adult rats were intravenously infused with α1-antitrypsin immediately before starting veno-arterial ECMO. We measured selected pro- and anti-inflammatory cytokines and found, that systemic levels of tumor necrosis factor-α, interleukin-6 and interleukin-10 increase during experimental ECMO. As tachycardia and hypertension developed in response to α1-antitrypsin, a single additional bolus of fentanyl and midazolam was given. Treatment with α1-antitrypsin and higher sedative doses reduced all cytokine levels investigated. We suggest that α1-antitrypsin might have the potential to protect against both ECMO-induced systemic inflammation and immune paralysis. More studies are needed to corroborate our findings, to clarify the mechanisms by which α1-antitrypsin inhibits cytokine release in vivo and to explore the potential application of α1-antitrypsin in clinical ECMO.
Collapse
Affiliation(s)
- Fabian Edinger
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Christoph Schmitt
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - Christian Koch
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, German Centre for Lung Research (DZL), Hannover, Germany
| | - Melanie Markmann
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - Michael Sander
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University of Giessen, Giessen, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research (DZL), Justus-Liebig-University of Giessen, Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research (DZL), Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
24
|
Ojanguren A, Santamaría M, Milla-Collado L, Fraile C, Gatius-Calderó S, Puy S, Boldó A, Gómez-Olles S, Boada-Pérez M, Esquinas C, Sáez-Giménez B, Ojanguren I, Barrecheguren M, Olsina-Kissler JJ. Pilot Trial of Extended Hypothermic Lung Preservation to Analyze Ischemia-reperfusion Injury in Pigs. Arch Bronconeumol 2021; 57:479-489. [PMID: 35698954 DOI: 10.1016/j.arbr.2021.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/03/2021] [Indexed: 06/15/2023]
Abstract
BACKGROUND In lung transplantation (LT), the length of ischemia time is controversial as it was arbitrarily stablished. We ought to explore the impact of extended cold-ischemia time (CIT) on ischemia-reperfusion injury in an experimental model. METHODS Experimental, randomized pilot trial of parallel groups and final blind analysis using a swine model of LT. Donor animals (n=8) were submitted to organ procurement. Lungs were subjected to 6h (n=4) or 12h (n=4) aerobic hypothermic preservation. The left lung was transplanted and re-perfused for 4h. Lung biopsies were obtained at (i) the beginning of CIT, (ii) the end of CIT, (iii) 30min after reperfusion, and (iv) 4h after reperfusion. Lung-grafts were histologically assessed by microscopic lung injury score and wet-to-dry ratio. Inflammatory response was measured by determination of inflammatory cytokines. Caspase-3 activity was determined as apoptosis marker. RESULTS We observed no differences on lung injury score or wet-to-dry ratio any given time between lungs subjected to 6h-CIT or 12h-CIT. IL-1β and IL6 showed an upward trend during reperfusion in both groups. TNF-α was peaked within 30min of reperfusion. IFN-γ was hardly detected. Caspase-3 immunoexpression was graded semiquantitatively by the percentage of stained cells. Twenty percent of apoptotic cells were observed 30min after reperfusion. CONCLUSIONS We observed that 6 and 12h of CIT were equivalent in terms of microscopic lung injury, inflammatory profile and apoptosis in a LT swine model. The extent of lung injury measured by microscopic lung injury score, proinflammatory cytokines and caspase-3 determination was mild.
Collapse
Affiliation(s)
- Amaia Ojanguren
- Thoracic Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain; Thoracic Surgery Department, Lausanne University Hospital, Lausanne, Switzerland.
| | - Maite Santamaría
- General Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Lucía Milla-Collado
- Thoracic Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Carlos Fraile
- Thoracic Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | | | - Sara Puy
- Centre de Reserca Experimental Biomèdica Aplicada (CREBA), IRBLleida, Lleida, Spain
| | - Alba Boldó
- Centre de Reserca Experimental Biomèdica Aplicada (CREBA), IRBLleida, Lleida, Spain
| | - Susana Gómez-Olles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Boada-Pérez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Esquinas
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Berta Sáez-Giménez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Iñigo Ojanguren
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
25
|
Jing L, Konoeda H, Keshavjee S, Liu M. Using nutrient-rich solutions and adding multiple cytoprotective agents as new strategies to develop lung preservation solutions. Am J Physiol Lung Cell Mol Physiol 2021; 320:L979-L989. [PMID: 33688744 DOI: 10.1152/ajplung.00516.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/05/2021] [Indexed: 11/22/2022] Open
Abstract
Commonly, donor lungs are preserved with low-potassium dextran glucose solution at low temperature. We hypothesized that adding nutrients and/or cytoprotective agents to preservation solutions improves donor lung quality. Human lung epithelial cells and human pulmonary microvascular endothelial cells cultured at 37°C with serum containing medium were switched to designated testing solutions at 4°C with 50% O2 for different cold ischemic time, followed by switching back to serum containing culture medium at 37°C to simulate reperfusion. We found that bicarbonate buffer system should be avoided in preservation solution. When pH was maintained at physiological levels, cell culture media showed better cell survival than in low-potassium dextran glucose solution. Phosphate-buffered cell culture media were further improved by adding colloid dextran 40. When rat donor lungs were preserved at 4°C for 24 h, phosphate-buffered Roswell Park Memorial Institute-1640 medium [RPMI-1640(p)] plus dextran 40 or adding cytoprotective agents (alpha 1 antitrypsin, raffinose, and glutathione) to low-potassium dextran glucose solution prevented alveolar wall swelling, apoptosis, activation of endothelial cells, and cellular edema. Using nutrient-rich solution and/or adding multiple cytoprotective agents is a new direction for designing and developing organ preservation solutions. Cell culture model, as a screening tool, reduces the use of animals and provides potential underlying mechanisms.
Collapse
Affiliation(s)
- Lei Jing
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hisato Konoeda
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Bertho N, Meurens F. The pig as a medical model for acquired respiratory diseases and dysfunctions: An immunological perspective. Mol Immunol 2021; 135:254-267. [PMID: 33933817 DOI: 10.1016/j.molimm.2021.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
By definition no model is perfect, and this also holds for biology and health sciences. In medicine, murine models are, and will be indispensable for long, thanks to their reasonable cost and huge choice of transgenic strains and molecular tools. On the other side, non-human primates remain the best animal models although their use is limited because of financial and obvious ethical reasons. In the field of respiratory diseases, specific clinical models such as sheep and cotton rat for bronchiolitis, or ferret and Syrian hamster for influenza and Covid-19, have been successfully developed, however, in these species, the toolbox for biological analysis remains scarce. In this view the porcine medical model is appearing as the third, intermediate, choice, between murine and primate. Herein we would like to present the pros and cons of pig as a model for acquired respiratory conditions, through an immunological point of view. Indeed, important progresses have been made in pig immunology during the last decade that allowed the precise description of immune molecules and cell phenotypes and functions. These progresses might allow the use of pig as clinical model of human respiratory diseases but also as a species of interest to perform basic research explorations.
Collapse
Affiliation(s)
| | - François Meurens
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon S7N5E3, Canada
| |
Collapse
|
27
|
α1-Antitrypsin: Key Player or Bystander in Acute Respiratory Distress Syndrome? Anesthesiology 2021; 134:792-808. [PMID: 33721888 DOI: 10.1097/aln.0000000000003727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute respiratory distress syndrome is characterized by hypoxemia, altered alveolar-capillary permeability, and neutrophil-dominated inflammatory pulmonary edema. Despite decades of research, an effective drug therapy for acute respiratory distress syndrome remains elusive. The ideal pharmacotherapy for acute respiratory distress syndrome should demonstrate antiprotease activity and target injurious inflammatory pathways while maintaining host defense against infection. Furthermore, a drug with a reputable safety profile, low possibility of off-target effects, and well-known pharmacokinetics would be desirable. The endogenous 52-kd serine protease α1-antitrypsin has the potential to be a novel treatment option for acute respiratory distress syndrome. The main function of α1-antitrypsin is as an antiprotease, targeting neutrophil elastase in particular. However, studies have also highlighted the role of α1-antitrypsin in the modulation of inflammation and bacterial clearance. In light of the current SARS-CoV-2 pandemic, the identification of a treatment for acute respiratory distress syndrome is even more pertinent, and α1-antitrypsin has been implicated in the inflammatory response to SARS-CoV-2 infection.
Collapse
|
28
|
Ojanguren A, Santamaría M, Milla-Collado L, Fraile C, Gatius-Calderó S, Puy S, Boldó A, Gómez-Olles S, Boada-Pérez M, Esquinas C, Sáez-Giménez B, Ojanguren I, Barrecheguren M, Olsina-Kissler JJ. Pilot Trial of Extended Hypothermic Lung Preservation to Analyze Ischemia-reperfusion Injury in Pigs. Arch Bronconeumol 2021:S0300-2896(21)00106-X. [PMID: 33849720 DOI: 10.1016/j.arbres.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In lung transplantation (LT), the length of ischemia time is controversial as it was arbitrarily stablished. We ought to explore the impact of extended cold-ischemia time (CIT) on ischemia-reperfusion injury in an experimental model. METHODS Experimental, randomized pilot trial of parallel groups and final blind analysis using a swine model of LT. Donor animals (n=8) were submitted to organ procurement. Lungs were subjected to 6h (n=4) or 12h (n=4) aerobic hypothermic preservation. The left lung was transplanted and re-perfused for 4h. Lung biopsies were obtained at (i) the beginning of CIT, (ii) the end of CIT, (iii) 30min after reperfusion, and (iv) 4h after reperfusion. Lung-grafts were histologically assessed by microscopic lung injury score and wet-to-dry ratio. Inflammatory response was measured by determination of inflammatory cytokines. Caspase-3 activity was determined as apoptosis marker. RESULTS We observed no differences on lung injury score or wet-to-dry ratio any given time between lungs subjected to 6h-CIT or 12h-CIT. IL-1β and IL6 showed an upward trend during reperfusion in both groups. TNF-α was peaked within 30min of reperfusion. IFN-γ was hardly detected. Caspase-3 immunoexpression was graded semiquantitatively by the percentage of stained cells. Twenty percent of apoptotic cells were observed 30min after reperfusion. CONCLUSIONS We observed that 6 and 12h of CIT were equivalent in terms of microscopic lung injury, inflammatory profile and apoptosis in a LT swine model. The extent of lung injury measured by microscopic lung injury score, proinflammatory cytokines and caspase-3 determination was mild.
Collapse
Affiliation(s)
- Amaia Ojanguren
- Thoracic Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain; Thoracic Surgery Department, Lausanne University Hospital, Lausanne, Switzerland.
| | - Maite Santamaría
- General Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Lucía Milla-Collado
- Thoracic Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Carlos Fraile
- Thoracic Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | | | - Sara Puy
- Centre de Reserca Experimental Biomèdica Aplicada (CREBA), IRBLleida, Lleida, Spain
| | - Alba Boldó
- Centre de Reserca Experimental Biomèdica Aplicada (CREBA), IRBLleida, Lleida, Spain
| | - Susana Gómez-Olles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Boada-Pérez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Esquinas
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Berta Sáez-Giménez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Iñigo Ojanguren
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
29
|
Differential signaling patterns of stimulated bone marrow-derived dendritic cells under α1-antitrypsin-enriched conditions. Cell Immunol 2021; 361:104281. [PMID: 33453508 DOI: 10.1016/j.cellimm.2020.104281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/17/2020] [Accepted: 11/21/2020] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DCs) mature upon an inflammatory trigger. However, an inflammatory trigger can lead to a semi-mature phenotype, allowing DCs to evoke tolerance and expedite the resolution of inflammation. This duality likely involves context-dependent modulation of inflammatory signaling. Human α1-antitrypsin (hAAT) promotes semimature DCs. We examined changes in a wide spectrum of signaling cascades in stimulated murine bone marrow-derived cells with hAAT. Upon stimulation by IL-1β+IFNγ, hAAT-treated cells depicted an attenuated calcium flux. Disrupting PKA or NF-κB pathways revoked only some hAAT-mediated outcomes. hAAT-treated cells exhibited a distict pattern of kinase phosphorylation. hAAT-mediated increase in Treg cells in-vitro required intact inflammatory signaling pathways. Taken together, hAAT appears to require a stimulated microenvironment to promote inflammatory resolution, setting it aside from classical anti-inflammatory agents. Further studies are required to identify the specific molecules targeted by hAAT that mediate these and other outcomes.
Collapse
|
30
|
Yang C, Keshavjee S, Liu M. Alpha-1 Antitrypsin for COVID-19 Treatment: Dual Role in Antiviral Infection and Anti-Inflammation. Front Pharmacol 2020; 11:615398. [PMID: 33362565 PMCID: PMC7759674 DOI: 10.3389/fphar.2020.615398] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022] Open
Abstract
Many drugs have been approved for clinical trials for the treatment of COVID-19 disease, focusing on either antiviral or anti-inflammatory approaches. Combining antiviral and anti-inflammatory drugs or therapies together may be more effective. Human alpha-1 antitrypsin (A1AT) is a blood circulating glycoprotein that is best known as a protease inhibitor. It has been used to treat emphysema patients with A1AT deficiency for decades. We and others have demonstrated its role in reducing acute lung injury by inhibiting inflammation, cell death, coagulation, and neutrophil elastase activation. Recently, A1AT has been found to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by inhibiting transmembrane serine protease 2 (TMPRSS2), a protease involved in the entry of SARS-CoV-2 into host cells. This dual role of both antiviral infection and anti-inflammation makes A1AT a unique and excellent candidate for COVID-19 treatment. Three clinical trials of A1AT for COVID-19 treatment have recently been approved in several countries. It is important to determine whether A1AT can prevent the progress from moderate to severe lung injury and eventually to be used to treat COVID-19 patients with acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Chengliang Yang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science and Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science and Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Implications of a Change of Paradigm in Alpha1 Antitrypsin Deficiency Augmentation Therapy: From Biochemical to Clinical Efficacy. J Clin Med 2020; 9:jcm9082526. [PMID: 32764414 PMCID: PMC7465600 DOI: 10.3390/jcm9082526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Ever since the first studies, restoring proteinase imbalance in the lung has traditionally been considered as the main goal of alpha1 antitrypsin (AAT) replacement therapy. This strategy was therefore based on ensuring biochemical efficacy, identifying a protection threshold, and evaluating different dosage regimens. Subsequently, the publication of the results of the main clinical trials showing a decrease in the progression of pulmonary emphysema has led to a debate over a possible change in the main objective of treatment, from biochemical efficacy to clinical efficacy in terms of lung densitometry deterioration prevention. This new paradigm has produced a series controversies and unanswered questions which face clinicians managing AAT deficiency. In this review, the concepts that led to the approval of AAT replacement therapy are reviewed and discussed under a new prism of achieving clinical efficacy, with the reduction of lung deterioration as the main objective. Here, we propose the use of current knowledge and clinical experience to face existing challenges in different clinical scenarios, in order to help clinicians in decision-making, increase interest in the disease, and stimulate research in this field.
Collapse
|
32
|
Jin Z, Suen KC, Wang Z, Ma D. Review 2: Primary graft dysfunction after lung transplant-pathophysiology, clinical considerations and therapeutic targets. J Anesth 2020; 34:729-740. [PMID: 32691226 PMCID: PMC7369472 DOI: 10.1007/s00540-020-02823-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Primary graft dysfunction (PGD) is one of the most common complications in the early postoperative period and is the most common cause of death in the first postoperative month. The underlying pathophysiology is thought to be the ischaemia–reperfusion injury that occurs during the storage and reperfusion of the lung engraftment; this triggers a cascade of pathological changes, which result in pulmonary vascular dysfunction and loss of the normal alveolar architecture. There are a number of surgical and anaesthetic factors which may be related to the development of PGD. To date, although treatment options for PGD are limited, there are several promising experimental therapeutic targets. In this review, we will discuss the pathophysiology, clinical management and potential therapeutic targets of PGD.
Collapse
Affiliation(s)
- Zhaosheng Jin
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Ka Chun Suen
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Zhiping Wang
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.
| |
Collapse
|
33
|
Li P, Zhu L, Tang FF, Xiong J, Ma MJ, Dsa M, Gao SH. A Simplified Continuous Two-stitch Suture for Bronchial Anastomosis of Left Single Lung Transplant in Dogs. Curr Med Sci 2020; 40:548-555. [PMID: 32681258 DOI: 10.1007/s11596-020-2212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/20/2020] [Indexed: 11/28/2022]
Abstract
Large animal models are essential to pre-clinical trials of pulmonary transplantation and bronchial anastomosis poses a great technical challenge to the procedure. Presented here is a simplified continuous two-stitch suture technique into bronchial anastomosis during the course of left single lung transplantation in canine. Animals were divided into three groups with each group having 6 animals. Left single lung transplantation in canine was performed to assess the feasibility of using this technique for bronchial anastomosis. In the control groups, all anastomoses were done by using traditional technique. Allograft functions and hemodynamic parameters were monitored during a 3-h reperfusion period. Quality of bronchial healing and airway complications were assessed by bronchoscopic surveillance after transplantation. We successfully completed left lung transplantation in 18 dogs, and all the dogs survived the procedures. The new technique substantially simplified the procedures for bronchial anastomosis and greatly reduced the time for bronchial anastomosis (P<<0.01) and the ischemic time of the grafts (P<0.05) compared to the control group. The continuous two-stitch suture attenuated the tissue injury to allografts and led to better blood gas exchange function as compared to the control group (P<0.05). Good bronchial healing (Grade I) was observed in all the groups. A canine left single lung transplantation model is feasible by using the novel suture technique, and the new technique is as safe as the traditional method. The technique is easy to learn, particularly for less experienced operators. Simpler and time-saving, the technique has great potential to be widely employed in clinical lung transplantation.
Collapse
Affiliation(s)
- Ping Li
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lan Zhu
- Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei-Fei Tang
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Xiong
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming-Jia Ma
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mouniir Dsa
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si-Hai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
34
|
Iskender I, Arni S, Maeyashiki T, Citak N, Sauer M, Rodriguez JM, Frauenfelder T, Opitz I, Weder W, Inci I. Perfusate adsorption during ex vivo lung perfusion improves early post-transplant lung function. J Thorac Cardiovasc Surg 2020; 161:e109-e121. [PMID: 32201002 DOI: 10.1016/j.jtcvs.2019.12.128] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Improvement in ex vivo lung perfusion protocols could increase the number of donors available for transplantation and protect the lungs from primary graft dysfunction. We hypothesize that perfusate adsorption during ex vivo lung perfusion reconditions the allograft to ischemia-reperfusion injury after lung transplantation. METHODS Donor pig lungs were preserved for 24 hours at 4°C, followed by 6 hours of ex vivo lung perfusion according to the Toronto protocol. The perfusate was additionally adsorbed through a CytoSorb adsorber (CytoSorbents, Berlin, Germany) in the treatment group, whereas control lungs were perfused according to the standard protocol (n = 5, each). Ex vivo lung perfusion physiology and biochemistry were monitored. Upon completion of ex vivo lung perfusion, a left single lung transplantation was performed. Oxygenation function and lung mechanics were assessed during a 4-hour reperfusion period. The inflammatory response was determined during ex vivo lung perfusion and reperfusion. RESULTS The cytokine concentrations in the perfusate were markedly lower with the adsorber, resulting in improved ex vivo lung perfusion physiology and biochemistry during the 6-hour perfusion period. Post-transplant dynamic lung compliance was markedly better during the 4-hour reperfusion period in the treatment group. Isolated allograft oxygenation function and dynamic compliance continued to be superior in the adsorber group at the end of reperfusion, accompanied by a markedly decreased local inflammatory response. CONCLUSIONS Implementation of an additional cytokine adsorber has refined the standard ex vivo lung perfusion protocol. Furthermore, cytokine removal during ex vivo lung perfusion improved immediate post-transplant graft function together with a less intense inflammatory response to reperfusion in pigs. Further studies are warranted to understand the beneficial effects of perfusate adsorption during ex vivo lung perfusion in the clinical setting.
Collapse
Affiliation(s)
- Ilker Iskender
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Stephan Arni
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Tatsuo Maeyashiki
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Necati Citak
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Mareike Sauer
- Department of Surgical Research, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | | | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Ilhan Inci
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Abstract
Injuries sustained by donor heart and lung allografts during the transplantation process are multiple and cumulative. Optimization of allograft function plays an essential role in short- and long-term outcomes after transplantation. Therapeutic targets to prevent or attenuate injury are present in the donor, the preservation process, during transplantation, and in postoperative management of the recipient. The newest and most promising methods of optimizing donor heart and lung allografts are found in alternative preservation strategies, which enable functional assessment of donor organs and provide a modality to initiate therapies for injured allografts or prevent injury during reperfusion in recipients.
Collapse
Affiliation(s)
- Sue A Braithwaite
- Department of Anesthesiology, University Medical Center Utrecht, Mail Stop Q04.2.317, Postbus 85500, Utrecht 3508 GA, The Netherlands.
| | - Niels P van der Kaaij
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Room E03.511, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
36
|
Nakajima D, Watanabe Y, Ohsumi A, Pipkin M, Chen M, Mordant P, Kanou T, Saito T, Lam R, Coutinho R, Caldarone L, Juvet S, Martinu T, Iyer RK, Davies JE, Hwang DM, Waddell TK, Cypel M, Liu M, Keshavjee S. Mesenchymal stromal cell therapy during ex vivo lung perfusion ameliorates ischemia-reperfusion injury in lung transplantation. J Heart Lung Transplant 2019; 38:1214-1223. [DOI: 10.1016/j.healun.2019.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/15/2019] [Accepted: 07/20/2019] [Indexed: 12/21/2022] Open
|
37
|
Zamora M. Surgery for patients with Alpha 1 Antitrypsin Deficiency: A review. Am J Surg 2019; 218:639-647. [DOI: 10.1016/j.amjsurg.2018.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/12/2018] [Indexed: 12/01/2022]
|
38
|
Alpha-1 Antitrypsin Attenuates Acute Lung Allograft Injury in a Rat Lung Transplant Model. Transplant Direct 2019; 5:e458. [PMID: 31723592 PMCID: PMC6791593 DOI: 10.1097/txd.0000000000000898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 11/27/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) after lung transplantation triggers a cascade of inflammatory changes that can contribute to acute allograft injury. This influences both the short- and long-term survival of the lung allograft. Alpha-1 antitrypsin (AAT) is a protease inhibitor with known anti-inflammatory and immune-regulatory properties that mitigate tissue damage. This study explores the protective effects of AAT in the setting of IRI utilizing a rat lung transplant model. Methods Orthotopic left single lung transplantation was performed from Lewis to Sprague-Dawley rats; recipients did not receive systemic immunosuppression. Before transplantation, the donor lungs were primed with either albumin (control) or AAT. Starting the day of transplantation, recipient rats also received either albumin (control) or AAT with subsequent doses administered over the next 7 days. On the eighth postoperative day, lung allografts were recovered and analyzed. Results Degree of inflammatory infiltrate, as quantified by the allograft weight (g)/body weight (kg) ratio, was significantly reduced in the AAT-treated group compared with controls (3.5 vs 7.7, respectively, P < 0.05). Treatment with AAT also significantly decreased allograft necrosis in treated animals, as measured by a semiquantitative score that ranged from 0 to 4 (1.25 vs 4, P < 0.05). In addition, lymphocytes isolated from recipients treatment group showed significant proliferative inhibition via a mixed lymphocyte response assay in response to donor antigens. Conclusions AAT attenuates acute allograft injury and necrosis in a rat model of lung transplantation, suggesting that AAT may play a role in reducing IRI-induced inflammation.
Collapse
|
39
|
Mariscal A, Caldarone L, Tikkanen J, Nakajima D, Chen M, Yeung J, Cypel M, Liu M, Keshavjee S. Pig lung transplant survival model. Nat Protoc 2019; 13:1814-1828. [PMID: 30072720 DOI: 10.1038/s41596-018-0019-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although lung transplant is a life-saving therapy for some patients, primary graft dysfunction (PGD) is a leading cause of mortality and morbidity soon after a transplant. Ischemia reperfusion injury is known to be one of the most critical factors in PGD development. PGD is by definition an acute lung injury syndrome that occurs during the first 3 d following lung transplantation. To successfully translate laboratory discoveries to clinical practice, a reliable and practical large animal model is critical. This protocol describes a surgical technique for swine lung transplantation and postoperative management for a further 3 d post transplant. The protocol includes the background and rationale, required supplies, and a detailed description of the donor operation, transplant surgery, postoperative care, and sacrifice surgery. A pig lung transplant model is reliably produced in which the recipients survive for 3 d post transplant. This 3-d survival model can be used by lung transplant researchers to assess the development of PGD and to test therapeutic strategies targeting PGD. In total, the protocol requires 5 h for the surgeries, plus ~2 h in total for the postoperative care.
Collapse
Affiliation(s)
- Andrea Mariscal
- Department of Thoracic Surgery, Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, ON, Canada.,Toronto Lung Transplant Program, Department of Thoracic Surgery, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Lindsay Caldarone
- Department of Thoracic Surgery, Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jussi Tikkanen
- Department of Thoracic Surgery, Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, ON, Canada.,Toronto Lung Transplant Program, Department of Thoracic Surgery, University Health Network, Toronto, ON, Canada
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, ON, Canada.,Toronto Lung Transplant Program, Department of Thoracic Surgery, University Health Network, Toronto, ON, Canada
| | - Manyin Chen
- Department of Thoracic Surgery, Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, ON, Canada
| | - Jonathan Yeung
- Department of Thoracic Surgery, Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, ON, Canada.,Toronto Lung Transplant Program, Department of Thoracic Surgery, University Health Network, Toronto, ON, Canada
| | - Marcelo Cypel
- Department of Thoracic Surgery, Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, ON, Canada.,Toronto Lung Transplant Program, Department of Thoracic Surgery, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Department of Thoracic Surgery, Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Shaf Keshavjee
- Department of Thoracic Surgery, Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, ON, Canada. .,Toronto Lung Transplant Program, Department of Thoracic Surgery, University Health Network, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Hoetzenecker K. Step by step toward the summit. J Thorac Cardiovasc Surg 2019; 157:e219. [PMID: 30901810 DOI: 10.1016/j.jtcvs.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Ochando J, Ordikhani F, Boros P, Jordan S. The innate immune response to allotransplants: mechanisms and therapeutic potentials. Cell Mol Immunol 2019; 16:350-356. [PMID: 30804476 DOI: 10.1038/s41423-019-0216-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
Surgical trauma and ischemia reperfusion injury (IRI) are unavoidable aspects of any solid organ transplant procedure. They trigger a multifactorial antigen-independent inflammatory process that profoundly affects both the early and long-term outcomes of the transplanted organ. The injury associated with donor organ procurement, storage, and engraftment triggers innate immune activation that inevitably results in cell death, which may occur in many different forms. Dying cells in donor grafts release damage-associated molecular patterns (DAMPs), which alert recipient innate cells, including macrophages and dendritic cells (DCs), through the activation of the complement cascade and toll-like receptors (TLRs). The long-term effect of inflammation on innate immune cells is associated with changes in cellular metabolism that skew the cells towards aerobic glycolysis, resulting in innate immune cell activation and inflammatory cytokine production. The different roles of proinflammatory cytokines in innate immune activation have been described, and these cytokines also stimulate optimal T-cell expansion during allograft rejection. Therefore, early innate immune events after organ transplantation determine the fate of the adaptive immune response. In this review, we summarize the contributions of innate immunity to allograft rejection and discuss recent studies and emerging concepts in the targeted delivery of therapeutics to modulate the innate immune system to enhance allograft survival.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Farideh Ordikhani
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Boros
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefan Jordan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
42
|
A Pilot Study to Investigate the Balance between Proteases and α1-Antitrypsin in Bronchoalveolar Lavage Fluid of Lung Transplant Recipients. High Throughput 2019; 8:ht8010005. [PMID: 30781848 PMCID: PMC6480715 DOI: 10.3390/ht8010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
The neutrophilic component in bronchiolitis obliterans syndrome (BOS, the main form of chronic lung rejection), plays a crucial role in the pathogenesis and maintenance of the disorder. Human Neutrophil Elastase (HNE), a serine protease responsible of elastin degradation whose action is counteracted by α1-antitrypsin (AAT), a serum inhibitor specific for this protease. This work aimed to investigate the relationship between HNE and AAT in bronchoalveolar lavage fluid (BALf) from stable lung transplant recipients and BOS patients to understand whether the imbalance between proteases and inhibitors is relevant to the development of BOS. To reach this goal a multidisciplinary procedure was applied which included: (i) the use of electrophoresis/western blotting coupled with liquid chromatography-mass spectrometric analysis; (ii) the functional evaluation of the residual antiprotease activity, and (iii) a neutrophil count. The results of these experiments demonstrated, for the first time, the presence of the complex between HNE and AAT in a number of BALf samples. The lack of this complex in a few specimens analyzed was investigated in relation to a patient’s lung inflammation. The neutrophil count and the determination of HNE and AAT activities allowed us to speculate that the presence of the complex correlated with the level of lung inflammation.
Collapse
|
43
|
Baranovski BM, Schuster R, Nisim O, Brami I, Lior Y, Lewis EC. Alpha-1 Antitrypsin Substitution for Extrapulmonary Conditions in Alpha-1 Antitrypsin Deficient Patients. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2018; 5:267-276. [PMID: 30723784 DOI: 10.15326/jcopdf.5.4.2017.0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder which most commonly manifests as pulmonary emphysema. Accordingly, alpha-1 antitrypsin (AAT) augmentation therapy aims to reduce the progression of emphysema, as achieved by life-long weekly slow-drip infusions of plasma-derived affinity-purified human AAT. However, not all AATD patients will receive this therapy, due to either lack of medical coverage or low patient compliance. To circumvent these limitations, attempts are being made to develop lung-directed therapies, including inhaled AAT and locally-delivered AAT gene therapy. Lung transplantation is also an ultimate therapy option. Although less common, AATD patients also present with disease manifestations that extend beyond the lung, including vasculitis, diabetes and panniculitis, and appear to experience longer and more frequent hospitalization times and more frequent pneumonia bouts. In the past decade, new mechanism-based clinical indications for AAT therapy have surfaced, depicting a safe, anti-inflammatory, immunomodulatory and tissue-protective agent. Introduced to non-AATD individuals, AAT appears to provide relief from steroid-refractory graft-versus-host disease, from bacterial infections in cystic fibrosis and from autoimmune diabetes; preclinical studies show benefit also in multiple sclerosis, ulcerative colitis, rheumatoid arthritis, acute myocardial infarction and stroke, as well as ischemia-reperfusion injury and aberrant wound healing processes. While the current augmentation therapy is targeted towards treatment of emphysema, it is suggested that AATD patients may benefit from AAT augmentation therapy geared towards extrapulmonary pathologies as well. Thus, development of mechanism-based, context-specific AAT augmentation therapy protocols is encouraged. In the current review, we will discuss extrapulmonary manifestations of AATD and the potential of AAT augmentation therapy for these conditions.
Collapse
Affiliation(s)
- Boris M Baranovski
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronen Schuster
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Omer Nisim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ido Brami
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yotam Lior
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
44
|
Berger M, Liu M, Uknis ME, Koulmanda M. Alpha-1-antitrypsin in cell and organ transplantation. Am J Transplant 2018; 18:1589-1595. [PMID: 29607607 PMCID: PMC6055806 DOI: 10.1111/ajt.14756] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 01/25/2023]
Abstract
Limited availability of donor organs and risk of ischemia-reperfusion injury (IRI) seriously restrict organ transplantation. Therapeutics that can prevent or reduce IRI could potentially increase the number of transplants by increasing use of borderline organs and decreasing discards. Alpha-1 antitrypsin (AAT) is an acute phase reactant and serine protease inhibitor that limits inflammatory tissue damage. Purified plasma-derived AAT has been well tolerated in more than 30 years of use to prevent emphysema in AAT-deficient individuals. Accumulating evidence suggests that AAT has additional anti-inflammatory and tissue-protective effects including improving mitochondrial membrane stability, inhibiting apoptosis, inhibiting nuclear factor kappa B activation, modulating pro- vs anti-inflammatory cytokine balance, and promoting immunologic tolerance. Cell culture and animal studies have shown that AAT limits tissue injury and promotes cell and tissue survival. AAT can promote tolerance in animal models by downregulating early inflammation and favoring induction and stabilization of regulatory T cells. The diverse intracellular and immune-modulatory effects of AAT and its well-established tolerability in patients suggest that it might be useful in transplantation. Clinical trials, planned and/or in progress, should help determine whether the promise of the animal and cellular studies will be fulfilled by improving outcomes in human organ transplantation.
Collapse
Affiliation(s)
| | | | | | - Maria Koulmanda
- Transplant Institute at Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
45
|
Effects of Warm Versus Cold Ischemic Donor Lung Preservation on the Underlying Mechanisms of Injuries During Ischemia and Reperfusion. Transplantation 2018; 102:760-768. [DOI: 10.1097/tp.0000000000002140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Lin H, Chen M, Tian F, Tikkanen J, Ding L, Andrew Cheung HY, Nakajima D, Wang Z, Mariscal A, Hwang D, Cypel M, Keshavjee S, Liu M. α 1 -Anti-trypsin improves function of porcine donor lungs during ex-vivo lung perfusion. J Heart Lung Transplant 2018; 37:656-666. [DOI: 10.1016/j.healun.2017.09.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 11/28/2022] Open
|
47
|
Kanou T, Ohsumi A, Kim H, Chen M, Bai X, Guan Z, Hwang D, Cypel M, Keshavjee S, Liu M. Inhibition of regulated necrosis attenuates receptor-interacting protein kinase 1-mediated ischemia-reperfusion injury after lung transplantation. J Heart Lung Transplant 2018; 37:1261-1270. [PMID: 29907500 DOI: 10.1016/j.healun.2018.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Increasing evidence indicates that regulated necrosis plays a critical role during cell death caused by ischemia-reperfusion (IR) injury. Necroptosis is one form of regulated necrosis. Necrostatin-1 (Nec-1), an inhibitor of receptor-interacting protein kinase 1 (RIPK1), is known to reduce necroptosis. We investigated the effect of Nec-1 treatment on IR-induced lung injury in a rat lung transplant model. METHODS Lewis rats were divided into 4 groups (n = 6 each): (1) Control (no treatment), (2) Donor treatment (D), (3) Recipient treatment (R), and (4) Donor plus Recipient treatment (D+R) groups. Donor lungs were flushed and preserved for 18 hours at 4ºC before transplantation. Recipient animals underwent a left single lung transplant. After 2 hours of reperfusion, we assessed the physiologic function, cytokine expression, pathway activation, and the extent of necrosis. RESULTS Pulmonary gas exchange in D+R group was significantly better than in the other 3 groups (p = 0.003). Lung edema was significantly lower in the D+R group compared with the Control group (p = 0.006). The expression of interleukin-6 in lung tissue and plasma was significantly reduced in the D+R group compared with the Control group (p = 0.036). The percentage of necrotic cells in D+R group was significantly lower than in the Control and D groups (p = 0.01), indicating Nec-1inhibited regulated necrosis. CONCLUSIONS The administration of Nec-1 to both donor and recipient improved graft function after lung transplantation through the reduction of necroptosis. The inhibition of regulated necrosis appears to be a promising strategy to attenuate IR lung injury after lung transplantation.
Collapse
Affiliation(s)
- Takashi Kanou
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Akihiro Ohsumi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Hyunhee Kim
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Manyin Chen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Zehong Guan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - David Hwang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Götzfried J, Smirnova NF, Morrone C, Korkmaz B, Yildirim AÖ, Eickelberg O, Jenne DE. Preservation with α 1-antitrypsin improves primary graft function of murine lung transplants. J Heart Lung Transplant 2018; 37:1021-1028. [PMID: 29776812 PMCID: PMC6078707 DOI: 10.1016/j.healun.2018.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/15/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vascular damage and primary graft dysfunction increase with prolonged preservation times of transplanted donor lungs. Hence, storage and conservation of donated lungs in protein-free, dextran-containing electrolyte solutions, like Perfadex, is limited to about 6 hours. We hypothesized that transplanted lungs are protected against neutrophil-mediated proteolytic damage by adding α1-anti-trypsin (AAT), a highly abundant human plasma proteinase inhibitor, to Perfadex. METHODS A realistic clinically oriented murine model of lung transplantation was used to simulate the ischemia-reperfusion process. Lung grafts were stored at 4°C in Perfadex solution supplemented with AAT or an AAT mutant devoid of elastase-inhibiting activity for 18 hours. We examined wild-type and proteinase 3/neutrophil elastase (PR3/NE) double-deficient mice as graft recipients. Gas exchange function and infiltrating neutrophils of the transplanted lung, as well as protein content and neutrophil numbers in the bronchoalveolar lavage fluid, were determined. RESULTS AAT as a supplement to Perfadex reduced the extent of primary graft dysfunction and early neutrophil responses after extended storage for 18 hours at 4°C and 4-hour reperfusion in the recipients. Double-knockout recipients that lack elastase-like activities in neutrophils were also protected from early reperfusion injury, but not lung grafts that were perfused with a reactive center mutant of AAT devoid of elastase-inhibiting activity. CONCLUSIONS PR3 and NE, the principal targets of AAT, are major triggers of post-ischemic reperfusion damage. Their effective inhibition in the graft and recipient is a promising strategy for organ usage after storage for >6 hours.
Collapse
Affiliation(s)
- Jessica Götzfried
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Natalia F Smirnova
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Carmela Morrone
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Brice Korkmaz
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany; German Center for Lung Research, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany; Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado, USA
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany; German Center for Lung Research, Munich, Germany; Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany.
| |
Collapse
|
49
|
Hoetzenecker K, Schwarz S, Muckenhuber M, Benazzo A, Frommlet F, Schweiger T, Bata O, Jaksch P, Ahmadi N, Muraközy G, Prosch H, Hager H, Roth G, Lang G, Taghavi S, Klepetko W. Intraoperative extracorporeal membrane oxygenation and the possibility of postoperative prolongation improve survival in bilateral lung transplantation. J Thorac Cardiovasc Surg 2017; 155:2193-2206.e3. [PMID: 29653665 DOI: 10.1016/j.jtcvs.2017.10.144] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/15/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The value of intraoperative extracorporeal membrane oxygenation (ECMO) in lung transplantation remains controversial. In our department, ECMO has been used routinely for intraoperatively unstable patients for more than 15 years. Recently, we have extended its indication to a preemptive application in almost all cases. In addition, we prolong ECMO into the early postoperative period whenever graft function does not meet certain quality criteria or in patients with primary pulmonary hypertension. The objective of this study was to review the results of this strategy. METHODS All standard bilateral lung transplantations performed between January 2010 and June 2016 were included in this single-center, retrospective analysis. Patients were divided into 3 groups: group I-no ECMO (n = 116), group II-intraoperative ECMO (n = 343), and group III-intraoperative and prolonged postoperative ECMO (n = 123). The impact of different ECMO strategies on primary graft function, short-term outcomes, and patient survival were analyzed. RESULTS The use of intraoperative ECMO was associated with improved 1-, 3-, and 5-year survival compared with non-ECMO patients (91% vs 82%, 85% vs 76%, and 80% vs 74%; log-rank P = .041). This effect was still evident after propensity score matching of both cohorts. Despite the high number of complex patients in group III, outcome was excellent with higher survival rates than in the non-ECMO group at all time points. CONCLUSIONS Intraoperative ECMO results in superior survival when compared with transplantation without any extracorporeal support. The concept of prophylactic postoperative ECMO prolongation is associated with excellent outcomes in recipients with pulmonary hypertension and in patients with questionable graft function at the end of implantation.
Collapse
Affiliation(s)
- Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Schwarz
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Alberto Benazzo
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Frommlet
- Department of Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Thomas Schweiger
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Orsolya Bata
- Department of Radiology, National Institute of Oncology, Budapest, Hungary
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Negar Ahmadi
- Department of General Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Gabriella Muraközy
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Helmut Hager
- Department of Anaesthesiology, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Roth
- Department of Anaesthesiology, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - György Lang
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria; Department of Thoracic Surgery, Semmelweis University, Budapest, Hungary
| | - Shahrokh Taghavi
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
50
|
Ex vivo treatment with inhaled N-acetylcysteine in porcine lung transplantation. J Surg Res 2017; 218:341-347. [PMID: 28985871 DOI: 10.1016/j.jss.2017.06.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND We have shown the beneficial effects of N-acetylcysteine (NAC) on posttransplant lung function, when both donor and recipient were pretreated intravenously. However, systemic treatment of multiorgan donors may not be clinically relevant. Thus, we hypothesized that ex vivo treatment of donors with nebulized NAC would be adequate to prevent from ischemia-reperfusion injury after lung transplantation. METHODS Lungs were retrieved from domestic pigs and stored at 4°C for 24 h followed by 2 h of ex vivo lung perfusion (EVLP) to administer 50 mg/kg of NAC via nebulization in the NAC group (n = 6). The control group received nebulized saline (n = 5). Left lungs were transplanted and isolated at 1 h of reperfusion by occluding the right main bronchus and pulmonary artery, followed by 5 h of observation. Physiological data during EVLP and after reperfusion were recorded. Inflammatory response, markers of oxidative stress, and microscopic lung injury were analyzed. RESULTS There was a trend toward better oxygenation throughout reperfusion period in the treatment group, which was accompanied by inhibited inflammatory response related to reduction in myeloperoxidase activity during EVLP and nuclear factor-κB activation at the end of reperfusion. CONCLUSIONS Ex vivo treatment of donor lungs with inhaled NAC reduced inflammatory response via its antioxidant activity in experimental porcine lung transplantation.
Collapse
|