1
|
Qian X, Yao M, Xu J, Dong N, Chen S. From cancer therapy to cardiac safety: the role of proteostasis in drug-induced cardiotoxicity. Front Pharmacol 2024; 15:1472387. [PMID: 39611175 PMCID: PMC11602306 DOI: 10.3389/fphar.2024.1472387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Drug-induced cardiotoxicity (DICT) poses a significant challenge in the prognosis of cancer patients, particularly with the use of antineoplastic agents like anthracyclines and targeted therapies such as trastuzumab. This review delves into the intricate interplay between drugs and proteins within cardiac cells, focusing on the role of proteostasis as a therapeutic target for mitigating cardiotoxicity. We explore the in vivo modeling of proteostasis, highlighting the complex intracellular environment and the emerging techniques for monitoring proteostasis. Additionally, we discuss how cardiotoxic drugs disrupt protein homeostasis through direct chemical denaturation, endoplasmic reticulum stress, unfolded protein response, chaperone dysfunction, impairment of the proteasome system, and dysregulation of autophagy. Finally, we provide insights into the applications of cardioprotective drugs targeting proteostasis to prevent cardiotoxicity and the adoption of structural proteomics to evaluate potential cardiotoxicity. By gaining a deeper understanding of the role of proteostasis underlying DICT, we can pave the way for the development of targeted therapeutic strategies to safeguard cardiac function while maximizing the therapeutic potential of antineoplastic drugs.
Collapse
Affiliation(s)
- Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdong Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyu Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
3
|
Zhou L, Nishimura A, Umezawa K, Kato Y, Mi X, Ito T, Urano Y, Akaike T, Nishida M. Supersulfide catabolism participates in maladaptive remodeling of cardiac cells. J Pharmacol Sci 2024; 155:121-130. [PMID: 38880546 DOI: 10.1016/j.jphs.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
The atrophic myocardium resulting from mechanical unloading and nutritional deprivation is considered crucial as maladaptive remodeling directly associated with heart failure, as well as interstitial fibrosis. Conversely, myocardial hypertrophy resulting from hemodynamic loading is perceived as compensatory stress adaptation. We previously reported the abundant presence of highly redox-active polysulfide molecules, termed supersulfide, with two or more sulfur atoms catenated in normal hearts, and the supersulfide catabolism in pathologic hearts after myocardial infarction correlated with worsened prognosis of heart failure. However, the impact of supersulfide on myocardial remodeling remains unclear. Here, we investigated the involvement of supersulfide metabolism in cardiomyocyte remodeling, using a model of adenosine 5'-triphosphate (ATP) receptor-stimulated atrophy and endothelin-1 receptor-stimulated hypertrophy in neonatal rat cardiomyocytes. Results revealed contrasting changes in intracellular supersulfide and its catabolite, hydrogen sulfide (H2S), between cardiomyocyte atrophy and hypertrophy. Stimulation of cardiomyocytes with ATP decreased supersulfide activity, while H2S accumulation itself did not affect cardiomyocyte atrophy. This supersulfide catabolism was also involved in myofibroblast formation of neonatal rat cardiac fibroblasts. Thus, unraveling supersulfide metabolism during myocardial remodeling may lead to the development of novel therapeutic strategies to improve heart failure.
Collapse
Affiliation(s)
- Liuchenzi Zhou
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Keitaro Umezawa
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Xinya Mi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomoya Ito
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaaki Akaike
- Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
Neeman-Egozi S, Livneh I, Dolgopyat I, Nussinovitch U, Milman H, Cohen N, Eisen B, Ciechanover A, Binah O. Stress-Induced Proteasome Sub-Cellular Translocation in Cardiomyocytes Causes Altered Intracellular Calcium Handling and Arrhythmias. Int J Mol Sci 2024; 25:4932. [PMID: 38732146 PMCID: PMC11084437 DOI: 10.3390/ijms25094932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work. Following a recent study by Ciechanover's group showing that amino acid (AA) starvation in cultured cancer cell lines modulates proteasome intracellular localization and activity, we tested two hypotheses in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs, CMs): (i) AA starvation causes proteasome translocation in CMs, similarly to the observation in cultured cancer cell lines; (ii) manipulation of subcellular proteasomal compartmentalization is associated with electrophysiological abnormalities in the form of arrhythmias, mediated via altered intracellular Ca2+ handling. The major findings are: (i) starving CMs to AAs results in proteasome translocation from the nucleus to the cytoplasm, while supplementation with the aromatic amino acids tyrosine (Y), tryptophan (W) and phenylalanine (F) (YWF) inhibits the proteasome recruitment; (ii) AA-deficient treatments cause arrhythmias; (iii) the arrhythmias observed upon nuclear proteasome sequestration(-AA+YWF) are blocked by KB-R7943, an inhibitor of the reverse mode of the sodium-calcium exchanger NCX; (iv) the retrograde perfusion of isolated rat hearts with AA starvation media is associated with arrhythmias. Collectively, our novel findings describe a newly identified mechanism linking the UPS to arrhythmia generation in CMs and whole hearts.
Collapse
Affiliation(s)
- Shunit Neeman-Egozi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Ido Livneh
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Irit Dolgopyat
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Udi Nussinovitch
- Department of Cardiology, Edith Wolfson Medical Center, Holon 5822012, Israel
- The Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Helena Milman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Nadav Cohen
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Aaron Ciechanover
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| |
Collapse
|
5
|
Kreidieh F, McQuade J. Novel insights into cardiovascular toxicity of cancer targeted and immune therapies: Beyond ischemia with non-obstructive coronary arteries (INOCA). AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 40:100374. [PMID: 38510501 PMCID: PMC10946000 DOI: 10.1016/j.ahjo.2024.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Novel immune and targeted therapies approved over the past 2 decades have resulted in dramatic improvements in cancer-specific outcomes for many cancer patients. However, many of these agents can induce cardiovascular toxicity in a subset of patients. The field of cardio-oncology was established based on observations that anti-neoplastic chemotherapies and mantle radiation can lead to premature cardiomyopathy in cancer survivors. While conventional chemotherapy, targeted therapy, and immune therapies can all result in cardiovascular adverse events, the mechanisms, timing, and incidence of these events are inherently different. Many of these effects converge upon the coronary microvasculature to involve, through endocardial endothelial cells, a more direct effect through close proximity to cardiomyocyte with cellular communication and signaling pathways. In this review, we will provide an overview of emerging paradigms in the field of Cardio-Oncology, particularly the role of the coronary microvasculature in mediating cardiovascular toxicity of important cancer targeted and immune therapies. As the number of cancer patients treated with novel immune and targeted therapies grows exponentially and subsequently the number of long-term cancer survivors dramatically increases, it is critical that cardiologists and cardiology researchers recognize the unique potential cardiovascular toxicities of these agents.
Collapse
Affiliation(s)
- Firas Kreidieh
- Instructor of Clinical Medicine- Division of Hematology-Oncology; Associate Director- Internal Medicine Residency Program, American University of Beirut, Beirut, Lebanon
| | - Jennifer McQuade
- Associate Professor and Physician Scientist in Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
6
|
Fomina EV, Kardanova SA, Bochkarnikova OV, Murtuzaliev SM, Appolonova SA, Markin PA, Privalova EV, Ilgisonis IS, Belenkov YN. [Assessment of systemic inflammation activity, myocardial structure and functional features, their relationship in patients with multiple myeloma, receiving bortezomib therapy]. KARDIOLOGIIA 2023; 63:29-38. [PMID: 37970853 DOI: 10.18087/cardio.2023.10.n2489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/30/2023] [Indexed: 11/19/2023]
Abstract
AIM To study the dynamics of calculated indices [neutrophil-lymphocyte ratio (NLR); systemic inflammation index (SIV)] and biomarkers of systemic inflammation [interleukin-1β (IL-1β); high-sensitivity C-reactive protein (hsCRP)], parameters of the structure-and-function state of the myocardium and intracardiac hemodynamics, and their relationship in patients newly diagnosed with multiple myeloma (MM) at the onset of the disease and after 6 courses of chemotherapy (CT) containing the proteasome inhibitor bortezomib. MATERIAL AND METHODS This prospective study included 30 patients aged 63.8±10.0 years diagnosed with MM; 17 (56.7 %) of them were men. The following tests were performed for all patients: measurement of IL-1β and hsCRP, calculation of the inflammation indexes NLR and SIV, transthoracic echocardiography before and after 6 courses of bortezomib-containing CT. At the time of study completion, 9 patients dropped out due to reasons not related to cardiovascular complications of CT. RESULTS The antitumor therapy was associated with increases of immune-inflammation indexes: NLR increased from 1.54 [1.02; 1.83] to 2.9 [1.9; 4.35] (p=0.009) and SIV increased from 402.95 [230.5; 534.0] to 1102.2 [453.1; 1307.9] (р=0.014). IL-1β increased from 5.15 [4.05; 5.77] to 6.22 [5.66; 6.52] pg/ml remaining within the reference range (p=0.142) whereas hsCRP decreased from 1.02 [0.02; 2.71] to 0.02 [0.02; 0.82] IU/l (p=0.138). Statistically significant changes in parameters of heart remodeling and clinical picture of cardiovascular complications were not observed. A correlation analysis showed significant inverse correlations of hsCRP with left ventricular ejection fraction (LV EF) (r= -0.557; p=0.003), the number of plasma cells (PC) with LV EF (r= -0.443; p=0.023), and a direct correlation of the number of PC with hsCRP (r=0.433; p=0.022). CONCLUSION During the study, the accepted criteria for cardiotoxicity of bortezomib-containing chemotherapy in patients with MM, were not met. The identified correlations between the level of markers for acute inflammation, indexes of intracardiac hemodynamics, and the immediate MM substrate may indicate the role of chronic low-intensity inflammation in the pathogenesis of myocardial remodeling in patients with MM. This necessitates further studies on larger samples of patients to assess the prognostic significance.
Collapse
Affiliation(s)
- E V Fomina
- Sechenov First Moscow State Medical University
| | | | | | | | | | - P A Markin
- Sechenov First Moscow State Medical University
| | | | | | | |
Collapse
|
7
|
Nahum-Ankonina O, Kurtzwald-Josefson E, Ciechanover A, Waldman M, Shwartz-Rohaker O, Hochhauser E, Meyer SJ, Aravot D, Phillip M, Barac YD. Ubiquitin Proteasome System Role in Diabetes-Induced Cardiomyopathy. Int J Mol Sci 2023; 24:15376. [PMID: 37895057 PMCID: PMC10607702 DOI: 10.3390/ijms242015376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigated modifications to the ubiquitin proteasome system (UPS) in a mouse model of type 2 diabetes mellitus (T2DM) and their relationship to heart complications. db/db mice heart tissues were compared with WT mice tissues using RNA sequencing, qRT-PCR, and protein analysis to identify cardiac UPS modifications associated with diabetes. The findings unveiled a distinctive gene profile in the hearts of db/db mice with decreased levels of nppb mRNA and increased levels of Myh7, indicating potential cardiac dysfunction. The mRNA levels of USP18 (deubiquitinating enzyme), PSMB8, and PSMB9 (proteasome β-subunits) were down-regulated in db/db mice, while the mRNA levels of RNF167 (E3 ligase) were increased. Corresponding LMP2 and LMP7 proteins were down-regulated in db/db mice, and RNF167 was elevated in Adult diabetic mice. The reduced expression of LMP2 and LMP7, along with increased RNF167 expression, may contribute to the future cardiac deterioration commonly observed in diabetes. This study enhances our understanding of UPS imbalances in the hearts of diabetic mice and raises questions about the interplay between the UPS and other cellular processes, such as autophagy. Further exploration in this area could provide valuable insights into the mechanisms underlying diabetic heart complications and potential therapeutic targets.
Collapse
Affiliation(s)
- Ortal Nahum-Ankonina
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Efrat Kurtzwald-Josefson
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
| | - Aaron Ciechanover
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel;
| | - Maayan Waldman
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
| | - Orna Shwartz-Rohaker
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
| | - Edith Hochhauser
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Sam J. Meyer
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Dan Aravot
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Moshe Phillip
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- The Division of Endocrinology, Schneider Medical Center, Petach-Tikva 4920235, Israel
| | - Yaron D. Barac
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
8
|
Duan L, Tang H, Lan Y, Shi H, Pu P, He Q. Ring finger protein 10 improves pirarubicin-induced cardiac inflammation by regulating the AP-1/Meox2 signaling pathway. Toxicol Appl Pharmacol 2023; 462:116411. [PMID: 36740146 DOI: 10.1016/j.taap.2023.116411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Pirarubicin (THP) is widely used in clinical antitumor therapy, but its cardiotoxicity seriously affects the therapeutic effect in patients. In the study, we investigated the role of ring finger protein 10 (RNF10) in cardiotoxicity induced by THP. MATERIALS AND METHODS A cardiac toxicity model in Sprague-Dawley (SD) rats induced by THP was established. Changes in diet, weight, electrocardiogram (ECG), and echocardiography were observed. Serum levels of brain natriuretic peptide (BNP), creatine kinase MB (CK-MB), cardiac troponin T (cTnT), and lactate dehydrogenase (LDH) were measured. The expression of RNF10 in myocardium was observed by immunohistochemistry. The expressions of RNF10, activator protein-1 (AP-1), mesenchyme homeobox 2 (Meox2), total nuclear factor (NF)-κB p65 (T-P65), phosphorylated NF-κB p65 (PP65), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and mature IL-1β were detected by Western blot. A THP-induced H9c2 myocardial cell injury model was established. RNF10 was downregulated or overexpressed by RNF10 siRNA and a RNF10 lentiviral vector, respectively. Then, cell viability was measured. The expression of RNF10 in H9c2 cells was observed by immunofluorescence. All of the above signaling pathways were verified by Western blots. FINDINGS THP caused a series of cardiotoxic manifestations in SD rats. Our studies suggested that THP caused cardiac inflammation by inhibiting the expression of RNF10, while overexpression of RNF10 antagonized the cardiotoxicity induced by THP. SIGNIFICANCE Our study showed RNF10 improved THP-induced cardiac inflammation by regulating the AP-1/Meox2 signaling pathway. RNF10 may be a new target to treat THP-induced cardiotoxicity.
Collapse
Affiliation(s)
- Liang Duan
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Lan
- Department of Critical Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Hongwei Shi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peng Pu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Quan He
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Yang J, Yan B, Zhang H, Lu Q, Yang L, Liu P, Bai L. Estimating the causal effects of genetically predicted plasma proteome on heart failure. Front Cardiovasc Med 2023; 10:978918. [PMID: 36860279 PMCID: PMC9968807 DOI: 10.3389/fcvm.2023.978918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Background Heart Failure (HF) is the end-stage cardiovascular syndrome with poor prognosis. Proteomics holds great promise in the discovery of novel biomarkers and therapeutic targets for HF. The aim of this study is to investigate the causal effects of genetically predicted plasma proteome on HF using the Mendelian randomization (MR) approach. Methods Summary-level data for the plasma proteome (3,301 healthy individuals) and HF (47,309 cases; 930,014 controls) were extracted from genome-wide association studies (GWASs) of European descent. MR associations were obtained using the inverse variance-weighted (IVW) method, sensitivity analyses, and multivariable MR analyses. Results Using single-nucleotide polymorphisms as instrumental variables, 1-SD increase in MET level was associated with an approximately 10% decreased risk of HF (odds ratio [OR]: 0.92; 95% confidence interval [CI]: 0.89 to 0.95; p = 1.42 × 10-6), whereas increases in the levels of CD209 (OR: 1.04; 95% CI: 1.02-1.06; p = 6.67 × 10-6) and USP25 (OR: 1.06; 95% CI: 1.03-1.08; p = 7.83 × 10-6) were associated with an increased risk of HF. The causal associations were robust in sensitivity analyses, and no evidence of pleiotropy was observed. Conclusion The study findings suggest that the hepatocyte growth factor/c-MET signaling pathway, dendritic cells-mediated immune processes, and ubiquitin-proteasome system pathway are involved in the pathogenesis of HF. Moreover, the identified proteins have potential to uncover novel therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Jian Yang
- Clinical Research Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China
| | - Bin Yan
- Clinical Research Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China
| | - Haoxuan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qun Lu
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China
| | - Lihong Yang
- Clinical Research Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China
| | - Ping Liu
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China
| | - Ling Bai
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China,*Correspondence: Ling Bai,
| |
Collapse
|
10
|
RING Finger Protein 10 Regulates AP-1/Meox2 to Mediate Pirarubicin-Induced Cardiomyocyte Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7872193. [PMID: 36713029 PMCID: PMC9883094 DOI: 10.1155/2023/7872193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023]
Abstract
Pirarubicin (THP) is one of the classic chemotherapy drugs for cancer treatment. It is often clinically limited because of its cardiotoxicity. The occurrence and development of THP-mediated chemotherapy-related cardiotoxicity (CRC) may be reversed by RING finger protein 10 (RNF10). This study was performed with the aim of evaluating the inhibitory effect of RNF10 on THP-mediated CRC and its molecular mechanism. In vivo, we found that the expression of RNF10 decreased in THP-induced CRC rats, accompanied by Meox2 inhibition and AP-1 activation, resulting in increased cardiomyocyte apoptosis. After small interfering RNA (siRNA) and lentivirus transfection (Lv) of RNF10 in vitro, the expression of RNF10, Meox2, and AP-1 proteins and the degree of cardiomyocyte apoptosis were detected. We found that overexpression of RNF10 in H9C2 cardiomyocytes significantly promoted Meox2 and inhibited AP-1, alleviated apoptosis, and showed further inhibitory activity on THP-induced cardiomyocyte toxicity. Silencing RNF10 showed the opposite result. Our study showed that RNF10 inhibited THP-induced CRC through the activity of Meox2 and AP-1 proteins. RNF10 may be the next drug target for the treatment of CRC and other related cardiovascular diseases.
Collapse
|
11
|
CUL3 and COPS5 Related to the Ubiquitin-Proteasome Pathway Are Potential Genes for Muscle Atrophy in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1488905. [PMID: 35815279 PMCID: PMC9262520 DOI: 10.1155/2022/1488905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia is a condition that reduces muscle mass and exercise capacity. Muscle atrophy is a common manifestation of sarcopenia and can increase morbidity and mortality in specific patient populations. The aim of this study was to identify novel prognostic biomarkers for muscle atrophy and associated pathway analysis using bioinformatics methods. The samples were first divided into different age groups and different muscle type groups, respectively, and each of these samples was analyzed for differences to obtain two groups of differentially expressed genes (DEGs). The two groups of DEGs were intersected using Venn diagrams to obtain 1,630 overlapping genes, and enrichment analysis was performed to observe the Gene Ontology (GO) functional terms of overlapping genes and the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Subsequently, WGCNA (weighted gene coexpression network analysis) was used to find gene modules associated with both the age and muscle type to obtain the lightgreen module. The genes in the key modules were analyzed using PPI, and the top five genes were obtained using the MCC (maximum correntropy criterion) algorithm. Finally, CUL3 and COPS5 were obtained by comparing gene expression levels and analyzing the respective KEGG pathways using gene set enrichment analysis (GSEA). In conclusion, we identified that CUL3 and COPS5 may be novel prognostic biomarkers in muscle atrophy based on bioinformatics analysis. CUL3 and COPS5 are associated with the ubiquitin-proteasome pathway.
Collapse
|
12
|
Liu LB, Huang SH, Qiu HL, Cen XF, Guo YY, Li D, Ma YL, Xu M, Tang QZ. Limonin stabilises SIRT6 by activating USP10 in cardiac hypertrophy. Br J Pharmacol 2022; 179:4516-4533. [PMID: 35727596 DOI: 10.1111/bph.15899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Limonin, a natural tetracyclic triterpenoid extract, exerts extensive pharmacological effects; however, its role in cardiac hypertrophy remains to be elucidated. We investigated the beneficial effects of limonin on cardiac hypertrophy and explored the potential mechanisms. EXPERIMENTAL APPROACH C57/BL6 male mice were subjected to aortic banding (AB) surgery and neonatal rat cardiac myocytes (NRCMs) were stimulated with phenylephrine (PE) to evaluate the effects of limonin on cardiac hypertrophy. KEY RESULTS Limonin markedly improved the cardiac function and heart weight in AB operation mice. In addition, limonin-treated mice and NRCMs produced fewer cardiac hypertrophy markers than those treated with the vehicle in hypertrophic groups. Sustained AB- or PE-stimulation impaired cardiac sirtuin 6 (SIRT6) protein levels, which were partially rescued by limonin and subsequently enhanced the activity of PPARα, and Sirt6 siRNA inhibited the anti-hypertrophic effects of limonin in vitro. Interestingly, limonin did not influence Sirt6 mRNA levels, but controlled its ubiquitin levels. Thus, the protein biosynthesis inhibitor, cycloheximide (CHX), and proteasome inhibitor, MG-132, were used to determine SIRT6 protein expression levels. Under PE stimulation, limonin increased SIRT6 protein levels in the presence of CHX, but it didn't influence SIRT6 expression in the presence of MG-132, suggesting that limonin promotes SIRT6 abundance by inhibiting its ubiquitination degradation. Furthermore, limonin inhibited the degradation of SIRT6 by activating ubiquitin-specific peptidase (Cuspidi et al.)-10, while USP10 siRNA abrogated the beneficial effects of limonin. CONCLUSION AND IMPLICATIONS Limonin mediates the ubiquitination and degradation of SIRT6 by activating USP10, providing an attractive therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Li-Bo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Si-Hui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Xian-Feng Cen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Ying-Ying Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Dan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Yu-Lan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| |
Collapse
|
13
|
Li X, Zhang Y, Zhao Y, Zhou Y, Han Q, Yang Y, Zhang L, Shi L, Jin X, Zhang R, Gao H, Xue G, Li D, Zhang ZR, Lu Y, Yang B, Pan Z. Cullin-associated and neddylation-dissociated 1 protein (CAND1) governs cardiac hypertrophy and heart failure partially through regulating calcineurin degradation. Pharmacol Res 2022; 182:106284. [PMID: 35661710 DOI: 10.1016/j.phrs.2022.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 11/19/2022]
Abstract
Pathological cardiac hypertrophy is a process characterized by significant disturbance of protein turnover. Cullin-associated and Neddylation-dissociated 1 (CAND1) acts as a coordinator to modulate substrate protein degradation by promoting the formation of specific cullin-based ubiquitin ligase 3 complex in response to substrate accumulation, which thereby facilitate the maintaining of normal protein homeostasis. Accumulation of calcineurin is critical in the pathogenesis of cardiac hypertrophy and heart failure. However, whether CAND1 titrates the degradation of hypertrophy related protein eg. calcineurin and regulates cardiac hypertrophy remains unknown. Therefore, we aim to explore the role of CAND1 in cardiac hypertrophy and heart failure and the underlying molecular mechanism. Here, we found that the protein level of CAND1 was increased in cardiac tissues from heart failure (HF) patients and TAC mice, whereas the mRNA level did not change. CAND1-KO+/- aggravated TAC-induced cardiac hypertrophic phenotypes; in contrast, CAND1-Tg attenuated the maladaptive cardiac remodeling. At the molecular level, CAND1 overexpression downregulated, whereas CAND1-KO+/- or knockdown upregulated calcineurin expression at both in vivo and in vitro conditions. Mechanistically, CAND1 overexpression favored the assembly of Cul1/atrogin1/calcineurin complex and rendered the ubiquitination and degradation of calcineurin. Notably, CAND1 deficiency-induced hypertrophic phenotypes were partially rescued by knockdown of calcineurin, and application of exogenous CAND1 prevented TAC-induced cardiac hypertrophy. Taken together, our findings demonstrate that CAND1 exerts a protective effect against cardiac hypertrophy and heart failure partially by inducing the degradation of calcineurin.
Collapse
Affiliation(s)
- Xingda Li
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yang Zhang
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yue Zhao
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yang Zhou
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Qilong Han
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ying Yang
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Lingmin Zhang
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ling Shi
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Xuexin Jin
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ruixin Zhang
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Haiyu Gao
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Genlong Xue
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Desheng Li
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zhi-Ren Zhang
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China; Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Harbin, China; NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Yanjie Lu
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, China
| | - Baofeng Yang
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, China.
| | - Zhenwei Pan
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, China; NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China.
| |
Collapse
|
14
|
Aluja D, Delgado-Tomás S, Ruiz-Meana M, Barrabés JA, Inserte J. Calpains as Potential Therapeutic Targets for Myocardial Hypertrophy. Int J Mol Sci 2022; 23:ijms23084103. [PMID: 35456920 PMCID: PMC9032729 DOI: 10.3390/ijms23084103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Despite advances in its treatment, heart failure remains a major cause of morbidity and mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent studies performed in preclinical animal models support the contribution of the Ca2+-dependent cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence implicating calpains in the development of cardiac hypertrophy, as well as the latest advances in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress made in developing new compounds that may serve for testing the efficacy of calpain inhibition in the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- David Aluja
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Sara Delgado-Tomás
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José A. Barrabés
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934894038
| |
Collapse
|
15
|
Bryzgalov LO, Korbolina EE, Damarov IS, Merkulova TI. The functional insight into the genetics of cardiovascular disease: results from the post-GWAS study. Vavilovskii Zhurnal Genet Selektsii 2022; 26:65-73. [PMID: 35342858 PMCID: PMC8892170 DOI: 10.18699/vjgb-22-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, generally refer to a range of pathological conditions with the involvement of the heart and the blood vessels. A sizable fraction of the susceptibility loci is known, but the underlying mechanisms have been established only for a small proportion. Therefore, there is an increasing need to explore the functional relevance of trait-associated variants and, moreover, to search for novel risk genetic variation. We have reported the bioinformatic approach allowing effective identification of functional non-coding variants by integrated analysis of genome-wide data. Here, the analysis of 1361 previously identified regulatory SNPs (rSNPs) was performed to provide new insights into cardiovascular risk. We found 773,471 coding co-segregating markers for input rSNPs using the 1000 Genomes Project. The intersection of GWAS-derived SNPs with a relevance to cardiovascular traits with these markers was analyzed within a window of 10 Kbp. The effects on the transcription factor (TF) binding sites were explored by DeFine models. Functional pathway enrichment and protein– protein interaction (PPI) network analyses were performed on the targets and the extended genes by STRING and DAVID. Eighteen rSNPs were functionally linked to cardiovascular risk. A significant impact on binding sites of thirteen TFs including those involved in blood cells formation, hematopoiesis, macrophage function, inflammation, and vasoconstriction was found in K562 cells. 21 rSNP gene targets and 5 partners predicted by PPI were enriched for spliceosome and endocytosis KEGG pathways, endosome sorting complex and mRNA splicing REACTOME pathways. Related Gene Ontology terms included mRNA splicing and processing, endosome transport and protein catabolic processes. Together, the findings provide further insight into the biological basis of CVDs and highlight the importance of the precise regulation of splicing and alternative splicing.
Collapse
Affiliation(s)
- L. O. Bryzgalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. E. Korbolina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - I. S. Damarov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - T. I. Merkulova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| |
Collapse
|
16
|
de Lucia C, Grisanti LA, Borghetti G, Piedepalumbo M, Ibetti J, Lucchese AM, Barr EW, Roy R, Okyere AD, Murphy HC, Gao E, Rengo G, Houser SR, Tilley DG, Koch WJ. G protein-coupled receptor kinase 5 (GRK5) contributes to impaired cardiac function and immune cell recruitment in post-ischemic heart failure. Cardiovasc Res 2022; 118:169-183. [PMID: 33560342 PMCID: PMC8752360 DOI: 10.1093/cvr/cvab044] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Myocardial infarction (MI) is the most common cause of heart failure (HF) worldwide. G protein-coupled receptor kinase 5 (GRK5) is upregulated in failing human myocardium and promotes maladaptive cardiac hypertrophy in animal models. However, the role of GRK5 in ischemic heart disease is still unknown. In this study, we evaluated whether myocardial GRK5 plays a critical role post-MI in mice and included the examination of specific cardiac immune and inflammatory responses. METHODS AND RESULTS Cardiomyocyte-specific GRK5 overexpressing transgenic mice (TgGRK5) and non-transgenic littermate control (NLC) mice as well as cardiomyocyte-specific GRK5 knockout mice (GRK5cKO) and wild type (WT) were subjected to MI and, functional as well as structural changes together with outcomes were studied. TgGRK5 post-MI mice showed decreased cardiac function, augmented left ventricular dimension and decreased survival rate compared to NLC post-MI mice. Cardiac hypertrophy and fibrosis as well as fetal gene expression were increased post-MI in TgGRK5 compared to NLC mice. In TgGRK5 mice, GRK5 elevation produced immuno-regulators that contributed to the elevated and long-lasting leukocyte recruitment into the injured heart and ultimately to chronic cardiac inflammation. We found an increased presence of pro-inflammatory neutrophils and macrophages as well as neutrophils, macrophages and T-lymphocytes at 4-days and 8-weeks respectively post-MI in TgGRK5 hearts. Conversely, GRK5cKO mice were protected from ischemic injury and showed reduced early immune cell recruitment (predominantly monocytes) to the heart, improved contractility and reduced mortality compared to WT post-MI mice. Interestingly, cardiomyocyte-specific GRK2 transgenic mice did not share the same phenotype of TgGRK5 mice and did not have increased cardiac leukocyte migration and cytokine or chemokine production post-MI. CONCLUSIONS Our study shows that myocyte GRK5 has a crucial and GRK-selective role on the regulation of leucocyte infiltration into the heart, cardiac function and survival in a murine model of post-ischemic HF, supporting GRK5 inhibition as a therapeutic target for HF.
Collapse
Affiliation(s)
- Claudio de Lucia
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Michela Piedepalumbo
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Anna Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Eric W Barr
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rajika Roy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Haley Christine Murphy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Division of Geriatrics, Federico II University, Via S. Pansini, 5, Naples, Italy
- Laboratory of neurovegetative system pathophysiology, Istituti Clinici Scientifici ICS Maugeri, IRCCS Istituto Scientifico di Telese Terme, Benevento, Italy
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Sheng Z, Xu J, Li F, Yuan Y, Peng X, Chen S, Zhou R, Huang W. The RING-domain E3 ubiquitin ligase RNF146 promotes cardiac hypertrophy by suppressing the LKB1/AMPK signaling pathway. Exp Cell Res 2022; 410:112954. [PMID: 34856161 DOI: 10.1016/j.yexcr.2021.112954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 02/08/2023]
Abstract
The RING-domain E3 ubiquitin ligase RNF146 is an enzyme that plays an important role in ubiquitin-proteasomal protein degradation and participates in various pathophysiological processes. However, its role in cardiac hypertrophy is unclear. In the present work, thoracic transverse aortic constriction (TAC) was performed in transgenic mice with RNF146 knockout mice (KO) and wild-type mice, and neonatal rat cardiomyocytes (NRCMs) were subjected to angiotensin II (Ang II) stimulation to induce cardiac hypertrophy in vitro and in vivo. RNF146 expression was significantly increased in hypertrophied murine hearts and Ang II-stimulated NRCMs. RNF146-KO mice and knockdown of RNF146 NRCMs attenuated TAC- or Ang II-stimulated cardiac hypertrophy. Conversely, enforced expression of RNF146 aggravated these changes. Mechanistically, we found that RNF146 KO or knockdown increased the activation of the AMP-activated protein kinase (AMPK) pathway. Furthermore, we found that RNF146 KO or knockdown decreased ubiquitination of Liver kinase B1 (LKB1), which promoted the activation of the AMPK pathway in a dependent manner. In conclusion, RNF146 targets LKB1 protein for ubiquitin-proteasome degradation in cardiomyocytes and subsequently promotes cardiac hypertrophy by suppressing the activation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Zhiyong Sheng
- Department of Neurological Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jianning Xu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Fuxing Li
- Department of Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Ying Yuan
- Department of Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Shenjian Chen
- Department of Neurological Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Rui Zhou
- Department of Neurological Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wei Huang
- Department of Neurological Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
18
|
Transcription factor Meis1 act as a new regulator of ischemic arrhythmias in mice. J Adv Res 2021; 39:275-289. [PMID: 35777912 PMCID: PMC9263651 DOI: 10.1016/j.jare.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
The reduction of Meis1 after MI leads to an increased susceptibility to arrhythmia. Meis1 deficiency is related to ubiquitination proteasome pathway mediated by CDC20. Meis1 acts as a new transcription activator for SCN5A in cardiomyocytes. After Meis1 recovery, the electrophysiological function in cardiomyocytes are improved. Meis1 is a new target for the treatment of arrhythmia after myocardial infarction.
Introduction Objectives Methods Results Conclusion
Collapse
|
19
|
Liu C, Chen S, Zhang H, Chen Y, Gao Q, Chen Z, Liu Z, Wang J. Bioinformatic analysis for potential biological processes and key targets of heart failure-related stroke. J Zhejiang Univ Sci B 2021; 22:718-732. [PMID: 34514752 DOI: 10.1631/jzus.b2000544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study aimed to uncover underlying mechanisms and promising intervention targets of heart failure (HF)-related stroke. HF-related dataset GSE42955 and stroke-related dataset GSE58294 were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was conducted to identify key modules and hub genes. Gene Ontology (GO) and pathway enrichment analyses were performed on genes in the key modules. Genes in HF- and stroke-related key modules were intersected to obtain common genes for HF-related stroke, which were further intersected with hub genes of stroke-related key modules to obtain key genes in HF-related stroke. Key genes were functionally annotated through GO in the Reactome and Cytoscape databases. Finally, key genes were validated in these two datasets and other datasets. HF- and stroke-related datasets each identified two key modules. Functional enrichment analysis indicated that protein ubiquitination, Wnt signaling, and exosomes were involved in both HF- and stroke-related key modules. Additionally, ten hub genes were identified in stroke-related key modules and 155 genes were identified as common genes in HF-related stroke. OTU deubiquitinase with linear linkage specificity(OTULIN) and nuclear factor interleukin 3-regulated(NFIL3) were determined to be the key genes in HF-related stroke. Through functional annotation, OTULIN was involved in protein ubiquitination and Wnt signaling, and NFIL3 was involved in DNA binding and transcription. Importantly, OTULIN and NFIL3 were also validated to be differentially expressed in all HF and stroke groups. Protein ubiquitination, Wnt signaling, and exosomes were involved in HF-related stroke. OTULIN and NFIL3 may play a key role in HF-related stroke through regulating these processes, and thus serve as promising intervention targets.
Collapse
Affiliation(s)
- Chiyu Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Sixu Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haifeng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China
| | - Qingyuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China
| | - Zhiteng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China
| | - Zhaoyu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China. .,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China.
| |
Collapse
|
20
|
Bouvet M, Dubois-Deruy E, Turkieh A, Mulder P, Peugnet V, Chwastyniak M, Beseme O, Dechaumes A, Amouyel P, Richard V, Lamblin N, Pinet F. Desmin aggrephagy in rat and human ischemic heart failure through PKCζ and GSK3β as upstream signaling pathways. Cell Death Discov 2021; 7:153. [PMID: 34226534 PMCID: PMC8257599 DOI: 10.1038/s41420-021-00549-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022] Open
Abstract
Post-translational modifications of cardiac proteins could participate to left contractile dysfunction resulting in heart failure. Using a rat model of ischemic heart failure, we showed an accumulation of phosphorylated desmin leading to toxic aggregates in cardiomyocytes, but the cellular mechanisms are unknown. The same rat model was used to decipher the kinases involved in desmin phosphorylation and the proteolytic systems present in rat and human failing hearts. We used primary cultures of neonate rat cardiomyocytes for testing specific inhibitors of kinases and for characterizing the autophagic processes able to clear desmin aggregates. We found a significant increase of active PKCζ, no modulation of ubitiquitin-proteasome system, a defect in macroautophagy, and an activation of chaperone-mediated autophagy in heart failure rats. We validated in vitro that PKCζ inhibition induced a significant decrease of GSK3β and of soluble desmin. In vitro activation of ubiquitination of proteins and of chaperone-mediated autophagy is able to decrease soluble and insoluble forms of desmin in cardiomyocytes. These data demonstrate a novel signaling pathway implicating activation of PKCζ in desmin phosphorylation associated with a defect of proteolytic systems in ischemic heart failure, leading to desmin aggrephagy. Our in vitro data demonstrated that ubiquitination of proteins and chaperone-mediated autophagy are required for eliminating desmin aggregates with the contribution of its chaperone protein, α-crystallin Β-chain. Modulation of the kinases involved under pathological conditions may help preserving desmin intermediate filaments structure and thus protect the structural integrity of contractile apparatus of cardiomyocytes by limiting desmin aggregates formation.
Collapse
Affiliation(s)
- Marion Bouvet
- INSERM, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Emilie Dubois-Deruy
- INSERM, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Annie Turkieh
- INSERM, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Paul Mulder
- Normandie Univ, UNIROUEN, Inserm U1096, FHU-REMOD-VHF, 76000, Rouen, France
| | - Victoriane Peugnet
- INSERM, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Maggy Chwastyniak
- INSERM, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Olivia Beseme
- INSERM, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Arthur Dechaumes
- INSERM, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Philippe Amouyel
- INSERM, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Vincent Richard
- Normandie Univ, UNIROUEN, Inserm U1096, FHU-REMOD-VHF, 76000, Rouen, France
| | - Nicolas Lamblin
- INSERM, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Florence Pinet
- INSERM, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.
| |
Collapse
|
21
|
Huang G, Huang Z, Peng Y, Wang Y, Liu W, Xue Y, Yang W. Metabolic Processes are Potential Biological Processes Distinguishing Nonischemic Dilated Cardiomyopathy from Ischemic Cardiomyopathy: A Clue from Serum Proteomics. Pharmgenomics Pers Med 2021; 14:1169-1184. [PMID: 34557019 PMCID: PMC8453897 DOI: 10.2147/pgpm.s323379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ischemic cardiomyopathy (ICM) and nonischemic dilated cardiomyopathy (DCM) are the two most common causes of heart failure. However, our understanding of the specific proteins and biological processes distinguishing DCM from ICM remains insufficient. MATERIALS AND METHODS The proteomics analyses were performed on serum samples from ICM (n=5), DCM (n=5), and control (n=5) groups. Proteomics and bioinformatics analyses, including weighted gene co-expression network analysis (WGCNA) and gene set enrichment analysis (GSEA), were performed to identify the hub circulating proteins and the hub biological processes in ICM and DCM. RESULTS The analysis of differentially expressed proteins and WGCNA identified the hub circulating proteins in ICM (GAPDH, CLSTN1, VH3, CP, and ST13) and DCM (one downregulated protein, FGG; 18 upregulated proteins, including HEL-S-276, IGK, ALDOB, HIST1H2BJ, HEL-S-125m, RPLP2, EL52, NCAM1, P4HB, HEL-S-99n, HIST1H4L, HIST2H3PS2, F8, ERP70, SORD, PSMA3, PSMB6, and PSMA6). The mRNA expression of the heart specimens from GDS651 validated that ALDOB, GAPDH, RPLP2, and IGK had good abilities to distinguish DCM from ICM. In addition, GSEA results showed that cell proliferation and differentiation were the hub biological processes related to ICM, while metabolic processes and cell signaling transduction were the hub biological processes associated with DCM. CONCLUSION The present study identified five dysregulated hub circulating proteins among ICM patients and 19 dysregulated hub circulating proteins among DCM patients. Cell proliferation and differentiation were significantly enriched in ICM. Metabolic processes were strongly enhanced in DCM and may be used to distinguish DCM from ICM.
Collapse
Affiliation(s)
- Guangyong Huang
- Department of Cardiology, Liaocheng People’s Hospital of Shandong University, Liaocheng, People’s Republic of China
| | - Zhiqi Huang
- Department of Geriatric Medicine, Civil Aviation General Hospital, Beijing, People’s Republic of China
| | - Yunling Peng
- Department of Cardiology, Liaocheng People’s Hospital of Shandong University, Liaocheng, People’s Republic of China
| | - Yuehai Wang
- Department of Cardiology, Liaocheng People’s Hospital of Shandong University, Liaocheng, People’s Republic of China
| | - Weitao Liu
- Department of Cardiology, Liaocheng People’s Hospital of Shandong University, Liaocheng, People’s Republic of China
| | - Yuzeng Xue
- Department of Cardiology, Liaocheng People’s Hospital of Shandong University, Liaocheng, People’s Republic of China
| | - Wenbo Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Wenbo Yang Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of ChinaTel +86-21-64370045Fax +86-21-64457177 Email
| |
Collapse
|
22
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
23
|
Mollanoori H, Rahmati Y, Hassani B, Esmaeili S, Amini K, Teimourian S. Screening the underlying molecular mechanisms involved in the development of heart failure. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Wu P, Oren O, Gertz MA, Yang EH. Proteasome Inhibitor-Related Cardiotoxicity: Mechanisms, Diagnosis, and Management. Curr Oncol Rep 2020; 22:66. [DOI: 10.1007/s11912-020-00931-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Qian LL, Liu XY, Yu ZM, Wang RX. BK Channel Dysfunction in Diabetic Coronary Artery: Role of the E3 Ubiquitin Ligases. Front Physiol 2020; 11:453. [PMID: 32547406 PMCID: PMC7274077 DOI: 10.3389/fphys.2020.00453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/09/2020] [Indexed: 01/11/2023] Open
Abstract
Diabetic coronary arterial disease is a leading cause of morbidity and mortality in diabetic patients. The impaired function of large-conductance calcium-activated potassium channels (BK channels) is involved in diabetic coronary arterial disease. Many studies have indicated that the reduced BK channel expression in diabetic coronary artery is attributed to ubiquitin-mediated protein degradation by the ubiquitin-proteasome system. This review focuses on the influence and the mechanisms of BK channel regulation by E3 ubiquitin ligases in diabetic coronary arterial disease. Thus, BK channels regulated by E3 ubiquitin ligase may play a pivotal role in the coronary pathogenesis of diabetic mellitus and, as such, is a potentially attractive target for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Ru-xing Wang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
26
|
Zhang XM, Li YC, Chen P, Ye S, Xie SH, Xia WJ, Yang JH. MG-132 attenuates cardiac deterioration of viral myocarditis via AMPK pathway. Biomed Pharmacother 2020; 126:110091. [PMID: 32278272 DOI: 10.1016/j.biopha.2020.110091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Coxsackievirus B3 (CVB3) is the primary cause of infectious myocarditis. Aggressive immunological activation and apoptosis of myocytes contributes to progressive dysfunction of cardiac contraction and poor prognosis. MG-132, a proteasome inhibitor, regulates mitochondrial-mediated intrinsic myocardial apoptosis and downregulates NF-κB-mediated inflammation. Here, we determined whether AMPK pathway participates in MG-132-mediated myocardial protection in viral-induced myocarditis. METHODS AND RESULTS Acute viral myocarditis models were established by intraperitoneal inoculation of CVB3 in male BALB/c mice. Myocarditis and age-matched control mice were administered MG-132 and/or BML-275 dihydrochloride (BML) (AMPK antagonist) intraperitoneally daily from the day following CVB3 inoculation. MG-132 improved hemodynamics and inhibited the structural remodeling of the ventricle in mice with myocarditis, while BML largely blunted these effects. TUNEL staining and immunochemistry suggested that MG-132 exerts anti-apoptotic and anti-inflammatory effects against CVB3-induced myocardial injuries. BML attenuated the effects of MG-132 on anti-apoptosis and anti-inflammation. CONCLUSION MG-132 modulated apoptosis and inflammation, improved hemodynamics, and inhibited the structural remodeling of ventricles in a myocarditis mouse model via regulation of the AMPK signal pathway.
Collapse
Affiliation(s)
- Xin-Min Zhang
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yue-Chun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Peng Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Sheng Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shang-He Xie
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Wu-Jie Xia
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jun-Hua Yang
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
27
|
Selective targeting of ubiquitination and degradation of PARP1 by E3 ubiquitin ligase WWP2 regulates isoproterenol-induced cardiac remodeling. Cell Death Differ 2020; 27:2605-2619. [PMID: 32139900 DOI: 10.1038/s41418-020-0523-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The elevated expression of poly(ADP-ribose) polymerase-1 (PARP1) and increased PARP1 activity, namely, poly(ADP-ribosyl)ation (PARylation), have been observed in cardiac remodeling, leading to extreme energy consumption and myocardial damage. However, the mechanisms underlying the regulation of PARP1 require further study. WWP2, a HECT-type E3 ubiquitin ligase, is highly expressed in the heart, but its function there is largely unknown. Here, we clarified the role of WWP2 in the regulation of PARP1 and the impact of this regulatory process on cardiac remodeling. We determined that the knockout of WWP2 specifically in myocardium decreased the level of PARP1 ubiquitination and increased the effects of isoproterenol (ISO)-induced PARP1 and PARylation, in turn aggravating ISO-induced myocardial hypertrophy, heart failure, and myocardial fibrosis. Similar findings were obtained in a model of ISO-induced H9c2 cells with WWP2 knockdown, while the reexpression of WWP2 significantly increased PARP1 ubiquitination and decreased PAPR1 and PARylation levels. Mechanistically, coimmunoprecipitation results identified that WWP2 is a novel interacting protein of PARP1 and mainly interacts with its BRCT domain, thus mediating the degradation of PARP1 through the ubiquitin-proteasome system. In addition, lysine 418 (K418) and lysine 249 (K249) were shown to be of critical importance in regulating PARP1 ubiquitination and degradation by WWP2. These findings reveal a novel WWP2-PARP1 signal transduction pathway involved in controlling cardiac remodeling and may provide a basis for exploring new strategies for treating heart disorders related to cardiac remodeling.
Collapse
|
28
|
Wei L, Zhang Y, Qi X, Sun X, Li Y, Xu Y. Ubiquitin‑proteasomes are the dominant mediators of the regulatory effect of microRNA‑1 on cardiac remodeling after myocardial infarction. Int J Mol Med 2019; 44:1899-1907. [PMID: 31485642 PMCID: PMC6777676 DOI: 10.3892/ijmm.2019.4330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Patients with ischemic hearts who have refused coronary vascular reconstruction may exhibit dynamic myocardial remodeling and cardiac dysfunction. In the present study, the role of miRNA-1 and its association with the ubiquitin-proteasome system (UPS) in regulating myocardial remodeling was investigated. A myocardial infarction (MI) model was constructed and the hearts were treated with miRNA-1 antagomir, miRNA-1 lentiviral vectors and the UPS proteasome blocker bortezomib. The expression levels of miRNA-1 were evaluated using reverse transcription PCR and the abundance of the ubiquitin-proteasome protein and caspase-3 were evaluated via western blot analysis. Furthermore, the collagen volume fraction was calculated using Masson's trichrome staining, and the apoptosis index was detected via terminal deoxynucleotidyl transferase dUTP-biotin nick end labeling staining. Transforming growth factor (TGF)-β expression was assessed via immunohistochemical staining. Echocardiographic characteristics and myocardial infarct size were analyzed. miRNA-1 expression levels were found to be increased following MI. miRNA-1 antagomir administration clearly inhibited miRNA-1 expression, whereas the miRNA-1 lentiviral vector exerted the opposite effect. The levels of 19s proteasome, 20S proteasome and ubiquitin ligase E3 were decreased in the miRNA-1 antagomir group, but were significantly increased in the miRNA-1 lentiviral group; however, only 20S proteasome expression was decreased in the bortezomib group. Collagen hyperplasia and TGF-β expression were decreased in both the miRNA-1 antagomir and bortezomib groups, although the effects of the miRNA-1 antagomir were more noticeable. The miRNA-1 antagomir and the UPS proteasome blocker both alleviated the ultrastructural impairments, demonstrated by a decreased left ventricular (LV) end-diastolic diameter and LV mass, but the miRNA-1 antagomir was also able to increase LV ejection fraction and LV fractional shortening. miRNA-1 regulated UPS-associated mRNA expression and affected the majority of the UPS components in the myocardium, thereby leading to increased myocardial cell apoptosis, myocardial fibrosis and remodeling. The miRNA-1 antagomir exerted a more prominent cardioprotective effect compared with the UPS proteasome blocker bortezomib.
Collapse
Affiliation(s)
- Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, P.R. China
| | - Yufan Zhang
- School of Graduate Studies, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, P.R. China
| | - Xuseng Sun
- School of Graduate Studies, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yuanyang Li
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yue Xu
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
29
|
Neidhardt S, Garbade J, Emrich F, Klaeske K, Borger MA, Lehmann S, Jawad K, Dieterlen MT. Ischemic Cardiomyopathy Affects the Thioredoxin System in the Human Myocardium. J Card Fail 2019; 25:204-212. [PMID: 30721734 DOI: 10.1016/j.cardfail.2019.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/03/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Oxidative stress due to reactive oxygen species (ROS) production is a key factor in the development of heart failure (HF). This study investigated the thioredoxin (Trx) system, which plays a major role in antioxidant defense, in patients suffering from ischemic (ICM) or dilated (DCM) cardiomyopathy. METHODS AND RESULTS Myocardial tissue from ICM (n = 13) and DCM (n = 13) patients, as well as septal tissue of patients with aortic stenosis but without diagnosed hypertrophic cardiomyopathy or subaortic stenosis (control; n = 12), was analyzed for Trx1, Trx-interacting protein (TXNIP) and E3 ligase ITCH (E3 ubiquitin-protein ligase Itchy homolog) expression. Trx-reductase 1 (TXNRD1) amount and activity, cytosolic cytochrome C content, and apoptosis markers were quantified by means of enzyme-linked immunosorbent assay and multiplexing. Compared with control samples, ITCH and Trx1 expression, TXNRD1 amount and activity were reduced and TXNIP expression was increased in ICM (ITCH: P = .013; Trx1: P = .028; TXNRD1 amount: P = .035; TXNRD1 activity: P = .005; TXNIP: P = .014) but not in DCM samples. A higher level of the downstream apoptosis marker caspase-9 (ICM: 582 ± 262 MFI [P = .995]; DCM: 1251 ± 548 MFI [P = .002], control: 561 ± 214 MFI) was detected in DCM tissue. A higher expression of Bcl-2 was found in DCM (P = .011). CONCLUSION The Trx system was impaired in ICM but not in DCM. ITCH appeared to be responsible for the down-regulation of the Trx system. ROS-induced mitochondrial instability appeared to play a role in DCM.
Collapse
Affiliation(s)
- Stephan Neidhardt
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Jens Garbade
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Fabian Emrich
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Kristin Klaeske
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Michael A Borger
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Sven Lehmann
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Khalil Jawad
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany.
| |
Collapse
|
30
|
Xie YP, Lai S, Lin QY, Xie X, Liao JW, Wang HX, Tian C, Li HH. CDC20 regulates cardiac hypertrophy via targeting LC3-dependent autophagy. Am J Cancer Res 2018; 8:5995-6007. [PMID: 30613277 PMCID: PMC6299438 DOI: 10.7150/thno.27706] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Rationale: Sustained cardiac hypertrophy often leads to heart failure (HF). Understanding the regulation of cardiomyocyte growth is crucial for the treatment of adverse ventricular remodeling and HF. Cell division cycle 20 (CDC20) is an anaphase-promoting complex activator that is essential for cell division and tumorigenesis, but the role of CDC20 in cardiac hypertrophy is unknown. We aimed to test whether CDC20 participates in the regulation of pathological cardiac hypertrophy and investigate the underlying mechanism in vitro and in vivo. Methods: Male C57BL/6 mice were administered a recombinant adeno-associated virus serotype 9 (rAAV9) vector expressing CDC20 or a siRNA targeting CDC20 and their respective controls by tail intravenous injection. Results: Microarray analysis showed that CDC20 was significantly upregulated in the heart after angiotensin II infusion. Knockdown of CDC20 in cardiomyocytes and in the heart reduced cardiac hypertrophy upon agonist stimulation or transverse aortic constriction (TAC). Conversely, enforced expression of CDC20 in cardiomyocytes and in the heart aggravated the hypertrophic response. Furthermore, we found that CDC20 directly targeted LC3, a key regulator of autophagy, and promoted LC3 ubiquitination and degradation by the proteasome, which inhibited autophagy leading to hypertrophy. Moreover, knockdown of LC3 or inhibition of autophagy attenuated Ang II-induced cardiomyocyte hypertrophy after deletion of CDC20 in vitro. Conclusions: Our study reveals a novel cardiac hypertrophy regulatory mechanism that involves CDC20, LC3 and autophagy, and suggests that CDC20 could be a new therapeutic target for patients with hypertrophic heart diseases.
Collapse
|
31
|
Jiang R, Liu Q, Zhu H, Dai Y, Yao J, Liu Y, Gong PP, Shi W. The expression of TRIAD1 and DISC1 after traumatic brain injury and its influence on NSCs. Stem Cell Res Ther 2018; 9:297. [PMID: 30409224 PMCID: PMC6225628 DOI: 10.1186/s13287-018-1024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/13/2018] [Accepted: 09/30/2018] [Indexed: 01/06/2023] Open
Abstract
Background After cerebral injury, the proliferation and differentiation of neural stem cells are important for neural regeneration. Methods We used the SD rat to establish the traumatic brain injury model. Then, we verified molecular expression, interaction through Western blot, immunoprecipitation (IP), immunofluorescence, and other methods. All data were analyzed with Stata 8.0 statistical software. Results We showed for the first time that the interaction of TRIAD1 and DISC1 plays an important role in neural stem cell proliferation and differentiation after traumatic brain injury. In a rat model of traumatic brain injury, we found that the expression of TRIAD1 increased progressively, reached a peak at 3 to 5 days, and then decreased gradually. While the expression level of DISC1 was correlated with TRIAD1, its expression level at 3 days was significantly lower than at other time points. Immunofluorescence on frozen brain sections showed that TRIAD1 and DISC1 are co-localized in neural stem cells. Immunoprecipitation data suggested that TRIAD1 may interact with DISC1. We transfected 293T tool cells with plasmids containing truncated fragments of TRIAD1 and DISC1 and used additional IPs to reveal that these two proteins interact via specific fragments. Finally, we found that overexpressing TRIAD1 and DISC1 in primary neural stem cells, via lentiviral transfection, significantly affected the proliferation and differentiation of those neural stem cells. Conclusions Taken together, these data show that the expression of TRIAD1 and DISC1 change after traumatic brain injury and that their interaction may affect the proliferation and differentiation of neural stem cells. Our research may provide a sufficient experimental basis for finding molecular targets for neural stem cell proliferation and differentiation. Trial registration We did not report the results of a health care intervention on human participants.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qianqian Liu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hui Zhu
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yong Dai
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Junzhong Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yazhou Liu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Pei Pei Gong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China. .,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Wei Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China. .,Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
32
|
Stankovic-Valentin N, Melchior F. Control of SUMO and Ubiquitin by ROS: Signaling and disease implications. Mol Aspects Med 2018; 63:3-17. [PMID: 30059710 DOI: 10.1016/j.mam.2018.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/23/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023]
Abstract
Reversible post-translational modifications (PTMs) ensure rapid signal transmission from sensors to effectors. Reversible modification of proteins by the small proteins Ubiquitin and SUMO are involved in virtually all cellular processes and can modify thousands of proteins. Ubiquitination or SUMOylation is the reversible attachment of these modifiers to lysine residues of a target via isopeptide bond formation. These modifications require ATP and an enzymatic cascade composed of three classes of proteins: E1 activating enzymes, E2 conjugating enzymes and E3 ligases. The reversibility of the modification is ensured by specific isopeptidases. E1 and E2 enzymes, some E3 ligases and most isopeptidases have catalytic cysteine residues, which make them potentially susceptible for oxidation. Indeed, an increasing number of examples reveal regulation of ubiquitination and SUMOylation by reactive oxygen species, both in the context of redox signaling and in severe oxidative stress. Importantly, ubiquitination and SUMOylation play essential roles in the regulation of ROS homeostasis, participating in the control of ROS production and clearance. In this review, we will discuss the interplay between ROS homeostasis, Ubiquitin and SUMO pathways and the implications for the oxidative stress response and cell signaling.
Collapse
Affiliation(s)
- Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany.
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|