1
|
Hassan GF, Alexander-Brett J. Harnessing Mesenchymal Stem Cells for Improving Lung Transplant Outcomes. J Heart Lung Transplant 2024:S1053-2498(24)01998-3. [PMID: 39647558 DOI: 10.1016/j.healun.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/10/2024] Open
Affiliation(s)
- Ghandi F Hassan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Jen Alexander-Brett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO.
| |
Collapse
|
2
|
Edström D, Niroomand A, Stenlo M, Broberg E, Hirdman G, Ghaidan H, Hyllén S, Pierre L, Olm F, Lindstedt S. Amniotic fluid-derived mesenchymal stem cells reduce inflammation and improve lung function following transplantation in a porcine model. J Heart Lung Transplant 2024; 43:2018-2030. [PMID: 39182800 DOI: 10.1016/j.healun.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Lung transplantation is hindered by low donor lung utilization rates. Infectious complications are reasons to decline donor grafts due to fear of post-transplant primary graft dysfunction. Mesenchymal stem cells are a promising therapy currently investigated in treating lung injury. Full-term amniotic fluid-derived lung-specific mesenchymal stem cell treatment may regenerate damaged lungs. These cells have previously demonstrated inflammatory mediation in other respiratory diseases, and we hypothesized that treatment would improve donor lung quality and postoperative outcomes. METHODS In a transplantation model, donor pigs were stratified to either the treated or the nontreated group. Acute respiratory distress syndrome was induced in donor pigs and harvested lungs were placed on ex vivo lung perfusion (EVLP) before transplantation. Treatment consisted of 3 doses of 2 × 106 cells/kg: one during EVLP and 2 after transplantation. Donors and recipients were assessed on clinically relevant parameters and recipients were followed for 3 days before evaluation for primary graft dysfunction (PGD). RESULTS Repeated injection of the cell treatment showed reductions in inflammation seen through lowered immune cell counts, reduced histology signs of inflammation, and decreased cytokines in the plasma and bronchoalveolar lavage fluid. Treated recipients showed improved pulmonary function, including increased PaO2/FiO2 ratios and reduced incidence of PGD. CONCLUSIONS Repeated injection of lung-specific cell treatment during EVLP and post transplant was associated with improved function of previously damaged lungs. Cell treatment may be considered as a potential therapy to increase the number of lungs available for transplantation and the improvement of postoperative outcomes.
Collapse
Affiliation(s)
- Dag Edström
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Anna Niroomand
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, New York
| | - Martin Stenlo
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Ellen Broberg
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Gabriel Hirdman
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Haider Ghaidan
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllén
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Leif Pierre
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
3
|
Niroomand A, Nita GE, Lindstedt S. Machine Perfusion and Bioengineering Strategies in Transplantation-Beyond the Emerging Concepts. Transpl Int 2024; 37:13215. [PMID: 39267617 PMCID: PMC11390383 DOI: 10.3389/ti.2024.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Solid organ transplantation has progressed rapidly over the decades from the first experimental procedures to its role in the modern era as an established treatment for end-stage organ disease. Solid organ transplantation including liver, kidney, pancreas, heart, and lung transplantation, is the definitive option for many patients, but despite the advances that have been made, there are still significant challenges in meeting the demand for viable donor grafts. Furthermore, post-operatively, the recipient faces several hurdles, including poor early outcomes like primary graft dysfunction and acute and chronic forms of graft rejection. In an effort to address these issues, innovations in organ engineering and treatment have been developed. This review covers efforts made to expand the donor pool including bioengineering techniques and the use of ex vivo graft perfusion. It also covers modifications and treatments that have been trialed, in addition to research efforts in both abdominal organs and thoracic organs. Overall, this article discusses recent innovations in machine perfusion and organ bioengineering with the aim of improving and increasing the quality of donor organs.
Collapse
Affiliation(s)
- Anna Niroomand
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - George Emilian Nita
- Department of Transplantation Surgery, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Guinn MT, Fernandez R, Lau S, Loor G. Transcriptomic Signatures in Lung Allografts and Their Therapeutic Implications. Biomedicines 2024; 12:1793. [PMID: 39200257 PMCID: PMC11351513 DOI: 10.3390/biomedicines12081793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Ex vivo lung perfusion (EVLP) is a well-established method of lung preservation in clinical transplantation. Transcriptomic analyses of cells and tissues uncover gene expression patterns which reveal granular molecular pathways and cellular programs under various conditions. Coupling EVLP and transcriptomics may provide insights into lung allograft physiology at a molecular level with the potential to develop targeted therapies to enhance or repair the donor lung. This review examines the current landscape of transcriptional analysis of lung allografts in the context of state-of-the-art therapeutics that have been developed to optimize lung allograft function.
Collapse
Affiliation(s)
- Michael Tyler Guinn
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Ramiro Fernandez
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
| | - Sean Lau
- Department of Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gabriel Loor
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
| |
Collapse
|
5
|
Nykänen AI, Mariscal A, Duong A, Ali A, Takahagi A, Bai X, Zehong G, Joe B, Takahashi M, Chen M, Gokhale H, Shan H, Hwang DM, Estrada C, Yeung J, Waddell T, Martinu T, Juvet S, Cypel M, Liu M, Davies JE, Keshavjee S. Lung Transplant Immunomodulation with Genetically Engineered Mesenchymal Stromal Cells-Therapeutic Window for Interleukin-10. Cells 2024; 13:859. [PMID: 38786082 PMCID: PMC11119666 DOI: 10.3390/cells13100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Lung transplantation results are compromised by ischemia-reperfusion injury and alloimmune responses. Ex vivo lung perfusion (EVLP) is used to assess marginal donor lungs before transplantation but is also an excellent platform to apply novel therapeutics. We investigated donor lung immunomodulation using genetically engineered mesenchymal stromal cells with augmented production of human anti-inflammatory hIL-10 (MSCsIL-10). Pig lungs were placed on EVLP for 6 h and randomized to control (n = 7), intravascular delivery of 20 × 106 (n = 5, low dose) or 40 × 106 human MSCs IL-10 (n = 6, high dose). Subsequently, single-lung transplantation was performed, and recipient pigs were monitored for 3 days. hIL-10 secretion was measured during EVLP and after transplantation, and immunological effects were assessed by cytokine profile, T and myeloid cell characterization and mixed lymphocyte reaction. MSCIL-10 therapy rapidly increased hIL-10 during EVLP and resulted in transient hIL-10 elevation after lung transplantation. MSCIL-10 delivery did not affect lung function but was associated with dose-related immunomodulatory effects, with the low dose resulting in a beneficial decrease in apoptosis and lower macrophage activation, but the high MSCIL-10 dose resulting in inflammation and cytotoxic CD8+ T cell activation. MSCIL-10 therapy during EVLP results in a rapid and transient perioperative hIL-10 increase and has a therapeutic window for its immunomodulatory effects.
Collapse
Affiliation(s)
- Antti I. Nykänen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrea Mariscal
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Allen Duong
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aadil Ali
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Akihiro Takahagi
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
| | - Xiaohui Bai
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
| | - Guan Zehong
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
| | - Betty Joe
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
| | - Mamoru Takahashi
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
| | - Manyin Chen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Hemant Gokhale
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Hongchao Shan
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - David M. Hwang
- Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada;
| | - Catalina Estrada
- Tissue Regeneration Therapeutics, Toronto, ON M5G 1N8, Canada; (C.E.); (J.E.D.)
| | - Jonathan Yeung
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Tom Waddell
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John E. Davies
- Tissue Regeneration Therapeutics, Toronto, ON M5G 1N8, Canada; (C.E.); (J.E.D.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| |
Collapse
|
6
|
Miyashita Y, Kanou T, Fukui E, Matsui T, Kimura T, Ose N, Funaki S, Shintani Y. A Novel Peroxisome Proliferator-Activated Receptor Gamma/Nuclear Factor-Kappa B Activation Pathway is Involved in the Protective Effect of Adipose-Derived Mesenchymal Stem Cells Against Ischemia-Reperfusion Lung Injury. Transplant Proc 2024; 56:369-379. [PMID: 38320873 DOI: 10.1016/j.transproceed.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/04/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) are well-recognized for their remarkable ability to suppress ischemia-reperfusion lung injury (IRLI). The primary objective of this investigation was to elucidate the underlying mechanism through which ADSCs exert protective effects against IRLI. METHODS A warm hilar occlusion model in C57BL6J mice was used. Hilar occlusion was achieved for 1 hour (ischemic), and after 1 hour the occlusion was released (reperfusion) to recover for 3 hours. RNA sequencing, the physiological function, pathway activation, and expression of inflammatory cytokines were evaluated. RESULTS Lung gas exchange and pulmonary edema were significantly improved in the IRLI/ADSCs group compared with the IRLI group. RNA sequencing results suggested that the peroxisome proliferator-activated receptor gamma (PPARγ)/nuclear factor-kappa B (NF-κB) pathway was involved in the effect of the ADSCs. Administration of a PPARγ antagonist in the IRLI/ADSC group resulted in the deterioration of the physiological function. Furthermore, the PPARγ protein expression level decreased, the NF-κB protein expression level increased, and inflammatory cytokine parameters from lung tissue and blood sample worsened in the PPARγ antagonist-administered group. CONCLUSION Administration of ADSCs exerted a significant protective effect against IRLI in mice, and the effect is attributed to the activation of the PPARγ/NF-κB pathway.
Collapse
Affiliation(s)
- Yudai Miyashita
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Eriko Fukui
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takahiro Matsui
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoko Ose
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Gilbo N, Blondeel J, Pirenne J, Romagnoli R, Camussi G, Monbaliu D. Organ Repair and Regeneration During Ex Situ Dynamic Preservation: The Future is Nano. Transpl Int 2023; 36:11947. [PMID: 38020754 PMCID: PMC10667440 DOI: 10.3389/ti.2023.11947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Organ preservation and assessment with machine perfusion (MP) has provided transplant physicians with the ability to evaluate and select grafts suitable for transplantation. Nevertheless, the discard of organs considered too damaged still sustains the imbalance between donor organs supply and demands. Therefore, there is the pressing clinical need for strategies to repair and/or regenerate organs before transplantation, and MP is uniquely positioned to satisfy this need. The systemic administration of mesenchymal stromal cells (MSC) was shown to reduce ischemia-reperfusion injury in pre-clinical organ transplant models but could not be reproduced in clinical transplantation, largely because of inefficient cell delivery. The administration of MSC during MP is one strategy that recently gained much attention as an alternative delivery method to target MSC directly to the donor organ. However, careful reinterpretation of preliminary results reveals that this approach is equally limited by a suboptimal delivery of short-lived MSC to the target organ. In contrast, the use of MSC secretome and/or extracellular vesicles therapy during MP seems to be more efficient in harnessing MSC properties during MP. In this mini review we speculate on the future of the novel niche of ex situ organ repair and regeneration before transplantation.
Collapse
Affiliation(s)
- Nicholas Gilbo
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, Faculty of Medicine, KU Leuven, Leuven, Belgium
- University Hospital of Liège, Liège, Belgium
| | - Joris Blondeel
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, Faculty of Medicine, KU Leuven, Leuven, Belgium
- University Hospitals Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, Faculty of Medicine, KU Leuven, Leuven, Belgium
- University Hospitals Leuven, Leuven, Belgium
| | - Renato Romagnoli
- General Surgery 2U–Liver Transplant Unit, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
- Dipartimento di Chirurgia Generale e Specialistica, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, School of Medicine, University of Turin, Turin, Italy
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, School of Medicine, University of Turin, Torino, Italy
| | - Diethard Monbaliu
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, Faculty of Medicine, KU Leuven, Leuven, Belgium
- University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Blondeel J, Gilbo N, De Bondt S, Monbaliu D. Stem cell Derived Extracellular Vesicles to Alleviate ischemia-reperfusion Injury of Transplantable Organs. A Systematic Review. Stem Cell Rev Rep 2023; 19:2225-2250. [PMID: 37548807 DOI: 10.1007/s12015-023-10573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND The possible beneficial effects of stem cell-derived EV on ischemia-reperfusion injury (IRI) in organ transplantation have been frequently investigated; however, the source of EV, as well as the methods of isolation and administration vary widely. We conducted a systematic review to summarize current pre-clinical evidence on stem cell-derived EV therapy for IRI of transplantable organs. METHODS PubMed, Embase and Web of Science were searched from inception until August 19th, 2022, for studies on stem cell-derived EV therapy for IRI after heart, kidney, liver, pancreas, lung and intestine transplantation. The Systematic Review Center for Laboratory animal Experiments (SYRCLE) guidelines were followed to assess potential risk of bias. RESULTS The search yielded 4153 unique articles, of which 96 were retained. We identified 32 studies on cardiac IRI, 38 studies on renal IRI, 21 studies on liver IRI, four studies on lung IRI and one study on intestinal IRI. Most studies used rodent models of transient ischemic injury followed by in situ reperfusion. In all studies, EV therapy was associated with improved outcome albeit to a variable degree. EV-therapy reduced organ injury and improved function while displaying anti-inflammatory-, immunomodulatory- and pro-regenerative properties. CONCLUSION A multitude of animal studies support the potential of stem cell-derived EV-therapy to alleviate IRI after solid organ transplantation but suffer from low reporting quality and wide methodological variability. Future studies should focus on determining optimal stem cell source, dosage, and timing of treatment, as well as long-term efficacy in transplant models.
Collapse
Affiliation(s)
- Joris Blondeel
- Department of Microbiology, Immunology and Transplantation, Laboratory of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery and Coordination, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Nicholas Gilbo
- Department of Microbiology, Immunology and Transplantation, Laboratory of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Surgery and Transplantation, CHU Liege, Liege, Belgium
| | | | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Laboratory of Abdominal Transplantation, KU Leuven, Leuven, Belgium.
- Department of Abdominal Transplant Surgery and Coordination, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium.
| |
Collapse
|
9
|
Griffiths C, Scott WE, Ali S, Fisher AJ. Maximizing organs for donation: the potential for ex situ normothermic machine perfusion. QJM 2023; 116:650-657. [PMID: 31943119 DOI: 10.1093/qjmed/hcz321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Currently, there is a shortfall in the number of suitable organs available for transplant resulting in a high number of patients on the active transplant waiting lists worldwide. To address this shortfall and increase the utilization of donor organs, the acceptance criteria for donor organs is gradually expanding including increased use of organs from donation after circulatory death. Use of such extended criteria donors and exposure of organs to more prolonged periods of warm or cold ischaemia also increases the risk of primary graft dysfunction occurring. Normothermic machine perfusion (NMP) offers a unique opportunity to objectively assess donor organ function outside the donor body and potentially recondition those deemed unsuitable on initial evaluation prior to implantation in the recipient. Furthermore, NMP provides a platform to support the use of established and novel therapeutics delivered directly to the organ, without the need to worry about potential deleterious 'off-target' side effects typically considered when treating the whole patient. This review will explore some of the novel therapeutics currently being added to perfusion platforms during NMP experimentally in an attempt to improve organ function and post-transplant outcomes.
Collapse
Affiliation(s)
- C Griffiths
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - W E Scott
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - S Ali
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - A J Fisher
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
10
|
Nykänen AI, Liu M, Keshavjee S. Mesenchymal Stromal Cell Therapy in Lung Transplantation. Bioengineering (Basel) 2023; 10:728. [PMID: 37370659 DOI: 10.3390/bioengineering10060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lung transplantation is often the only viable treatment option for a patient with end-stage lung disease. Lung transplant results have improved substantially over time, but ischemia-reperfusion injury, primary graft dysfunction, acute rejection, and chronic lung allograft dysfunction (CLAD) continue to be significant problems. Mesenchymal stromal cells (MSC) are pluripotent cells that have anti-inflammatory and protective paracrine effects and may be beneficial in solid organ transplantation. Here, we review the experimental studies where MSCs have been used to protect the donor lung against ischemia-reperfusion injury and alloimmune responses, as well as the experimental and clinical studies using MSCs to prevent or treat CLAD. In addition, we outline ex vivo lung perfusion (EVLP) as an optimal platform for donor lung MSC delivery, as well as how the therapeutic potential of MSCs could be further leveraged with genetic engineering.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, FI-00029 Helsinki, Finland
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
11
|
Avtaar Singh SS, Das De S, Al-Adhami A, Singh R, Hopkins PMA, Curry PA. Primary graft dysfunction following lung transplantation: From pathogenesis to future frontiers. World J Transplant 2023; 13:58-85. [PMID: 36968136 PMCID: PMC10037231 DOI: 10.5500/wjt.v13.i3.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Lung transplantation is the treatment of choice for patients with end-stage lung disease. Currently, just under 5000 lung transplants are performed worldwide annually. However, a major scourge leading to 90-d and 1-year mortality remains primary graft dysfunction. It is a spectrum of lung injury ranging from mild to severe depending on the level of hypoxaemia and lung injury post-transplant. This review aims to provide an in-depth analysis of the epidemiology, pathophysiology, risk factors, outcomes, and future frontiers involved in mitigating primary graft dysfunction. The current diagnostic criteria are examined alongside changes from the previous definition. We also highlight the issues surrounding chronic lung allograft dysfunction and identify the novel therapies available for ex-vivo lung perfusion. Although primary graft dysfunction remains a significant contributor to 90-d and 1-year mortality, ongoing research and development abreast with current technological advancements have shed some light on the issue in pursuit of future diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Sanjeet Singh Avtaar Singh
- Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, United Kingdom
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Sudeep Das De
- Heart and Lung Transplant Unit, Wythenshawe Hospital, Manchester M23 9NJ, United Kingdom
| | - Ahmed Al-Adhami
- Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, United Kingdom
- Department of Heart and Lung Transplant, Royal Papworth Hospital, Cambridge CB2 0AY, United Kingdom
| | - Ramesh Singh
- Mechanical Circulatory Support, Inova Health System, Falls Church, VA 22042, United States
| | - Peter MA Hopkins
- Queensland Lung Transplant Service, Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - Philip Alan Curry
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow G81 4DY, United Kingdom
| |
Collapse
|
12
|
Miceli V, Bulati M, Gallo A, Iannolo G, Busà R, Conaldi PG, Zito G. Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines 2023; 11:689. [PMID: 36979668 PMCID: PMC10045387 DOI: 10.3390/biomedicines11030689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a multistep damage that occurs in several tissues when a blood flow interruption is inevitable, such as during organ surgery or transplantation. It is responsible for cell death and tissue dysfunction, thus leading, in the case of transplantation, to organ rejection. IRI takes place during reperfusion, i.e., when blood flow is restored, by activating inflammation and reactive oxygen species (ROS) production, causing mitochondrial damage and apoptosis of parenchymal cells. Unfortunately, none of the therapies currently in use are definitive, prompting the need for new therapeutic approaches. Scientific evidence has proven that mesenchymal stem/stromal cells (MSCs) can reduce inflammation and ROS, prompting this cellular therapy to also be investigated for treatment of IRI. Moreover, it has been shown that MSC therapeutic effects were mediated in part by their secretome, which appears to be involved in immune regulation and tissue repair. For these reasons, mediated MSC paracrine function might be key for injury amelioration upon IRI damage. In this review, we highlight the scientific literature on the potential beneficial use of MSCs and their products for improving IRI outcomes in different tissues/organs, focusing in particular on the paracrine effects mediated by MSCs, and on the molecular mechanisms behind these effects.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | | | | | | | | | - Giovanni Zito
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| |
Collapse
|
13
|
Huang L, Hough O, Vellanki RN, Takahashi M, Zhu Z, Xiang YY, Chen M, Gokhale H, Shan H, Soltanieh S, Jing L, Gao X, Wouters BG, Cypel M, Keshavjee S, Liu M. L-alanyl-L-glutamine modified perfusate improves human lung cell functions and extend porcine ex vivo lung perfusion. J Heart Lung Transplant 2023; 42:183-195. [PMID: 36411189 DOI: 10.1016/j.healun.2022.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The clinical application of normothermic ex vivo lung perfusion (EVLP) has increased donor lung utilization for transplantation through functional assessment. To develop it as a platform for donor lung repair, reconditioning and regeneration, the perfusate should be modified to support the lung during extended EVLP. METHODS Human lung epithelial cells and pulmonary microvascular endothelial cells were cultured, and the effects of Steen solution (commonly used EVLP perfusate) on basic cellular function were tested. Steen solution was modified based on screening tests in cell culture, and further tested with an EVLP cell culture model, on apoptosis, GSH, HSP70, and IL-8 expression. Finally, a modified formula was tested on porcine EVLP. Physiological parameters of lung function, histology of lung tissue, and amino acid concentrations in EVLP perfusate were measured. RESULTS Steen solution reduced cell confluence, induced apoptosis, and inhibited cell migration, compared to regular cell culture media. Adding L-alanyl-L-glutamine to Steen solution improved cell migration and decreased apoptosis. It also reduced cold preservation and warm perfusion-induced apoptosis, enhanced GSH and HSP70 production, and inhibited IL-8 expression on an EVLP cell culture model. L-alanyl-L-glutamine modified Steen solution supported porcine lungs on EVLP with significantly improved lung function, well-preserved histological structure, and significantly higher levels of multiple amino acids in EVLP perfusate. CONCLUSIONS Adding L-alanyl-L-glutamine to perfusate may provide additional energy support, antioxidant, and cytoprotective effects to lung tissue. The pipeline developed herein, with cell culture, cell EVLP, and porcine EVLP models, can be used to further optimize perfusates to improve EVLP outcomes.
Collapse
Affiliation(s)
- Lei Huang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Olivia Hough
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ravi N Vellanki
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - Mamoru Takahashi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zhiyuan Zhu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yun-Yan Xiang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Manyin Chen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hemant Gokhale
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hongchao Shan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sahar Soltanieh
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lei Jing
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xinliang Gao
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Bradly G Wouters
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Diagnostic and Therapeutic Implications of Ex Vivo Lung Perfusion in Lung Transplantation: Potential Benefits and Inherent Limitations. Transplantation 2023; 107:105-116. [PMID: 36508647 DOI: 10.1097/tp.0000000000004414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ex vivo lung perfusion (EVLP), a technique in which isolated lungs are continually ventilated and perfused at normothermic temperature, is emerging as a promising platform to optimize donor lung quality and increase the lung graft pool. Over the past few decades, the EVLP technique has become recognized as a significant achievement and gained much attention in the field of lung transplantation. EVLP has been demonstrated to be an effective platform for various targeted therapies to optimize donor lung function before transplantation. Additionally, some physical parameters during EVLP and biological markers in the EVLP perfusate can be used to evaluate graft function before transplantation and predict posttransplant outcomes. However, despite its advantages, the clinical practice of EVLP continuously encounters multiple challenges associated with both intrinsic and extrinsic limitations. It is of utmost importance to address the advantages and disadvantages of EVLP for its broader clinical usage. Here, the pros and cons of EVLP are comprehensively discussed, with a focus on its benefits and potential approaches for overcoming the remaining limitations. Directions for future research to fully explore the clinical potential of EVLP in lung transplantation are also discussed.
Collapse
|
15
|
Luijmes SH, Verstegen MMA, Hoogduijn MJ, Seghers L, Minnee RC, Mahtab EAF, Taverne YJHJ, Reinders MEJ, van der Laan LJW, de Jonge J. The current status of stem cell-based therapies during ex vivo graft perfusion: An integrated review of four organs. Am J Transplant 2022; 22:2723-2739. [PMID: 35896477 PMCID: PMC10087443 DOI: 10.1111/ajt.17161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/26/2022] [Accepted: 07/15/2022] [Indexed: 01/25/2023]
Abstract
The use of extended criteria donor grafts is a promising strategy to increase the number of organ transplantations and reduce waitlist mortality. However, these organs are often compromised and/or damaged, are more susceptible to preservation injury, and are at risk for developing post-transplant complications. Ex vivo organ perfusion is a novel technology to preserve donor organs while providing oxygen and nutrients at distinct perfusion temperatures. This preservation method allows to resuscitate grafts and optimize function with therapeutic interventions prior to solid organ transplantation. Stem cell-based therapies are increasingly explored for their ability to promote regeneration and reduce the inflammatory response associated with in vivo reperfusion. The aim of this review is to describe the current state of stem cell-based therapies during ex vivo organ perfusion for the kidney, liver, lung, and heart. We discuss different strategies, including type of cells, route of administration, mechanisms of action, efficacy, and safety. The progress made within lung transplantation justifies the initiation of clinical trials, whereas more research is likely required for the kidney, liver, and heart to progress into clinical application. We emphasize the need for standardization of methodology to increase comparability between future (clinical) studies.
Collapse
Affiliation(s)
- Stefan H Luijmes
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martin J Hoogduijn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leonard Seghers
- Department of Pulmonology, Thorax Center, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert C Minnee
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Edris A F Mahtab
- Department of Cardiothoracic Surgery, Thorax Center, Erasmus MC Transplant Institute, University Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Thorax Center, Erasmus MC Transplant Institute, University Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Roesel MJ, Wiegmann B, Ius F, Knosalla C, Iske J. The role of ex-situ perfusion for thoracic organs. Curr Opin Organ Transplant 2022; 27:466-473. [PMID: 35950888 DOI: 10.1097/mot.0000000000001008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Ex-situ machine perfusion for both heart (HTx) and lung transplantation (LuTx) reduces ischemia-reperfusion injury (IRI), allows for greater flexibility in geographical donor management, continuous monitoring, organ assessment for extended evaluation, and potential reconditioning of marginal organs. In this review, we will delineate the impact of machine perfusion, characterize novel opportunities, and outline potential challenges lying ahead to improve further implementation. RECENT FINDINGS Due to the success of several randomized controlled trials (RCT), comparing cold storage to machine perfusion in HTx and LuTx, implementation and innovation continues. Indeed, it represents a promising interface for organ-specific therapies targeting IRI, allo-immune responses, and graft reconditioning. These mostly experimental efforts range from genetic approaches and nanotechnology to cellular therapies, involving mesenchymal stem cell application. Despite tremendous potential, prior to clinical transition, more data is needed. SUMMARY Collectively, machine perfusion constitutes the vanguard in thoracic organ transplantation research with extensive potential for expanding the donor pool, enhancing transplant outcomes as well as developing novel therapy approaches.
Collapse
Affiliation(s)
- Maximilian J Roesel
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany
- Institute of Medical Immunology, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- DFG Priority Program SPP 2014, German Research Foundation, Bonn, Germany
| | - Fabio Ius
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Jasper Iske
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany
| |
Collapse
|
17
|
Li TT, Wang ZR, Yao WQ, Linghu EQ, Wang FS, Shi L. Stem Cell Therapies for Chronic Liver Diseases: Progress and Challenges. Stem Cells Transl Med 2022; 11:900-911. [PMID: 35993521 PMCID: PMC9492280 DOI: 10.1093/stcltm/szac053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic liver diseases have become a significant health issue worldwide and urgently require the development of novel therapeutic approaches, in addition to liver transplantation. Recent clinical and preclinical studies have shown that cell-based therapeutic strategies may contribute to the improvement of chronic liver diseases and offer new therapeutic options to restore liver function through their roles in tissue impairment and immunomodulation. In this review, we summarize the current progress and analyze the challenges for different types of cell therapies used in the treatment of chronic liver diseases currently explored in clinical trials and preclinical studies in animal models. We also discuss some critical issues regarding the use of mesenchymal stem cells (MSCs, the most extensive cell source of stem cells), including therapeutic dosage, transfusion routine, and pharmacokinetics/pharmacodynamics (PK/PD) of transfused MSCs.
Collapse
Affiliation(s)
- Tian-Tian Li
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China.,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Ze-Rui Wang
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wei-Qi Yao
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,National Industrial Base for Stem Cell Engineering Products, Tianjin, People's Republic of China
| | - En-Qiang Linghu
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Lei Shi
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| |
Collapse
|
18
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
19
|
Miceli V, Bertani A. Mesenchymal Stromal/Stem Cells and Their Products as a Therapeutic Tool to Advance Lung Transplantation. Cells 2022; 11:cells11050826. [PMID: 35269448 PMCID: PMC8909054 DOI: 10.3390/cells11050826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Lung transplantation (LTx) has become the gold standard treatment for end-stage respiratory failure. Recently, extended lung donor criteria have been applied to decrease the mortality rate of patients on the waiting list. Moreover, ex vivo lung perfusion (EVLP) has been used to improve the number/quality of previously unacceptable lungs. Despite the above-mentioned progress, the morbidity/mortality of LTx remains high compared to other solid organ transplants. Lungs are particularly susceptible to ischemia-reperfusion injury, which can lead to graft dysfunction. Therefore, the success of LTx is related to the quality/function of the graft, and EVLP represents an opportunity to protect/regenerate the lungs before transplantation. Increasing evidence supports the use of mesenchymal stromal/stem cells (MSCs) as a therapeutic strategy to improve EVLP. The therapeutic properties of MSC are partially mediated by secreted factors. Hence, the strategy of lung perfusion with MSCs and/or their products pave the way for a new innovative approach that further increases the potential for the use of EVLP. This article provides an overview of experimental, preclinical and clinical studies supporting the application of MSCs to improve EVLP, the ultimate goal being efficient organ reconditioning in order to expand the donor lung pool and to improve transplant outcomes.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), 90127 Palermo, Italy
- Correspondence: (V.M.); (A.B.); Tel.: +39-091-21-92-430 (V.M.); +39-091-21-92-111 (A.B.)
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
- Correspondence: (V.M.); (A.B.); Tel.: +39-091-21-92-430 (V.M.); +39-091-21-92-111 (A.B.)
| |
Collapse
|
20
|
Li J, Peng Q, Yang R, Li K, Zhu P, Zhu Y, Zhou P, Szabó G, Zheng S. Application of Mesenchymal Stem Cells During Machine Perfusion: An Emerging Novel Strategy for Organ Preservation. Front Immunol 2022; 12:713920. [PMID: 35024039 PMCID: PMC8744145 DOI: 10.3389/fimmu.2021.713920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Although solid organ transplantation remains the definitive management for patients with end-stage organ failure, this ultimate treatment has been limited by the number of acceptable donor organs. Therefore, efforts have been made to expand the donor pool by utilizing marginal organs from donation after circulatory death or extended criteria donors. However, marginal organs are susceptible to ischemia-reperfusion injury (IRI) and entail higher requirements for organ preservation. Recently, machine perfusion has emerged as a novel preservation strategy for marginal grafts. This technique continually perfuses the organs to mimic the physiologic condition, allows the evaluation of pretransplant graft function, and more excitingly facilitates organ reconditioning during perfusion with pharmacological, gene, and stem cell therapy. As mesenchymal stem cells (MSCs) have anti-oxidative, immunomodulatory, and regenerative properties, mounting studies have demonstrated the therapeutic effects of MSCs on organ IRI and solid organ transplantation. Therefore, MSCs are promising candidates for organ reconditioning during machine perfusion. This review provides an overview of the application of MSCs combined with machine perfusion for lung, kidney, liver, and heart preservation and reconditioning. Promising preclinical results highlight the potential clinical translation of this innovative strategy to improve the quality of marginal grafts.
Collapse
Affiliation(s)
- Jiale Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinbao Peng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ronghua Yang
- Department of Burn Surgery and Skin Regeneration, The First People's Hospital of Foshan, Foshan, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yufeng Zhu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Current Status and Future Perspectives on Machine Perfusion: A Treatment Platform to Restore and Regenerate Injured Lungs Using Cell and Cytokine Adsorption Therapy. Cells 2021; 11:cells11010091. [PMID: 35011653 PMCID: PMC8750486 DOI: 10.3390/cells11010091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 02/06/2023] Open
Abstract
Since its advent in the 1990′s, ex vivo lung perfusion (EVLP) has been studied and implemented as a tool to evaluate the quality of a donor organ prior to transplantation. It provides an invaluable window of opportunity for therapeutic intervention to render marginal lungs viable for transplantation. This ultimately aligns with the need of the lung transplant field to increase the number of available donor organs given critical shortages. As transplantation is the only option for patients with end-stage lung disease, advancements in technology are needed to decrease wait-list time and mortality. This review summarizes the results from the application of EVLP as a therapeutic intervention and focuses on the use of the platform with regard to cell therapies, cell product therapies, and cytokine filtration among other technologies. This review will summarize both the clinical and translational science being conducted in these aspects and will highlight the opportunities for EVLP to be developed as a powerful tool to increase the donor lung supply.
Collapse
|
22
|
Nykänen AI, Mariscal A, Duong A, Estrada C, Ali A, Hough O, Sage A, Chao BT, Chen M, Gokhale H, Shan H, Bai X, Zehong G, Yeung J, Waddell T, Martinu T, Juvet S, Cypel M, Liu M, Davies JE, Keshavjee S. Engineered mesenchymal stromal cell therapy during human lung ex vivo lung perfusion is compromised by acidic lung microenvironment. Mol Ther Methods Clin Dev 2021; 23:184-197. [PMID: 34703841 PMCID: PMC8516994 DOI: 10.1016/j.omtm.2021.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
Ex vivo lung perfusion (EVLP) is an excellent platform to apply novel therapeutics, such as gene and cell therapies, before lung transplantation. We investigated the concept of human donor lung engineering during EVLP by combining gene and cell therapies. Premodified cryopreserved mesenchymal stromal cells with augmented anti-inflammatory interleukin-10 production (MSCIL-10) were administered during EVLP to human lungs that had various degrees of underlying lung injury. Cryopreserved MSCIL-10 had excellent viability, and they immediately and efficiently elevated perfusate and lung tissue IL-10 levels during EVLP. However, MSCIL-10 function was compromised by the poor metabolic conditions present in the most damaged lungs. Similarly, exposing cultured MSCIL-10 to poor metabolic, and especially acidic, conditions decreased their IL-10 production. In conclusion, we found that "off-the-shelf" MSCIL-10 therapy of human lungs during EVLP is safe and feasible, and results in rapid IL-10 elevation, and that the acidic target-tissue microenvironment may compromise the efficacy of cell-based therapies.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Andrea Mariscal
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Allen Duong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Catalina Estrada
- Tissue Regeneration Therapeutics, 790 Bay Street, Toronto, ON M5G 1N8, Canada
| | - Aadil Ali
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Olivia Hough
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Andrew Sage
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Bonnie T Chao
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Manyin Chen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Hemant Gokhale
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Hongchao Shan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Guan Zehong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Jonathan Yeung
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Tom Waddell
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Tereza Martinu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stephen Juvet
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - John E Davies
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
23
|
Iske J, Hinze CA, Salman J, Haverich A, Tullius SG, Ius F. The potential of ex vivo lung perfusion on improving organ quality and ameliorating ischemia reperfusion injury. Am J Transplant 2021; 21:3831-3839. [PMID: 34355495 PMCID: PMC8925042 DOI: 10.1111/ajt.16784] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023]
Abstract
Allogeneic lung transplantation (LuTx) is considered the treatment of choice for a broad range of advanced, progressive lung diseases resistant to conventional treatment regimens. Ischemia reperfusion injury (IRI) occurring upon reperfusion of the explanted, ischemic lung during implantation remains a crucial mediator of primary graft dysfunction (PGD) and early allo-immune responses. Ex vivo lung perfusion (EVLP) displays an advanced technique aiming at improving lung procurement and preservation. Indeed, previous clinical trials have demonstrated a reduced incidence of PGD following LuTx utilizing EVLP, while long-term outcomes are yet to be evaluated. Mechanistically, EVLP may alleviate donor lung inflammation through reconditioning the injured lung and diminishing IRI through storing the explanted lung in a non-ischemic, perfused, and ventilated status. In this work, we review potential mechanisms of EVLP that may attenuate IRI and improve organ quality. Moreover, we dissect experimental treatment approaches during EVLP that may further attenuate inflammatory events deriving from tissue ischemia, shear forces or allograft rejection associated with LuTx.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher A. Hinze
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jawad Salman
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Axel Haverich
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabio Ius
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Correspondence: Fabio Ius, MD, Department of Heart-, Thoracic-, Vascular-, and Transplant Surgery, Hannover Medical School, 1 Carl-Neuberg-Street, 30625 Hannover, Germany, Tel: +49 511 532 2125, Fax: +49 511 532 8436,
| |
Collapse
|
24
|
Ex Vivo Lung Perfusion: A Platform for Donor Lung Assessment, Treatment and Recovery. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lung transplantation offers a lifesaving therapy for patients with end-stage lung disease but its availability is presently limited by low organ utilization rates with donor lungs frequently excluded due to unsuitability at assessment. When transplantation does occur, recipients are then vulnerable to primary graft dysfunction (PGD), multitudinous short-term complications, and chronic lung allograft dysfunction. The decision whether to use donor lungs is made rapidly and subjectively with limited information and means many lungs that might have been suitable are lost to the transplant pathway. Compared to static cold storage (SCS), ex vivo lung perfusion (EVLP) offers clinicians unrivalled opportunity for rigorous objective assessment of donor lungs in conditions replicating normal physiology, thus allowing for better informed decision-making in suitability assessments. EVLP additionally offers a platform for the delivery of intravascular or intrabronchial therapies to metabolically active tissue aiming to treat existing lung injuries. In the future, EVLP may be employed to provide a pre-transplant environment optimized to prevent negative outcomes such as primary graft dysfunction (PGD) or rejection post-transplant.
Collapse
|
25
|
Miyamoto E, Takahagi A, Ohsumi A, Martinu T, Hwang D, Boonstra KM, Joe B, Umana JM, Bei KF, Vosoughi D, Liu M, Cypel M, Keshavjee S, Juvet SC. Ex vivo delivery of regulatory T cells for control of alloimmune priming in the donor lung. Eur Respir J 2021; 59:13993003.00798-2021. [PMID: 34475226 DOI: 10.1183/13993003.00798-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/17/2021] [Indexed: 11/05/2022]
Abstract
Survival after lung transplantation (LTx) is hampered by uncontrolled inflammation and alloimmunity. Regulatory T cells (Tregs) are being studied as a cellular therapy in solid organ transplantation. Whether these systemically administered Tregs can function at the appropriate location and time is an important concern. We hypothesized that in vitro expanded, recipient-derived Tregs can be delivered to donor lungs prior to LTx via ex vivo lung perfusion (EVLP), maintaining their immunomodulatory ability.In a rat model, Wistar Kyoto (WKy) CD4+CD25high Tregs were expanded in vitro prior to EVLP. Expanded Tregs were administered to Fisher 344 (F344) donor lungs during EVLP; left lungs were transplanted into WKy recipients. Treg localisation and function post-transplant were assessed. In a proof-of-concept experiment, cryopreserved expanded human CD4+CD25+CD127low Tregs were thawed and injected into discarded human lungs during EVLP.Rat Tregs entered the lung parenchyma and retained suppressive function. Expanded Tregs had no adverse effect on donor lung physiology during EVLP; lung water as measured by wet-to-dry weight ratio was reduced by Treg therapy. The administered cells remained in the graft at 3 days post-transplant where they reduced activation of intragraft effector CD4+ T cells; these effects were diminished by day 7. Human Tregs entered the lung parenchyma during EVLP where they expressed key immunoregulatory molecules (CTLA4+, 4-1BB+, CD39+, and CD15s+).Pre-transplant Treg administration can inhibit alloimmunity within the lung allograft at early time points post- transplant. Our organ-directed approach has potential for clinical translation.
Collapse
Affiliation(s)
- Ei Miyamoto
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Akihiro Takahagi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Akihiro Ohsumi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David Hwang
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kristen M Boonstra
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Betty Joe
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Juan Mauricio Umana
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ke F Bei
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Vosoughi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stephen C Juvet
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol 2021; 22:608-624. [PMID: 34079104 DOI: 10.1038/s41580-021-00373-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Liver regeneration is a complex process involving the crosstalk of multiple cell types, including hepatocytes, hepatic stellate cells, endothelial cells and inflammatory cells. The healthy liver is mitotically quiescent, but following toxic damage or resection the cells can rapidly enter the cell cycle to restore liver mass and function. During this process of regeneration, epithelial and non-parenchymal cells respond in a tightly coordinated fashion. Recent studies have described the interaction between inflammatory cells and a number of other cell types in the liver. In particular, macrophages can support biliary regeneration, contribute to fibrosis remodelling by repressing hepatic stellate cell activation and improve liver regeneration by scavenging dead or dying cells in situ. In this Review, we describe the mechanisms of tissue repair following damage, highlighting the close relationship between inflammation and liver regeneration, and discuss how recent findings can help design novel therapeutic approaches.
Collapse
Affiliation(s)
- Lara Campana
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Hannah Esser
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stuart Forbes
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
27
|
Dias VL, Braga KADO, Nepomuceno NA, Ruiz LM, Perez JDR, Correia AT, Caires Junior LCD, Goulart E, Zatz M, Pêgo-Fernandes PM. Soluble factors of mesenchimal stem cells (FS-MSC) as a potential tool to reduce inflammation in donor's lungs after hypovolemic shock. JORNAL BRASILEIRO DE PNEUMOLOGIA : PUBLICACAO OFICIAL DA SOCIEDADE BRASILEIRA DE PNEUMOLOGIA E TISILOGIA 2021; 47:e20200452. [PMID: 34378644 PMCID: PMC8647155 DOI: 10.36416/1806-3756/e20200452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/10/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The shortage of viable lungs is still a major obstacle for transplantation. Trauma victims who represent potential lung donors commonly present hypovolemic shock leading to pulmonary inflammation and deterioration and rejection after transplantation. Seeking to improve lung graft, new approaches to donor treatment have been tested. This study focuses on treatment with mesenchymal stem cells (MSCs) or soluble factors produced by MSCs (FS-MSC) using a rat model for lung donors after hemorrhagic shock. METHODS Forty-eight rats were divided into four groups: Sham (n=12), animals without induction of hypovolemic shock; Shock (n=12), animals submitted to hypovolemic shock (mean arterial pressure 40 mmHg); MSC (n=12), animals submitted to hypovolemic shock and treated with MSCs, and FS (n=12), animals submitted to hypovolemic shock and treated with FS-MSC. The animals were subjected to a 50-minute hypovolemic shock (40 mmHg) procedure. The treated animals were monitored for 115 minutes. We performed histopathology of lung tissue and quantification of inflammatory markers (TNF-α, IL-1β, IL-6, IL-10, iCAM and vCAM) in lung tissue and peripheral blood leukocytes (PBLs). RESULTS Hemorrhagic shock resulted in higher PBLs and neutrophil infiltrate in the lungs. FS animals had lower neutrophil density comparing with Shock and MSC animals (p<0.001). No differences in the cytokine levels in lung tissue were observed between the groups. CONCLUSIONS The lungs of rats submitted to hemorrhagic shock and treated with FS-MSC showed reduced inflammation indicated in a decrease in lung neutrophil infiltrate.
Collapse
Affiliation(s)
- Vinicius Luderer Dias
- Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coracão, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Karina Andrighetti de Oliveira Braga
- Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coracão, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Natalia Aparecida Nepomuceno
- Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coracão, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Liliane Moreira Ruiz
- Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coracão, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP), Brasil
| | | | - Aristides Tadeu Correia
- Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coracão, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Luiz Carlos de Caires Junior
- Centro de Pesquisa do Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Ernesto Goulart
- Centro de Pesquisa do Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Mayana Zatz
- Centro de Pesquisa do Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Paulo Manuel Pêgo-Fernandes
- Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coracão, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP), Brasil
| |
Collapse
|
28
|
Strategies to prolong homeostasis of ex vivo perfused lungs. J Thorac Cardiovasc Surg 2021; 161:1963-1973. [DOI: 10.1016/j.jtcvs.2020.07.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/30/2020] [Accepted: 07/26/2020] [Indexed: 01/08/2023]
|
29
|
Ex Vivo Mesenchymal Stem Cell Therapy to Regenerate Machine Perfused Organs. Int J Mol Sci 2021; 22:ijms22105233. [PMID: 34063399 PMCID: PMC8156338 DOI: 10.3390/ijms22105233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023] Open
Abstract
Transplantation represents the treatment of choice for many end-stage diseases but is limited by the shortage of healthy donor organs. Ex situ normothermic machine perfusion (NMP) has the potential to extend the donor pool by facilitating the use of marginal quality organs such as those from donors after cardiac death (DCD) and extended criteria donors (ECD). NMP provides a platform for organ quality assessment but also offers the opportunity to treat and eventually regenerate organs during the perfusion process prior to transplantation. Due to their anti-inflammatory, immunomodulatory and regenerative capacity, mesenchymal stem cells (MSCs) are considered as an interesting tool in this model system. Only a limited number of studies have reported on the use of MSCs during ex situ machine perfusion so far with a focus on feasibility and safety aspects. At this point, no clinical benefits have been conclusively demonstrated, and studies with controlled transplantation set-ups are urgently warranted to elucidate favorable effects of MSCs in order to improve organs during ex situ machine perfusion.
Collapse
|
30
|
Nakajima D, Date H. Ex vivo lung perfusion in lung transplantation. Gen Thorac Cardiovasc Surg 2021; 69:625-630. [PMID: 33683575 PMCID: PMC7938286 DOI: 10.1007/s11748-021-01609-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023]
Abstract
Lung transplantation is an established life-saving intervention for patients with end-stage lung diseases. The success of lung transplantation mainly depends on the quality and function of the implanted donor lungs, which are frequently subject to brain-death-induced lung injuries and intensive care unit (ICU)-related complications before transplantation. Recent innovations, particularly the development of ex vivo lung perfusion (EVLP), in which donor lungs are ventilated and perfused under normothermic conditions outside the body, have allowed clinicians to more accurately assess the donor lung function prior to transplantation. Therefore, EVLP has been successfully translated into clinical practice with the expansion of the donor lung pool, leading to favorable post-transplant outcomes in a growing number of transplant centers worldwide. The EVLP system and techniques, following the Toronto protocol, have recently been applied for the assessment of extended criteria brain-death donors in clinical lung transplantation in Japan. The advancement of EVLP from organ assessment to organ treatment will be the next challenging stage not only to expand donor lung pool, but also to improve graft survival and long-term outcomes after transplantation.
Collapse
Affiliation(s)
- Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
31
|
Zhao L, Hu C, Han F, Chen D, Ma Y, Cai F, Chen J. Combination of mesenchymal stromal cells and machine perfusion is a novel strategy for organ preservation in solid organ transplantation. Cell Tissue Res 2021; 384:13-23. [PMID: 33439348 PMCID: PMC8016762 DOI: 10.1007/s00441-020-03406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022]
Abstract
Organ preservation is a prerequisite for an urgent increase in the availability of organs for solid organ transplantation (SOT). An increasing amount of expanded criteria donor (ECD) organs are used clinically. Currently, the paradigm of organ preservation is shifting from simple reduction of cellular metabolic activity to maximal simulation of an ex vivo physiological microenvironment. An ideal organ preservation technique should not only preserve isolated organs but also offer the possibility of rehabilitation and evaluation of organ function prior to transplantation. Based on the fact that mesenchymal stromal cells (MSCs) possess strong regeneration properties, the combination of MSCs with machine perfusion (MP) is expected to be superior to conventional preservation methods. In recent years, several studies have attempted to use this strategy for SOT showing promising outcomes. With better organ function during ex vivo preservation and the potential of utilization of organs previously deemed untransplantable, this strategy is meaningful for patients with organ failure to help overcome organ shortage in the field of SOT.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Yanhong Ma
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Fanghao Cai
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
32
|
Miceli V, Bertani A, Chinnici CM, Bulati M, Pampalone M, Amico G, Carcione C, Schmelzer E, Gerlach JC, Conaldi PG. Conditioned Medium from Human Amnion-Derived Mesenchymal Stromal/Stem Cells Attenuating the Effects of Cold Ischemia-Reperfusion Injury in an In Vitro Model Using Human Alveolar Epithelial Cells. Int J Mol Sci 2021; 22:ijms22020510. [PMID: 33419219 PMCID: PMC7825633 DOI: 10.3390/ijms22020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
The clinical results of lung transplantation (LTx) are still less favorable than other solid organ transplants in both the early and long term. The fragility of the lungs limits the procurement rate and can favor the occurrence of ischemia-reperfusion injury (IRI). Ex vivo lung perfusion (EVLP) with Steen SolutionTM (SS) aims to address problems, and the implementation of EVLP to alleviate the activation of IRI-mediated processes has been achieved using mesenchymal stromal/stem cell (MSC)-based treatments. In this study, we investigated the paracrine effects of human amnion-derived MSCs (hAMSCs) in an in vitro model of lung IRI that includes cold ischemia and normothermic EVLP. We found that SS enriched by a hAMSC-conditioned medium (hAMSC-CM) preserved the viability and delayed the apoptosis of alveolar epithelial cells (A549) through the downregulation of inflammatory factors and the upregulation of antiapoptotic factors. These effects were more evident using the CM of 3D hAMSC cultures, which contained an increased amount of immunosuppressive and growth factors compared to both 2D cultures and encapsulated-hAMSCs. To conclude, we demonstrated an in vitro model of lung IRI and provided evidence that a hAMSC-CM attenuated IRI effects by improving the efficacy of EVLP, leading to strategies for a potential implementation of this technique.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
- Correspondence: ; Tel.: +39-091-21-92-649
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, 90127 Palermo, Italy;
| | - Cinzia Maria Chinnici
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| | - Mariangela Pampalone
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giandomenico Amico
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Claudia Carcione
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
| | - Eva Schmelzer
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA; (E.S.); (J.C.G.)
| | - Jörg C. Gerlach
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA; (E.S.); (J.C.G.)
- Department of Bioengineering, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| |
Collapse
|
33
|
Thompson ER, Connelly C, Ali S, Sheerin NS, Wilson CH. Cell therapy during machine perfusion. Transpl Int 2020; 34:49-58. [PMID: 33131097 DOI: 10.1111/tri.13780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/03/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
There has been increasing use of organs from extended criteria or donation after circulatory death donors to meet the demands of the transplant waiting list. Over the past decade, there has been considerable progress in technologies to preserve organs prior to transplantation to improve the function of these marginal organs. This has led to the development of normothermic machine perfusion, whereby an organ is perfused with warmed, oxygenated blood and nutrients to resume normal physiological function in an isolated ex-vivo platform. With this advance in preservation comes significant opportunities to recondition, repair and regenerate organs prior to transplantation using cellular therapies. This review aims to discuss the possibilities of machine perfusion technology; highlighting the potential for organ-directed reconditioning and the future avenues for investigation in this field.
Collapse
Affiliation(s)
- Emily R Thompson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chloe Connelly
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Simi Ali
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Colin H Wilson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
34
|
Abstract
Extracorporeal membrane oxygenation (ECMO) is a well-known therapy for refractory cardiac and respiratory failure. Stem cell therapy has been investigated as an adjunctive treatment for use during ECMO, but little is known about the viability of stem cells during ECMO support. We evaluated the viability and activity of mesenchymal stem cells (MSCs) in ex vivo circulation (EVC) conditions. The experimental groups were divided into two subgroups: EVC with oxygenator (OXY group) and EVC without oxygenator (Non-OXY group). Mesenchymal stem cells (1.0 × 10) were injected into the EVC system. Cell counting, a lactate dehydrogenase (LDH) cytotoxicity assay, and the mitochondrial functions of viable MSCs were analyzed. The post-EVC oxygen consumption rate (OCR) was significantly lower than the pre-EVC OCR, regardless of whether the oxygenator was used. The LDH levels were significantly higher in the OXY group than in the Non-OXY group. The cellular loss was mainly due to lysis of the cells whereas the loss of cellular activity was attributed to the nonphysiologic condition itself, as well as the oxygenator. We concluded that direct infusion of MSCs during ECMO support did not serve as adjunctive therapy. Further studies are needed to improve the viability in an ECMO setting.
Collapse
|
35
|
Abstract
Because of the high demand of organs, the usage of marginal grafts has increased. These marginal organs have a higher risk of developing ischemia-reperfusion injury, which can lead to posttransplant complications. Ex situ machine perfusion (MP), compared with the traditional static cold storage, may better protect these organs from ischemia-reperfusion injury. In addition, MP can also act as a platform for dynamic administration of pharmacological agents or gene therapy to further improve transplant outcomes. Numerous therapeutic agents have been studied under both hypothermic (1-8°C) and normothermic settings. Here, we review all the therapeutics used during MP in different organ systems (lung, liver, kidney, heart). The major categories of therapeutic agents include vasodilators, mesenchymal stem cells, antiinflammatory agents, antiinfection agents, siRNA, and defatting agents. Numerous animal and clinical studies have examined MP therapeutic agents, some of which have even led to the successful reconditioning of discarded grafts. More clinical studies, especially randomized controlled trials, will need to be conducted in the future to solidify these promising results and to define the role of MP therapeutic agents in solid organ transplantation.
Collapse
|
36
|
Resch T, Cardini B, Oberhuber R, Weissenbacher A, Dumfarth J, Krapf C, Boesmueller C, Oefner D, Grimm M, Schneeberger S. Transplanting Marginal Organs in the Era of Modern Machine Perfusion and Advanced Organ Monitoring. Front Immunol 2020; 11:631. [PMID: 32477321 PMCID: PMC7235363 DOI: 10.3389/fimmu.2020.00631] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Organ transplantation is undergoing profound changes. Contraindications for donation have been revised in order to better meet the organ demand. The use of lower-quality organs and organs with greater preoperative damage, including those from donation after cardiac death (DCD), has become an established routine but increases the risk of graft malfunction. This risk is further aggravated by ischemia and reperfusion injury (IRI) in the process of transplantation. These circumstances demand a preservation technology that ameliorates IRI and allows for assessment of viability and function prior to transplantation. Oxygenated hypothermic and normothermic machine perfusion (MP) have emerged as valid novel modalities for advanced organ preservation and conditioning. Ex vivo prolonged lung preservation has resulted in successful transplantation of high-risk donor lungs. Normothermic MP of hearts and livers has displayed safe (heart) and superior (liver) preservation in randomized controlled trials (RCT). Normothermic kidney preservation for 24 h was recently established. Early clinical outcomes beyond the market entry trials indicate bioenergetics reconditioning, improved preservation of structures subject to IRI, and significant prolongation of the preservation time. The monitoring of perfusion parameters, the biochemical investigation of preservation fluids, and the assessment of tissue viability and bioenergetics function now offer a comprehensive assessment of organ quality and function ex situ. Gene and protein expression profiling, investigation of passenger leukocytes, and advanced imaging may further enhance the understanding of the condition of an organ during MP. In addition, MP offers a platform for organ reconditioning and regeneration and hence catalyzes the clinical realization of tissue engineering. Organ modification may include immunological modification and the generation of chimeric organs. While these ideas are not conceptually new, MP now offers a platform for clinical realization. Defatting of steatotic livers, modulation of inflammation during preservation in lungs, vasodilatation of livers, and hepatitis C elimination have been successfully demonstrated in experimental and clinical trials. Targeted treatment of lesions and surgical treatment or graft modification have been attempted. In this review, we address the current state of MP and advanced organ monitoring and speculate about logical future steps and how this evolution of a novel technology can result in a medial revolution.
Collapse
Affiliation(s)
- Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Dumfarth
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Krapf
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Boesmueller
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Oefner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
37
|
Spratt JR, Mattison LM, Kerns NK, Huddleston SJ, Meyer L, Iles TL, Loor G, Iaizzo PA. Prolonged extracorporeal preservation and evaluation of human lungs with portable normothermic ex vivo perfusion. Clin Transplant 2020; 34:e13801. [DOI: 10.1111/ctr.13801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/24/2020] [Indexed: 01/16/2023]
Affiliation(s)
- John R. Spratt
- Department of Surgery University of Minnesota Minneapolis Minnesota
| | - Lars M. Mattison
- Department of Surgery University of Minnesota Minneapolis Minnesota
- Department of Biomedical Engineering University of Minnesota Minneapolis Minnesota
| | - Natalie K. Kerns
- Division of Cardiothoracic Surgery Department of Surgery University of Minnesota Minneapolis Minnesota
| | - Stephen J. Huddleston
- Division of Cardiothoracic Surgery Department of Surgery University of Minnesota Minneapolis Minnesota
| | | | - Tinen L. Iles
- Department of Surgery University of Minnesota Minneapolis Minnesota
| | - Gabriel Loor
- Division of Cardiothoracic Surgery Department of Surgery University of Minnesota Minneapolis Minnesota
- Division of Cardiothoracic Transplantation and Circulatory Support Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston Texas
| | - Paul A. Iaizzo
- Department of Surgery University of Minnesota Minneapolis Minnesota
- Department of Biomedical Engineering University of Minnesota Minneapolis Minnesota
- Institute for Engineering in Medicine University of Minnesota Minneapolis Minnesota
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Ex-vivo lung perfusion (EVLP) has been developed to expand the donor pool for lung transplantation recipients. The role of EVLP in organ preservation, evaluation and potential reconditioning is reviewed. RECENT FINDINGS EVLP has been shown to significantly increase the utilization of donor lungs for transplantation. Evidence suggests that patient outcomes from EVLP lungs are comparable to standard procurement technique. Novel strategies are being developed to treat and recondition injured donor lungs. EVLP may also prove to be a tool for translational research of lung diseases. SUMMARY EVLP has been shown to be an effective system to expand donor pool for lung transplantation without detriment to recipients. Future potential ex-vivo developments may further improve patient outcomes as well as increasing availability of donor organs.
Collapse
|
39
|
Chan PG, Kumar A, Subramaniam K, Sanchez PG. Ex Vivo Lung Perfusion: A Review of Research and Clinical Practices. Semin Cardiothorac Vasc Anesth 2020; 24:34-44. [DOI: 10.1177/1089253220905147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
End-stage lung disease is ultimately treated with lung transplantation. However, there is a paucity of organs with an increasing number of patients being diagnosed with end-stage lung disease. Ex vivo lung perfusion has emerged as a potential tool to assess the quality and to recondition marginal donor lungs prior to transplantation with the goal of increasing the donor pool. This technology has shown promise with similar results compared with the conventional technique of cold static preservation in terms of primary graft dysfunction and overall outcomes. This review provides an update on the results and uses of this technology. The review will also summarize clinical studies and techniques in reconditioning and assessing lungs on ex vivo lung perfusion. Last, we discuss how this technology can be applied to fields outside of transplantation such as thoracic oncology and bioengineering.
Collapse
|
40
|
Miceli V, Chinnici CM, Bulati M, Pampalone M, Amico G, Schmelzer E, Gerlach JC, Conaldi PG. Comparative study of the production of soluble factors in human placenta-derived mesenchymal stromal/stem cells grown in adherent conditions or as aggregates in a catheter-like device. Biochem Biophys Res Commun 2020; 522:171-176. [PMID: 31757423 DOI: 10.1016/j.bbrc.2019.11.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Different approaches have been studied in both preclinical and clinical settings to develop cell-based therapies and/or engineered cell-based therapies to better integrate grafts with the host. In these techniques, much attention is addressed to the use of adult stem cells such as mesenchymal stem cells (MSCs), but identifying and obtaining sufficient numbers of therapeutic cells, and the right route of administration, is often a challenge. In this study, we tested the feasibility of encapsulating human amnion-derived MSCs (hAMSCs) in a semipermeable and biocompatible fiber as a new approach for regenerative medicine. Our data showed that hAMSCs aggregated in the device constitutes an effective system for enhancing, or at least for maintaining, the paracrine activity of these cells in order to better promote tissue regeneration in an immune isolated state. In our new experimental approach, the hAMSCs retained their therapeutic potential, as shown by both the production of specific immunomodulatory/angiogenic factors and immunomodulatory and angiogenic ability observed in vitro. Unlike cell infusion methods, the use of encapsulated-cells leads to minimally invasive approaches, avoiding a direct interaction with the host. Therefore, the potentiality of an allograft or xenograft without the need for immunosuppression, and the lack of tumorigenesis is very intriguing.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy.
| | - Cinzia Maria Chinnici
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy; Fondazione Ri.MED, Palermo, Italy
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Mariangela Pampalone
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy; Fondazione Ri.MED, Palermo, Italy
| | - Giandomenico Amico
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy; Fondazione Ri.MED, Palermo, Italy
| | - Eva Schmelzer
- Department of Surgery, School of Medicine, University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, USA
| | - Jörg C Gerlach
- Department of Surgery, School of Medicine, University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, USA; Department of Bioengineering, School of Medicine, University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, USA
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| |
Collapse
|
41
|
Nakajima D, Watanabe Y, Ohsumi A, Pipkin M, Chen M, Mordant P, Kanou T, Saito T, Lam R, Coutinho R, Caldarone L, Juvet S, Martinu T, Iyer RK, Davies JE, Hwang DM, Waddell TK, Cypel M, Liu M, Keshavjee S. Mesenchymal stromal cell therapy during ex vivo lung perfusion ameliorates ischemia-reperfusion injury in lung transplantation. J Heart Lung Transplant 2019; 38:1214-1223. [DOI: 10.1016/j.healun.2019.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/15/2019] [Accepted: 07/20/2019] [Indexed: 12/21/2022] Open
|
42
|
Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando) 2019; 34:100514. [PMID: 31645271 DOI: 10.1016/j.trre.2019.100514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/20/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
|
43
|
Hozain AE, Tipograf Y, Pinezich MR, Cunningham KM, Donocoff R, Queen D, Fung K, Marboe CC, Guenthart BA, O'Neill JD, Vunjak-Novakovic G, Bacchetta M. Multiday maintenance of extracorporeal lungs using cross-circulation with conscious swine. J Thorac Cardiovasc Surg 2019; 159:1640-1653.e18. [PMID: 31761338 PMCID: PMC7094131 DOI: 10.1016/j.jtcvs.2019.09.121] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
Objectives Lung remains the least-utilized solid organ for transplantation. Efforts to recover donor lungs with reversible injuries using ex vivo perfusion systems are limited to <24 hours of support. Here, we demonstrate the feasibility of extending normothermic extracorporeal lung support to 4 days using cross-circulation with conscious swine. Methods A swine behavioral training program and custom enclosure were developed to enable multiday cross-circulation between extracorporeal lungs and recipient swine. Lungs were ventilated and perfused in a normothermic chamber for 4 days. Longitudinal analyses of extracorporeal lungs (ie, functional assessments, multiscale imaging, cytokine quantification, and cellular assays) and recipient swine (eg, vital signs and blood and tissue analyses) were performed. Results Throughout 4 days of normothermic support, extracorporeal lung function was maintained (arterial oxygen tension/inspired oxygen fraction >400 mm Hg; compliance >20 mL/cm H2O), and recipient swine were hemodynamically stable (lactate <3 mmol/L; pH, 7.42 ± 0.05). Radiography revealed well-aerated lower lobes and consolidation in upper lobes of extracorporeal lungs, and bronchoscopy showed healthy airways without edema or secretions. In bronchoalveolar lavage fluid, granulocyte-macrophage colony-stimulating factor, interleukin (IL) 4, IL-6, and IL-10 levels increased less than 6-fold, whereas interferon gamma, IL-1α, IL-1β, IL-1ra, IL-2, IL-8, IL-12, IL-18, and tumor necrosis factor alpha levels decreased from baseline to day 4. Histologic evaluations confirmed an intact blood–gas barrier and outstanding preservation of airway and alveolar architecture. Cellular viability and metabolism in extracorporeal lungs were confirmed after 4 days. Conclusions We demonstrate feasibility of normothermic maintenance of extracorporeal lungs for 4 days by cross-circulation with conscious swine. Cross-circulation approaches could support the recovery of damaged lungs and enable organ bioengineering to improve transplant outcomes.
Collapse
Affiliation(s)
- Ahmed E Hozain
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY; Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY
| | - Yuliya Tipograf
- Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY; Departments of Thoracic and Cardiac Surgery, Vanderbilt University, Nashville, Tenn
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - Katherine M Cunningham
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - Rachel Donocoff
- Institute of Comparative Medicine, Columbia University Medical Center, Columbia University, New York, NY
| | - Dawn Queen
- Vagelos College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY
| | - Kenmond Fung
- Department of Clinical Perfusion, Columbia University Medical Center, Columbia University, New York, NY
| | - Charles C Marboe
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, NY
| | - Brandon A Guenthart
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - John D O'Neill
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY; Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY.
| | - Matthew Bacchetta
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY; Departments of Thoracic and Cardiac Surgery, Vanderbilt University, Nashville, Tenn.
| |
Collapse
|
44
|
Mesenchymal stem cell-derived extracellular vesicles improve the molecular phenotype of isolated rat lungs during ischemia/reperfusion injury. J Heart Lung Transplant 2019; 38:1306-1316. [PMID: 31530458 DOI: 10.1016/j.healun.2019.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/14/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lung ischemia/reperfusion (IR) injury contributes to the development of severe complications in patients undergoing transplantation. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) exert beneficial actions comparable to those of MSCs without the risks of the cell-based strategy. This research investigated EV effects during IR injury in isolated rat lungs. METHODS An established model of 180-minutes ex vivo lung perfusion (EVLP) was used. At 60 minutes EVs (n = 5) or saline (n = 5) were administered. Parallel experiments used labeled EVs to determine EV biodistribution (n = 4). Perfusate samples were collected to perform gas analysis and to assess the concentration of nitric oxide (NO), hyaluronan (HA), inflammatory mediators, and leukocytes. Lung biopsies were taken at 180 minutes to evaluate HA, adenosine triphosphate (ATP), gene expression, and histology. RESULTS Compared with untreated lungs, EV-treated organs showed decreased vascular resistance and a rise of perfusate NO metabolites. EVs prevented the reduction in pulmonary ATP caused by IR. Increased medium-high-molecular-weight HA was detected in the perfusate and in the lung tissue of the IR + EV group. Significant differences in cell count on perfusate and tissue samples, together with induction of transcription and synthesis of chemokines, suggested EV-dependent modulation of leukocyte recruitment. EVs upregulated genes involved in the resolution of inflammation and oxidative stress. Biodistribution analysis showed that EVs were retained in the lung tissue and internalized within pulmonary cells. CONCLUSIONS This study shows multiple novel EV influences on pulmonary energetics, tissue integrity, and gene expression during IR. The use of cell-free therapies during EVLP could constitute a valuable strategy for reconditioning and repair of injured lungs before transplantation.
Collapse
|
45
|
Mesenchymal Stem Cell Therapy Facilitates Donor Lung Preservation by Reducing Oxidative Damage during Ischemia. Stem Cells Int 2019; 2019:8089215. [PMID: 31481974 PMCID: PMC6701419 DOI: 10.1155/2019/8089215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/28/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Lung transplantation is a lifesaving therapy for people living with severe, life-threatening lung disease. The high mortality rate among patients awaiting transplantation is mainly due to the low percentage of lungs that are deemed acceptable for implantation. Thus, the current shortage of lung donors may be significantly reduced by implementing different therapeutic strategies which facilitate both organ preservation and recovery. Here, we studied whether the anti-inflammatory effect of human umbilical cord-derived mesenchymal stem cells (HUCPVCs) increases lung availability by improving organ preservation. We developed a lung preservation rat model that mimics the different stages by which donor organs must undergo before implantation. The therapeutic schema was as follows: cardiac arrest, warm ischemia (2 h at room temperature), cold ischemia (1.5 h at 4°C, with Perfadex), and normothermic lung perfusion with ventilation (Steen solution, 1 h). After 1 h of warm ischemia, HUCPVCs (1 × 106 cells) or vehicle was infused via the pulmonary artery. Physiologic data (pressure-volume curves) were acquired right after the cardiac arrest and at the end of the perfusion. Interestingly, although lung edema did not change among groups, lung compliance dropped to 34% in the HUCPVC-treated group, while the vehicle group showed a stronger reduction (69%, p < 0.0001). Histologic assessment demonstrated less overall inflammation in the HUCPVC-treated lungs. In addition, MPO activity, a neutrophil marker, was reduced by 41% compared with vehicle (p < 0.01). MSC therapy significantly decreased tissue oxidative damage by controlling reactive oxygen species production. Accordingly, catalase and superoxide dismutase enzyme activities remained at baseline levels. In conclusion, these results demonstrate that the anti-inflammatory effect of MSCs protects donor lungs against ischemic injury and postulates MSC therapy as a novel tool for organ preservation.
Collapse
|
46
|
Pool M, Eertman T, Sierra Parraga J, 't Hart N, Roemeling-van Rhijn M, Eijken M, Jespersen B, Reinders M, Hoogduijn M, Ploeg R, Leuvenink H, Moers C. Infusing Mesenchymal Stromal Cells into Porcine Kidneys during Normothermic Machine Perfusion: Intact MSCs Can Be Traced and Localised to Glomeruli. Int J Mol Sci 2019; 20:ijms20143607. [PMID: 31340593 PMCID: PMC6678394 DOI: 10.3390/ijms20143607] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Normothermic machine perfusion (NMP) of kidneys offers the opportunity to perform active interventions, such as the addition of mesenchymal stromal cells (MSCs), to an isolated organ prior to transplantation. The purpose of this study was to determine whether administering MSCs to kidneys during NMP is feasible, what the effect of NMP is on MSCs and whether intact MSCs are retained in the kidney and to which structures they home. Viable porcine kidneys were obtained from a slaughterhouse. Kidneys were machine perfused during 7 h at 37 °C. After 1 h of perfusion either 0, 105, 106 or 107 human adipose tissue derived MSCs were added. Additional ex vivo perfusions were conducted with fluorescent pre-labelled bone-marrow derived MSCs to assess localisation and survival of MSCs during NMP. After NMP, intact MSCs were detected by immunohistochemistry in the lumen of glomerular capillaries, but only in the 107 MSC group. The experiments with fluorescent pre-labelled MSCs showed that only a minority of glomeruli were positive for infused MSCs and most of these glomeruli contained multiple MSCs. Flow cytometry showed that the number of infused MSCs in the perfusion circuit steeply declined during NMP to approximately 10%. In conclusion, the number of circulating MSCs in the perfusate decreases rapidly in time and after NMP only a small portion of the MSCs are intact and these appear to be clustered in a minority of glomeruli.
Collapse
Affiliation(s)
- Merel Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands.
| | - Tim Eertman
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands
| | - Jesus Sierra Parraga
- Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Nils 't Hart
- Department of Pathology, University Medical Center, 9713 GZ Groningen, The Netherlands
| | | | - Marco Eijken
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Bente Jespersen
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Marlies Reinders
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Hoogduijn
- Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Rutger Ploeg
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands
- Oxford Transplant Centre, University of Oxford, OX3 7LJ Oxford, UK
| | - Henri Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
47
|
|
48
|
Wei L, Li J, Han Z, Chen Z, Zhang Q. Silencing of lncRNA MALAT1 Prevents Inflammatory Injury after Lung Transplant Ischemia-Reperfusion by Downregulation of IL-8 via p300. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:285-297. [PMID: 31604167 PMCID: PMC6796730 DOI: 10.1016/j.omtn.2019.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion injury is a common early complication after lung transplantation. It was reported that long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is involved in ischemia-reperfusion injury and regulates inflammation. This study aimed to explore the role of MALAT1 in inflammatory injury following lung transplant ischemia-reperfusion (LTIR). A LTIR rat model was successfully established, with the expression of MALAT1 and interleukin-8 (IL-8) in lung tissues detected. Then, in vitro loss- and gain-of-function investigations were conducted to evaluate the effect of MALAT1 on pulmonary epithelial cell apoptosis and IL-8 expression. The relationship among MALAT1, p300, and IL-8 was tested. Moreover, a sh-MALAT1-mediated model of LTIR was established in vivo to examine inflammatory injury and chemotaxis infiltration. Both IL-8 and MALAT1 were highly expressed in LTIR. MALAT1 interacted with p300 to regulate the IL-8 expression by recruiting p300. Importantly, silencing of MALAT1 inhibited the chemotaxis of neutrophils by downregulating IL-8 expression via binding to p300. Besides, MALAT1 silencing alleviated the inflammatory injury after LTIR by downregulating IL-8 and inhibiting infiltration and activation of neutrophils. Collectively, these results demonstrated that silencing of MALAT1 ameliorated the inflammatory injury after LTIR by inhibiting chemotaxis of neutrophils through p300-mediated downregulation of IL-8, providing clinical insight for LTIR injury.
Collapse
Affiliation(s)
- Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China
| | - Jiwei Li
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China.
| | - Zhijun Han
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China
| | - Zhong Chen
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China
| | - Quan Zhang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China
| |
Collapse
|
49
|
Caldarone L, Mariscal A, Sage A, Khan M, Juvet S, Martinu T, Zamel R, Cypel M, Liu M, Palaniyar N, Keshavjee S. Neutrophil extracellular traps in ex vivo lung perfusion perfusate predict the clinical outcome of lung transplant recipients. Eur Respir J 2019; 53:13993003.01736-2018. [PMID: 30655281 DOI: 10.1183/13993003.01736-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Lindsay Caldarone
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Andrea Mariscal
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Toronto Lung Transplant Program, University Health Network, Toronto, ON, Canada
| | - Andrew Sage
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, Canada
| | - Meraj Khan
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen Juvet
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Toronto Lung Transplant Program, University Health Network, Toronto, ON, Canada
| | - Tereza Martinu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Toronto Lung Transplant Program, University Health Network, Toronto, ON, Canada
| | - Ricardo Zamel
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Toronto Lung Transplant Program, University Health Network, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Toronto Lung Transplant Program, University Health Network, Toronto, ON, Canada
| | - Nades Palaniyar
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Toronto Lung Transplant Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
50
|
Wiese DM, Ruttan CC, Wood CA, Ford BN, Braid LR. Accumulating Transcriptome Drift Precedes Cell Aging in Human Umbilical Cord-Derived Mesenchymal Stromal Cells Serially Cultured to Replicative Senescence. Stem Cells Transl Med 2019; 8:945-958. [PMID: 30924318 DOI: 10.1002/sctm.18-0246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
In preclinical studies, mesenchymal stromal cells (MSCs) exhibit robust potential for numerous applications. To capitalize on these benefits, cell manufacturing and delivery protocols have been scaled up to facilitate clinical trials without adequately addressing the impact of these processes on cell utility nor inevitable regulatory requirements for consistency. Growing evidence indicates that culture-aged MSCs, expanded to the limits of replicative exhaustion to generate human doses, are not equivalent to early passage cells, and their use may underpin reportedly underwhelming or inconsistent clinical outcomes. Here, we sought to define the maximum expansion boundaries for human umbilical cord-derived MSCs, cultured in chemically defined xeno- and serum-free media, that yield consistent cell batches comparable to early passage cells. Two male and two female donor populations, recovered from cryostorage at mean population doubling level (mPDL) 10, were serially cultivated until replicative exhaustion (senescence). At each passage, growth kinetics, cell morphology, and transcriptome profiles were analyzed. All MSC populations displayed comparable growth trajectories through passage 9 (P9; mPDL 45) and variably approached senescence after P10 (mPDL 49). Transcription profiles of 14,500 human genes, generated by microarray, revealed a nonlinear evolution of culture-adapted MSCs. Significant expression changes occurred only after P5 (mPDL 27) and accumulated rapidly after P9 (mPDL 45), preceding other cell aging metrics. We report that cryobanked umbilical cord-derived MSCs can be reliably expanded to clinical human doses by P4 (mPDL 23), before significant transcriptome drift, and thus represent a mesenchymal cell source suited for clinical translation of cellular therapies. Stem Cells Translational Medicine 2019;8:945&958.
Collapse
Affiliation(s)
| | | | | | - Barry N Ford
- Casualty Management Section, DRDC Suffield Research Centre, Medicine Hat, Alberta, Canada
| | | |
Collapse
|