1
|
Chen C, Song S. Distinct Neuron Types Contribute to Hybrid Auditory Spatial Coding. J Neurosci 2024; 44:e0159242024. [PMID: 39261006 PMCID: PMC11502229 DOI: 10.1523/jneurosci.0159-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 09/13/2024] Open
Abstract
Neural decoding is a tool for understanding how activities from a population of neurons inside the brain relate to the outside world and for engineering applications such as brain-machine interfaces. However, neural decoding studies mainly focused on different decoding algorithms rather than different neuron types which could use different coding strategies. In this study, we used two-photon calcium imaging to assess three auditory spatial decoders (space map, opponent channel, and population pattern) in excitatory and inhibitory neurons in the dorsal inferior colliculus of male and female mice. Our findings revealed a clustering of excitatory neurons that prefer similar interaural level difference (ILD), the primary spatial cues in mice, while inhibitory neurons showed random local ILD organization. We found that inhibitory neurons displayed lower decoding variability under the opponent channel decoder, while excitatory neurons achieved higher decoding accuracy under the space map and population pattern decoders. Further analysis revealed that the inhibitory neurons' preference for ILD off the midline and the excitatory neurons' heterogeneous ILD tuning account for their decoding differences. Additionally, we discovered a sharper ILD tuning in the inhibitory neurons. Our computational model, linking this to increased presynaptic inhibitory inputs, was corroborated using monaural and binaural stimuli. Overall, this study provides experimental and computational insight into how excitatory and inhibitory neurons uniquely contribute to the coding of sound locations.
Collapse
Affiliation(s)
- Chenggang Chen
- Tsinghua Laboratory of Brain and Intelligence and School of Biomedical Engineering, McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Sen Song
- Tsinghua Laboratory of Brain and Intelligence and School of Biomedical Engineering, McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Ikeda K, Campbell TA. Binaural interaction in human auditory brainstem and middle-latency responses affected by sound frequency band, lateralization predictability, and attended modality. Hear Res 2024; 452:109089. [PMID: 39137721 DOI: 10.1016/j.heares.2024.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
The binaural interaction component (BIC) of the auditory evoked potential is the difference between the waveforms of the binaural response and the sum of left and right monaural responses. This investigation examined BICs of the auditory brainstem (ABR) and middle-latency (MLR) responses concerning three objectives: 1) the level of the auditory system at which low-frequency dominance in BIC amplitudes begins when the binaural temporal fine structure is more influential with lower- than higher-frequency content; 2) how BICs vary as a function of frequency and lateralization predictability, as could relate to the improved lateralization of high-frequency sounds; 3) how attention affects BICs. Sixteen right-handed participants were presented with either low-passed (< 1000 Hz) or high-passed (> 2000 Hz) clicks at 30 dB SL with a 38 dB (A) masking noise, at a stimulus onset asynchrony of 180 ms. Further, this repeated-measures design manipulated stimulus presentation (binaural, left monaural, right monaural), lateralization predictability (unpredictable, predictable), and attended modality (either auditory or visual). For the objectives, respectively, the results were: 1) whereas low-frequency dominance in BIC amplitudes began during, and continued after, the Na-BIC, binaural (center) as well as summed monaural (left and right) amplitudes revealed low-frequency dominance only after the Na wave; 2) with a predictable position that was fixed, no BIC exhibited equivalent amplitudes between low- and high-passed clicks; 3) whether clicks were low- or high-passed, selective attention affected the ABR-BIC yet not MLR-BICs. These findings indicate that low-frequency dominance in lateralization begins at the Na latency, being independent of the efferent cortico-collicular pathway's influence.
Collapse
Affiliation(s)
- Kazunari Ikeda
- Laboratory of Cognitive Psychophysiology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan.
| | - Tom A Campbell
- Faculty of Information Technology and Communication Sciences, Tampere University, 33720 Tampere, Finland
| |
Collapse
|
3
|
Descending projections to the auditory midbrain: evolutionary considerations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:131-143. [PMID: 36323876 PMCID: PMC9898193 DOI: 10.1007/s00359-022-01588-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The mammalian inferior colliculus (IC) is massively innervated by multiple descending projection systems. In addition to a large projection from the auditory cortex (AC) primarily targeting the non-lemniscal portions of the IC, there are less well-characterized projections from non-auditory regions of the cortex, amygdala, posterior thalamus and the brachium of the IC. By comparison, the frog auditory midbrain, known as the torus semicircularis, is a large auditory integration center that also receives descending input, but primarily from the posterior thalamus and without a projection from a putative cortical homolog: the dorsal pallium. Although descending projections have been implicated in many types of behaviors, a unified understanding of their function has not yet emerged. Here, we take a comparative approach to understanding the various top-down modulators of the IC to gain insights into their functions. One key question that we identify is whether thalamotectal projections in mammals and amphibians are homologous and whether they interact with evolutionarily more newly derived projections from the cerebral cortex. We also consider the behavioral significance of these descending pathways, given anurans' ability to navigate complex acoustic landscapes without the benefit of a corticocollicular projection. Finally, we suggest experimental approaches to answer these questions.
Collapse
|
4
|
Wang X, Zhang Y, Bai S, Qi R, Sun H, Li R, Zhu L, Cao X, Jia G, Li X, Gao L. Corticofugal Modulation of Temporal and Rate Representations in the Inferior Colliculus of the Awake Marmoset. Cereb Cortex 2022; 32:4080-4097. [PMID: 35029654 DOI: 10.1093/cercor/bhab467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 11/14/2022] Open
Abstract
Temporal processing is crucial for auditory perception and cognition, especially for communication sounds. Previous studies have shown that the auditory cortex and the thalamus use temporal and rate representations to encode slowly and rapidly changing time-varying sounds. However, how the primate inferior colliculus (IC) encodes time-varying sounds at the millisecond scale remains unclear. In this study, we investigated the temporal processing by IC neurons in awake marmosets to Gaussian click trains with varying interclick intervals (2-100 ms). Strikingly, we found that 28% of IC neurons exhibited rate representation with nonsynchronized responses, which is in sharp contrast to the current view that the IC only uses a temporal representation to encode time-varying signals. Moreover, IC neurons with rate representation exhibited response properties distinct from those with temporal representation. We further demonstrated that reversible inactivation of the primary auditory cortex modulated 17% of the stimulus-synchronized responses and 21% of the nonsynchronized responses of IC neurons, revealing that cortico-colliculus projections play a role, but not a crucial one, in temporal processing in the IC. This study has significantly advanced our understanding of temporal processing in the IC of awake animals and provides new insights into temporal processing from the midbrain to the cortex.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Yuanqing Zhang
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Siyi Bai
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Runze Qi
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Rui Li
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Lin Zhu
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Xinyuan Cao
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Guoqiang Jia
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
5
|
Yudintsev G, Asilador AR, Sons S, Vaithiyalingam Chandra Sekaran N, Coppinger M, Nair K, Prasad M, Xiao G, Ibrahim BA, Shinagawa Y, Llano DA. Evidence for Layer-Specific Connectional Heterogeneity in the Mouse Auditory Corticocollicular System. J Neurosci 2021; 41:9906-9918. [PMID: 34670851 PMCID: PMC8638684 DOI: 10.1523/jneurosci.2624-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
The auditory cortex (AC) sends long-range projections to virtually all subcortical auditory structures. One of the largest and most complex of these-the projection between AC and inferior colliculus (IC; the corticocollicular pathway)-originates from layer 5 and deep layer 6. Though previous work has shown that these two corticocollicular projection systems have different physiological properties and network connectivities, their functional organization is poorly understood. Here, using a combination of traditional and viral tracers combined with in vivo imaging in both sexes of the mouse, we observed that layer 5 and layer 6 corticocollicular neurons differ in their areas of origin and termination patterns. Layer 5 corticocollicular neurons are concentrated in primary AC, while layer 6 corticocollicular neurons emanate from broad auditory and limbic areas in the temporal cortex. In addition, layer 5 sends dense projections of both small and large (>1 µm2 area) terminals to all regions of nonlemniscal IC, while layer 6 sends small terminals to the most superficial 50-100 µm of the IC. These findings suggest that layer 5 and 6 corticocollicular projections are optimized to play distinct roles in corticofugal modulation. Layer 5 neurons provide strong, rapid, and unimodal feedback to the nonlemniscal IC, while layer 6 neurons provide heteromodal and limbic modulation diffusely to the nonlemniscal IC. Such organizational diversity in the corticocollicular pathway may help to explain the heterogeneous effects of corticocollicular manipulations and, given similar diversity in corticothalamic pathways, may be a general principle in top-down modulation.SIGNIFICANCE STATEMENT We demonstrate that a major descending system in the brain is actually two systems. That is, the auditory corticocollicular projection, which exerts considerable influence over the midbrain, comprises two projections: one from layer 5 and the other from layer 6. The layer 6 projection is diffusely organized, receives multisensory inputs, and ends in small terminals; while the layer 5 projection is derived from a circumscribed auditory cortical area and ends in large terminals. These data suggest that the varied effects of cortical manipulations on the midbrain may be related to effects on two disparate systems. These findings have broader implications because other descending systems derive from two layers. Therefore, a duplex organization may be a common motif in descending control.
Collapse
Affiliation(s)
- Georgiy Yudintsev
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Alexander R Asilador
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Stacy Sons
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Nathiya Vaithiyalingam Chandra Sekaran
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Macey Coppinger
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Kavya Nair
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Masumi Prasad
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Gang Xiao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Baher A Ibrahim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Yoshitaka Shinagawa
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Daniel A Llano
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
6
|
Ikeda K, Campbell TA. Reinterpreting the human ABR binaural interaction component: isolating attention from stimulus effects. Hear Res 2021; 410:108350. [PMID: 34534892 DOI: 10.1016/j.heares.2021.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/16/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Subtracting the sum of left and right monaural auditory brainstem responses (ABRs) from the corresponding binaural ABR isolates the binaural interaction component (ABR-BIC). In a previous investigation (Ikeda, 2015), during auditory yet not visual tasks, tone-pips elicited a significant difference in amplitude between summed monaural and binaural ABRs. With click stimulation, this amplitude difference was task-independent. This self-critical reanalysis's purpose was to establish that a difference waveform (i.e., ABR-BIC DN1) reflected an auditory selective attention effect that was isolable from stimulus factors. Regardless of whether stimuli were tone-pips or clicks, effect sizes of the DN1 peak amplitudes relative to zero improved during auditory tasks over visual tasks. Auditory selective attention effects on the monaural and binaural ABR wave-V amplitudes were tone-pip specific. Those wave-V effects thus could not explain the stimulus-universal effect of auditory selective attention on DN1 detectability, which was thus entirely binaural. In a manner isolated from auditory selective attention, multiple mediation analyses indicated that the higher right monaural wave-V amplitudes mediated individual differences in how clicks, relative to tone-pips, augmented DN1 amplitudes. There are implications of these findings for advancing ABR-BIC measurement.
Collapse
Affiliation(s)
- Kazunari Ikeda
- Laboratory of Cognitive Psychophysiology, Tokyo Gakugei University, Koganei, Tokyo, Japan.
| | - Tom A Campbell
- Faculty of Information Technology and Communication Sciences, Tampere University, 33720 Tampere, Finland
| |
Collapse
|
7
|
Asilador A, Llano DA. Top-Down Inference in the Auditory System: Potential Roles for Corticofugal Projections. Front Neural Circuits 2021; 14:615259. [PMID: 33551756 PMCID: PMC7862336 DOI: 10.3389/fncir.2020.615259] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 01/28/2023] Open
Abstract
It has become widely accepted that humans use contextual information to infer the meaning of ambiguous acoustic signals. In speech, for example, high-level semantic, syntactic, or lexical information shape our understanding of a phoneme buried in noise. Most current theories to explain this phenomenon rely on hierarchical predictive coding models involving a set of Bayesian priors emanating from high-level brain regions (e.g., prefrontal cortex) that are used to influence processing at lower-levels of the cortical sensory hierarchy (e.g., auditory cortex). As such, virtually all proposed models to explain top-down facilitation are focused on intracortical connections, and consequently, subcortical nuclei have scarcely been discussed in this context. However, subcortical auditory nuclei receive massive, heterogeneous, and cascading descending projections at every level of the sensory hierarchy, and activation of these systems has been shown to improve speech recognition. It is not yet clear whether or how top-down modulation to resolve ambiguous sounds calls upon these corticofugal projections. Here, we review the literature on top-down modulation in the auditory system, primarily focused on humans and cortical imaging/recording methods, and attempt to relate these findings to a growing animal literature, which has primarily been focused on corticofugal projections. We argue that corticofugal pathways contain the requisite circuitry to implement predictive coding mechanisms to facilitate perception of complex sounds and that top-down modulation at early (i.e., subcortical) stages of processing complement modulation at later (i.e., cortical) stages of processing. Finally, we suggest experimental approaches for future studies on this topic.
Collapse
Affiliation(s)
- Alexander Asilador
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A. Llano
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Molecular and Integrative Physiology, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
8
|
Suga N. Plasticity of the adult auditory system based on corticocortical and corticofugal modulations. Neurosci Biobehav Rev 2020; 113:461-478. [DOI: 10.1016/j.neubiorev.2020.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
|
9
|
Blackwell JM, Lesicko AMH, Rao W, De Biasi M, Geffen MN. Auditory cortex shapes sound responses in the inferior colliculus. eLife 2020; 9:e51890. [PMID: 32003747 PMCID: PMC7062464 DOI: 10.7554/elife.51890] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/31/2020] [Indexed: 12/30/2022] Open
Abstract
The extensive feedback from the auditory cortex (AC) to the inferior colliculus (IC) supports critical aspects of auditory behavior but has not been extensively characterized. Previous studies demonstrated that activity in IC is altered by focal electrical stimulation and pharmacological inactivation of AC, but these methods lack the ability to selectively manipulate projection neurons. We measured the effects of selective optogenetic modulation of cortico-collicular feedback projections on IC sound responses in mice. Activation of feedback increased spontaneous activity and decreased stimulus selectivity in IC, whereas suppression had no effect. To further understand how microcircuits in AC may control collicular activity, we optogenetically modulated the activity of different cortical neuronal subtypes, specifically parvalbumin-positive (PV) and somatostatin-positive (SST) inhibitory interneurons. We found that modulating the activity of either type of interneuron did not affect IC sound-evoked activity. Combined, our results identify that activation of excitatory projections, but not inhibition-driven changes in cortical activity, affects collicular sound responses.
Collapse
Affiliation(s)
- Jennifer M Blackwell
- Department of OtorhinolaryngologyUniversity of PennsylvaniaPhiladelphiaUnited States
- Department of Neurobiology and BehaviorStony Brook UniversityStony BrookUnited States
| | - Alexandria MH Lesicko
- Department of OtorhinolaryngologyUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Winnie Rao
- Department of OtorhinolaryngologyUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Mariella De Biasi
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaUnited States
- Department of Systems Pharmacology and Experimental TherapeuticsUniversity of PennsylvaniaPhiladelphiaUnited States
- Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Maria N Geffen
- Department of OtorhinolaryngologyUniversity of PennsylvaniaPhiladelphiaUnited States
- Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaUnited States
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
10
|
Lohse M, Bajo VM, King AJ, Willmore BDB. Neural circuits underlying auditory contrast gain control and their perceptual implications. Nat Commun 2020; 11:324. [PMID: 31949136 PMCID: PMC6965083 DOI: 10.1038/s41467-019-14163-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Neural adaptation enables sensory information to be represented optimally in the brain despite large fluctuations over time in the statistics of the environment. Auditory contrast gain control represents an important example, which is thought to arise primarily from cortical processing. Here we show that neurons in the auditory thalamus and midbrain of mice show robust contrast gain control, and that this is implemented independently of cortical activity. Although neurons at each level exhibit contrast gain control to similar degrees, adaptation time constants become longer at later stages of the processing hierarchy, resulting in progressively more stable representations. We also show that auditory discrimination thresholds in human listeners compensate for changes in contrast, and that the strength of this perceptual adaptation can be predicted from physiological measurements. Contrast adaptation is therefore a robust property of both the subcortical and cortical auditory system and accounts for the short-term adaptability of perceptual judgments.
Collapse
Affiliation(s)
- Michael Lohse
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Victoria M Bajo
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Andrew J King
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Ben D B Willmore
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
11
|
Vila CH, Williamson RS, Hancock KE, Polley DB. Optimizing optogenetic stimulation protocols in auditory corticofugal neurons based on closed-loop spike feedback. J Neural Eng 2019; 16:066023. [PMID: 31394519 PMCID: PMC6956656 DOI: 10.1088/1741-2552/ab39cf] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Optogenetics provides a means to probe functional connections between brain areas. By activating a set of presynaptic neurons and recording the activity from a downstream brain area, one can establish the sign and strength of a feedforward connection. One challenge is that there are virtually limitless patterns that can be used to stimulate a presynaptic brain area. Functional influences on downstream brain areas can depend not just on whether presynaptic neurons were activated, but how they were activated. Corticofugal axons from the auditory cortex (ACtx) heavily innervate the auditory tectum, the inferior colliculus (IC). Here, we sought to determine whether different modes of corticocollicular activation could titrate the strength of feedforward modulation of sound processing in IC neurons. APPROACH We used multi-channel electrophysiology and optogenetics to record from multiple regions of the IC in awake head-fixed mice while optogenetically stimulating ACtx neurons expressing Chronos, an ultra-fast channelrhodopsin. To identify cortical activation patterns associated with the strongest effects on IC firing rates, we employed a closed-loop evolutionary optimization procedure that tailored the voltage command signal sent to the laser based on spike feedback from single IC neurons. MAIN RESULTS Within minutes, our evolutionary search procedure converged on ACtx stimulation configurations that produced more effective and widespread enhancement of IC unit activity than generic activation parameters. Cortical modulation of midbrain spiking was bi-directional, as the evolutionary search procedure could be programmed to converge on activation patterns that either suppressed or enhanced sound-evoked IC firing rate. SIGNIFICANCE This study introduces a closed-loop optimization procedure to probe functional connections between brain areas. Our findings demonstrate that the influence of descending feedback projections on subcortical sensory processing can vary both in sign and degree depending on how cortical neurons are activated in time.
Collapse
Affiliation(s)
- Charles-Henri Vila
- - Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA
- - Bertarelli Fellows Program, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ross S Williamson
- - Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA
- - Dept. Otolaryngology, Harvard Medical School, Boston MA 02114
| | - Kenneth E Hancock
- - Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA
- - Dept. Otolaryngology, Harvard Medical School, Boston MA 02114
| | - Daniel B Polley
- - Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA
- - Dept. Otolaryngology, Harvard Medical School, Boston MA 02114
| |
Collapse
|
12
|
Wang X, Cheng YL, Yang DD, Si WJ, Jen PHS, Yang CH, Chen QC. Focal electrical stimulation of dorsal nucleus of the lateral lemniscus modulates auditory response properties of inferior collicular neurons in the albino mouse. Hear Res 2019; 377:292-306. [PMID: 30857650 DOI: 10.1016/j.heares.2019.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/27/2019] [Accepted: 01/31/2019] [Indexed: 11/28/2022]
Abstract
The inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many bilateral lower auditory nuclei, intrinsic projections within IC, contralateral IC through the commissure of IC and from the auditory cortex (AC). These excitatory and inhibitory inputs from both ascending and descending auditory pathways contribute significantly to auditory response properties and temporal signal processing in IC. The present study examines the contribution of gamma-aminobutyric acid-ergic (GABAergic) inhibition of dorsal nucleus of the lateral lemniscus (DNLL) in influencing the response properties and amplitude sensitivity of contralateral IC neurons using focal electrical stimulation of contralateral DNLL and by the application of bicuculline to the recording site of modulated IC neurons. Focal electrical stimulation of contralateral DNLL produces inhibition (78.1%), facilitation (7.1%) or no effect (14.8%) in the number of spikes, firing duration and the first-spike latency of modulated IC neurons. The degree of modulation is inversely correlated to the difference in best frequency (BF) between electrically stimulated DNLL neurons and modulated IC neurons (p < 0.01). The application of bicuculline to the recording site of modulated IC neurons abolishes the inhibitory effect of focal electrical stimulation of DNLL neurons. DNLL inhibition also modulates the amplitude sensitivity of IC neurons by changing the dynamic range (DR) and the slope of rate-amplitude function (RAF) of modulated IC neurons. Possible biological significance of these findings in relation to auditory signal processing is discussed.
Collapse
Affiliation(s)
- Xin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yan-Ling Cheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Dan-Dan Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Juan Si
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Philip H-S Jen
- Division of Biological Sciences, University of Missouri-Columbia, MO, 65211, USA.
| | - Cui-Hong Yang
- School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China
| | - Qi-Cai Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
13
|
Wang H, Shen S, Zheng T, Bi L, Li B, Wang X, Yang Y, Jen PHS. The Role of the Dorsal Nucleus of the Lateral Lemniscus in Shaping the Auditory Response Properties of the Central Nucleus of the Inferior Collicular Neurons in the Albino Mouse. Neuroscience 2018; 390:30-45. [PMID: 30144510 DOI: 10.1016/j.neuroscience.2018.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
In the ascending auditory pathway, the central nucleus of the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many bilateral lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and from the auditory cortex. All these presynaptic excitatory and inhibitory inputs dynamically shape and modulate the auditory response properties of individual IC neurons. For this reason, acoustic response properties vary among individual IC neurons due to different activity pattern of presynaptic inputs. The present study examines modulation of auditory response properties of IC neurons by combining sound stimulation with focal electrical stimulation of the contralateral dorsal nucleus of the lateral lemniscus (referred to as ESDNLL) in the albino mouse. Brief ESDNLL produces variation (increase or decrease) in the number of impulses, response latency and discharge duration of modulated IC neurons. Additionally, 30-minute short-term ESDNLL alone produces variation in the best frequency (BF) and minimum threshold (MT) of modulated IC neurons. These varied response parameters recover in different manner and time course among individual modulated IC neurons. Possible pathways and neural mechanisms underlying these findings are discussed.
Collapse
Affiliation(s)
- Huimei Wang
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China
| | - Shuang Shen
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China
| | - Tihua Zheng
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China
| | - Liyan Bi
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China
| | - Bo Li
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China
| | - Xin Wang
- College of Life Science, Central China Normal University, Wuhan, People's Republic of China
| | - Ying Yang
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China.
| | - Philip H-S Jen
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China; Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
14
|
Lohse M, Bajo VM, King AJ. Development, organization and plasticity of auditory circuits: Lessons from a cherished colleague. Eur J Neurosci 2018; 49:990-1004. [PMID: 29804304 PMCID: PMC6519211 DOI: 10.1111/ejn.13979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/11/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
Ray Guillery was a neuroscientist known primarily for his ground-breaking studies on the development of the visual pathways and subsequently on the nature of thalamocortical processing loops. The legacy of his work, however, extends well beyond the visual system. Thanks to Ray Guillery's pioneering anatomical studies, the ferret has become a widely used animal model for investigating the development and plasticity of sensory processing. This includes our own work on the auditory system, where experiments in ferrets have revealed the role of sensory experience during development in shaping the neural circuits responsible for sound localization, as well as the capacity of the mature brain to adapt to changes in inputs resulting from hearing loss. Our research has also built on Ray Guillery's ideas about the possible functions of the massive descending projections that link sensory areas of the cerebral cortex to the thalamus and other subcortical targets, by demonstrating a role for corticothalamic feedback in the perception of complex sounds and for corticollicular projection neurons in learning to accommodate altered auditory spatial cues. Finally, his insights into the organization and functions of transthalamic corticocortical connections have inspired a raft of research, including by our own laboratory, which has attempted to identify how information flows through the thalamus.
Collapse
Affiliation(s)
- Michael Lohse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Tolnai S, Beutelmann R, Klump GM. Effect of preceding stimulation on sound localization and its representation in the auditory midbrain. Eur J Neurosci 2017; 45:460-471. [PMID: 27891687 DOI: 10.1111/ejn.13491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/27/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Tolnai
- Cluster of Excellence Hearing4all; Animal Physiology and Behaviour Group; Department of Neuroscience; School of Medicine and Health Sciences; University of Oldenburg; Oldenburg D-26111 Germany
| | - Rainer Beutelmann
- Cluster of Excellence Hearing4all; Animal Physiology and Behaviour Group; Department of Neuroscience; School of Medicine and Health Sciences; University of Oldenburg; Oldenburg D-26111 Germany
| | - Georg M. Klump
- Cluster of Excellence Hearing4all; Animal Physiology and Behaviour Group; Department of Neuroscience; School of Medicine and Health Sciences; University of Oldenburg; Oldenburg D-26111 Germany
| |
Collapse
|
16
|
Milinkeviciute G, Muniak MA, Ryugo DK. Descending projections from the inferior colliculus to the dorsal cochlear nucleus are excitatory. J Comp Neurol 2016; 525:773-793. [PMID: 27513294 DOI: 10.1002/cne.24095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/10/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
Abstract
Ascending projections of the dorsal cochlear nucleus (DCN) target primarily the contralateral inferior colliculus (IC). In turn, the IC sends bilateral descending projections back to the DCN. We sought to determine the nature of these descending axons in order to infer circuit mechanisms of signal processing at one of the earliest stages of the central auditory pathway. An anterograde tracer was injected in the IC of CBA/Ca mice to reveal terminal characteristics of the descending axons. Retrograde tracer deposits were made in the DCN of CBA/Ca and transgenic GAD67-EGFP mice to investigate the cells giving rise to these projections. A multiunit best frequency was determined for each injection site. Brains were processed by using standard histologic methods for visualization and examined by fluorescent, brightfield, and electron microscopy. Descending projections from the IC were inferred to be excitatory because the cell bodies of retrogradely labeled neurons did not colabel with EGFP expression in neurons of GAD67-EGFP mice. Furthermore, additional experiments yielded no glycinergic or cholinergic positive cells in the IC, and descending projections to the DCN were colabeled with antibodies against VGluT2, a glutamate transporter. Anterogradely labeled endings in the DCN formed asymmetric postsynaptic densities, a feature of excitatory neurotransmission. These descending projections to the DCN from the IC were topographic and suggest a feedback pathway that could underlie a frequency-specific enhancement of some acoustic signals and suppression of others. The involvement of this IC-DCN circuit is especially noteworthy when considering the gating of ascending signal streams for auditory processing. J. Comp. Neurol. 525:773-793, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giedre Milinkeviciute
- Hearing Research, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Michael A Muniak
- Hearing Research, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia.,Department of Otolaryngology, Head, Neck and Skull Base Surgery, St. Vincent's Hospital, Sydney, New South Wales, 2010, Australia
| |
Collapse
|
17
|
Cooling of the auditory cortex modifies neuronal activity in the inferior colliculus in rats. Hear Res 2015; 332:7-16. [PMID: 26631689 DOI: 10.1016/j.heares.2015.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
There are powerful pathways descending from the auditory cortex (AC) to the inferior colliculus (IC), yet their function is not fully understood. The aim of this study is to examine the effects of a reversible cortical inactivation, achieved by cooling of the AC, on the responses of neurons in the rat IC. Extracellular single-unit or multi-unit activity was recorded in the IC of anaesthetized rats with a 16-channel multielectrode probe introduced along the IC dorso-ventral axis through the dorsal cortex (DCIC) to the central nucleus of the IC (CIC). Cooling of the AC produced an increase in spontaneous activity and magnitude of the sound-evoked response in 47% of the IC neurons. Maximal changes in the neuronal activity were observed in the DCIC and the central part of the CIC. The final segments of the sustained responses to 60 ms stimuli and the off responses were more affected than the onset segments. Inactivation of the AC resulted in a suppression of the post-excitatory inhibition and neuronal adaptation, which was reflected in a pronounced enhancement of synchronized responses to a series of fast repeated clicks. The response parameters recovered, at least partly, to the pre-cooling levels 1 h after the cooling cessation. The frequency tuning properties of the IC neurons did not show any significant changes during the cooling period. The results demonstrate that AC cooling inactivates excitatory corticofugal pathways and results in a less activated intrinsic inhibitory network in the IC.
Collapse
|
18
|
Terreros G, Delano PH. Corticofugal modulation of peripheral auditory responses. Front Syst Neurosci 2015; 9:134. [PMID: 26483647 PMCID: PMC4588004 DOI: 10.3389/fnsys.2015.00134] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023] Open
Abstract
The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed.
Collapse
Affiliation(s)
- Gonzalo Terreros
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile Santiago, Chile
| | - Paul H Delano
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile Santiago, Chile ; Departamento de Otorrinolaringología, Hospital Clínico de la Universidad de Chile Santiago, Chile
| |
Collapse
|
19
|
Ikeda K. Binaural interaction in human auditory brainstem response compared for tone-pips and rectangular clicks under conditions of auditory and visual attention. Hear Res 2015; 325:27-34. [PMID: 25776741 DOI: 10.1016/j.heares.2015.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 01/19/2015] [Accepted: 02/10/2015] [Indexed: 10/23/2022]
Abstract
Binaural interaction in the auditory brainstem response (ABR) represents the discrepancy between the binaural waveform and the sum of monaural ones. A typical ABR binaural interaction in humans is a reduction of the binaural amplitude compared to the monaural sum at the wave-V latency, i.e., the DN1 component. It has been considered that the DN1 is mainly elicited by high frequency components of stimuli whereas some studies have shown the contribution of low-to-middle frequency components to the DN1. To examine this issue, the present study compared the ABR binaural interaction elicited by tone pips (1 kHz, 10-ms duration) with the one by clicks (a rectangular wave, 0.1-ms duration) presented at 80 dB peak equivalent SPL and a fixed stimulus onset interval (180 ms). The DN1 due to tone pips was vulnerable compared to the click-evoked DN1. The pip-evoked DN1 was significantly detected under auditory attention whereas it failed to reach significance under visual attention. The click-evoked DN1 was robustly present for the two attention conditions. The current results might confirm the high frequency sound contribution to the DN1 elicitation.
Collapse
Affiliation(s)
- Kazunari Ikeda
- Center for the Research and Support of Educational Practice, Tokyo Gakugei University, Koganei, Tokyo, Japan.
| |
Collapse
|
20
|
Cheng L, Mei HX, Tang J, Fu ZY, Jen PHS, Chen QC. Bilateral collicular interaction: modulation of auditory signal processing in frequency domain. Neuroscience 2013; 235:27-39. [PMID: 23321542 DOI: 10.1016/j.neuroscience.2013.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/30/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from a variety of lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in the modulation of frequency-domain signal processing of mice using electrophysiological recording and focal electrical stimulation. Focal electrical stimulation of neurons in one IC produces widespread inhibition and focused facilitation of responses of neurons in the other IC. This bilateral collicular interaction decreases the response magnitude and lengthens the response latency of inhibited IC neurons but produces an opposite effect on the response of facilitated IC neurons. In the frequency domain, the focal electrical stimulation of one IC sharpens or expands the frequency tuning curves (FTCs) of neurons in the other IC to improve frequency sensitivity and the frequency response range. The focal electrical stimulation also produces a shift in the best frequency (BF) of modulated IC (ICMdu) neurons toward that of electrically stimulated IC (ICES) neurons. The degree of bilateral collicular interaction is dependent upon the difference in the BF between the ICES neurons and ICMdu neurons. These data suggest that bilateral collicular interaction is a part of dynamic acoustic signal processing that adjusts and improves signal processing as well as reorganizes collicular representation of signal parameters according to the acoustic experience.
Collapse
Affiliation(s)
- L Cheng
- School of Life Sciences & Hubei Key Lab of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | | | | | | | | | | |
Collapse
|
21
|
Bajo VM, King AJ. Cortical modulation of auditory processing in the midbrain. Front Neural Circuits 2013; 6:114. [PMID: 23316140 PMCID: PMC3539853 DOI: 10.3389/fncir.2012.00114] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/11/2012] [Indexed: 11/13/2022] Open
Abstract
In addition to their ascending pathways that originate at the receptor cells, all sensory systems are characterized by extensive descending projections. Although the size of these connections often outweighs those that carry information in the ascending auditory pathway, we still have a relatively poor understanding of the role they play in sensory processing. In the auditory system one of the main corticofugal projections links layer V pyramidal neurons with the inferior colliculus (IC) in the midbrain. All auditory cortical fields contribute to this projection, with the primary areas providing the largest outputs to the IC. In addition to medium and large pyramidal cells in layer V, a variety of cell types in layer VI make a small contribution to the ipsilateral corticocollicular projection. Cortical neurons innervate the three IC subdivisions bilaterally, although the contralateral projection is relatively small. The dorsal and lateral cortices of the IC are the principal targets of corticocollicular axons, but input to the central nucleus has also been described in some studies and is distinctive in its laminar topographic organization. Focal electrical stimulation and inactivation studies have shown that the auditory cortex can modify almost every aspect of the response properties of IC neurons, including their sensitivity to sound frequency, intensity, and location. Along with other descending pathways in the auditory system, the corticocollicular projection appears to continually modulate the processing of acoustical signals at subcortical levels. In particular, there is growing evidence that these circuits play a critical role in the plasticity of neural processing that underlies the effects of learning and experience on auditory perception by enabling changes in cortical response properties to spread to subcortical nuclei.
Collapse
Affiliation(s)
- Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
22
|
Suga N. Tuning shifts of the auditory system by corticocortical and corticofugal projections and conditioning. Neurosci Biobehav Rev 2012; 36:969-88. [PMID: 22155273 PMCID: PMC3265669 DOI: 10.1016/j.neubiorev.2011.11.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/19/2011] [Accepted: 11/21/2011] [Indexed: 11/21/2022]
Abstract
The central auditory system consists of the lemniscal and nonlemniscal systems. The thalamic lemniscal and nonlemniscal auditory nuclei are different from each other in response properties and neural connectivities. The cortical auditory areas receiving the projections from these thalamic nuclei interact with each other through corticocortical projections and project down to the subcortical auditory nuclei. This corticofugal (descending) system forms multiple feedback loops with the ascending system. The corticocortical and corticofugal projections modulate auditory signal processing and play an essential role in the plasticity of the auditory system. Focal electric stimulation - comparable to repetitive tonal stimulation - of the lemniscal system evokes three major types of changes in the physiological properties, such as the tuning to specific values of acoustic parameters of cortical and subcortical auditory neurons through different combinations of facilitation and inhibition. For such changes, a neuromodulator, acetylcholine, plays an essential role. Electric stimulation of the nonlemniscal system evokes changes in the lemniscal system that is different from those evoked by the lemniscal stimulation. Auditory signals ascending from the lemniscal and nonlemniscal thalamic nuclei to the cortical auditory areas appear to be selected or adjusted by a "differential" gating mechanism. Conditioning for associative learning and pseudo-conditioning for nonassociative learning respectively elicit tone-specific and nonspecific plastic changes. The lemniscal, corticofugal and cholinergic systems are involved in eliciting the former, but not the latter. The current article reviews the recent progress in the research of corticocortical and corticofugal modulations of the auditory system and its plasticity elicited by conditioning and pseudo-conditioning.
Collapse
Affiliation(s)
- Nobuo Suga
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
23
|
King AJ, Dahmen JC, Keating P, Leach ND, Nodal FR, Bajo VM. Neural circuits underlying adaptation and learning in the perception of auditory space. Neurosci Biobehav Rev 2011; 35:2129-39. [PMID: 21414354 PMCID: PMC3198863 DOI: 10.1016/j.neubiorev.2011.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 10/25/2022]
Abstract
Sound localization mechanisms are particularly plastic during development, when the monaural and binaural acoustic cues that form the basis for spatial hearing change in value as the body grows. Recent studies have shown that the mature brain retains a surprising capacity to relearn to localize sound in the presence of substantially altered auditory spatial cues. In addition to the long-lasting changes that result from learning, behavioral and electrophysiological studies have demonstrated that auditory spatial processing can undergo rapid adjustments in response to changes in the statistics of recent stimulation, which help to maintain sensitivity over the range where most stimulus values occur. Through a combination of recording studies and methods for selectively manipulating the activity of specific neuronal populations, progress is now being made in identifying the cortical and subcortical circuits in the brain that are responsible for the dynamic coding of auditory spatial information.
Collapse
Affiliation(s)
- Andrew J King
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Sayles M, Winter IM. Equivalent-rectangular bandwidth of single units in the anaesthetized guinea-pig ventral cochlear nucleus. Hear Res 2010; 262:26-33. [PMID: 20123119 DOI: 10.1016/j.heares.2010.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 01/01/2010] [Accepted: 01/27/2010] [Indexed: 11/24/2022]
Abstract
Frequency-tuning is a fundamental property of auditory neurons. The filter bandwidth of peripheral auditory neurons determines the frequency resolution of an animal's auditory system. Behavioural studies in animals and humans have defined frequency-tuning in terms of the "equivalent-rectangular bandwidth" (ERB) of peripheral filters. In contrast, most physiological studies report the Q [best frequency/bandwidth] of frequency-tuning curves. This study aims to accurately describe the ERB of primary-like and chopper units in the ventral cochlear nucleus, the first brainstem processing station of the central auditory system. Recordings were made from 1020 isolated single units in the ventral cochlear nucleus of anesthetized guinea pigs in response to pure-tone stimuli which varied in frequency and in sound level. Frequency-threshold tuning curves were constructed for each unit and estimates of the ERB determined using methods previously described for auditory-nerve-fibre data in the same species. Primary-like, primary-notch, and sustained- and transient-chopper units showed frequency selectivity almost identical to that recorded in the auditory nerve. Their tuning at pure-tone threshold can be described as a function of best frequency (BF) by ERB = 0.31 * BF(0.5).
Collapse
Affiliation(s)
- Mark Sayles
- Centre for the Neural Basis of Hearing, The Physiological Laboratory, University of Cambridge, CB2 3EG, UK.
| | | |
Collapse
|
26
|
Bajo VM, Nodal FR, Moore DR, King AJ. The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nat Neurosci 2009; 13:253-60. [PMID: 20037578 DOI: 10.1038/nn.2466] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/09/2009] [Indexed: 11/09/2022]
Abstract
Descending projections from sensory areas of the cerebral cortex are among the largest pathways in the brain, suggesting that they are important for subcortical processing. Although corticofugal inputs have been shown to modulate neuronal responses in the thalamus and midbrain, the behavioral importance of these changes remains unknown. In the auditory system, one of the major descending pathways is from cortical layer V pyramidal cells to the inferior colliculus in the midbrain. We examined the role of these neurons in experience-dependent recalibration of sound localization in adult ferrets by selectively killing the neurons using chromophore-targeted laser photolysis. When provided with appropriate training, animals normally relearn to localize sound accurately after altering the spatial cues available by reversibly occluding one ear. However, this ability was lost after eliminating corticocollicular neurons, whereas normal sound-localization accuracy was unaffected. The integrity of this descending pathway is therefore critical for learning-induced localization plasticity.
Collapse
Affiliation(s)
- Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
27
|
Nakamoto KT, Jones SJ, Palmer AR. Descending projections from auditory cortex modulate sensitivity in the midbrain to cues for spatial position. J Neurophysiol 2008; 99:2347-56. [PMID: 18385487 DOI: 10.1152/jn.01326.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The function of the profuse descending innervation from the auditory cortex is largely unknown; however, recent studies have demonstrated that focal stimulation of auditory cortex effects frequency tuning curves, duration tuning, and other auditory parameters in the inferior colliculus. Here we demonstrate that, in an anesthetized guinea pig, nonfocal deactivation of the auditory cortex alters the sensitivity of populations of neurons in the inferior colliculus (IC) to one of the major cues for the localization of sound in space, interaural level differences (ILDs). Primary and secondary auditory cortical areas were inactivated by cooling. The ILD functions of 46% of IC cells changed when the cortex was inactivated. In extreme cases, the ILD functions changed from monotonic to nonmonotonic during cooling and vice versa. Eight percent of the cells became unresponsive after deactivation of the auditory cortex. Deactivation of the cortex has previously been shown to alter the maximum spike count of cells in the IC; the change in normalized ILD functions is shown to be separate from this effect. In some cases, the ILD function changed shape when there was no change in the maximum spike count and in other cases there was no change in the shape of the ILD function even though there was a large change in the maximum spike count. Overall, the sensitivity of the IC neural population to ILD is radically altered by the corticofugal pathway.
Collapse
Affiliation(s)
- Kyle T Nakamoto
- MRC Institute of Hearing Research, University Park, Nottingham, UK.
| | | | | |
Collapse
|
28
|
Suga N. Role of corticofugal feedback in hearing. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:169-83. [PMID: 18228080 DOI: 10.1007/s00359-007-0274-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/31/2007] [Accepted: 09/16/2007] [Indexed: 10/22/2022]
Abstract
The auditory system consists of the ascending and descending (corticofugal) systems. The corticofugal system forms multiple feedback loops. Repetitive acoustic or auditory cortical electric stimulation activates the cortical neural net and the corticofugal system and evokes cortical plastic changes as well as subcortical plastic changes. These changes are short-term and are specific to the properties of the acoustic stimulus or electrically stimulated cortical neurons. These plastic changes are modulated by the neuromodulatory system. When the acoustic stimulus becomes behaviorally relevant to the animal through auditory fear conditioning or when the cortical electric stimulation is paired with an electric stimulation of the cholinergic basal forebrain, the cortical plastic changes become larger and long-term, whereas the subcortical changes stay short-term, although they also become larger. Acetylcholine plays an essential role in augmenting the plastic changes and in producing long-term cortical changes. The corticofugal system has multiple functions. One of the most important functions is the improvement and adjustment (reorganization) of subcortical auditory signal processing for cortical signal processing.
Collapse
Affiliation(s)
- Nobuo Suga
- Department of Biology, Washington University, One Brookings Drive, St Louis, MO 63130, USA.
| |
Collapse
|
29
|
Wu Y, Yan J. Modulation of the receptive fields of midbrain neurons elicited by thalamic electrical stimulation through corticofugal feedback. J Neurosci 2007; 27:10651-8. [PMID: 17913899 PMCID: PMC6672809 DOI: 10.1523/jneurosci.1320-07.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ascending and descending projections of the central auditory system form multiple tonotopic loops. This study specifically examines the tonotopic pathway from the auditory thalamus to the auditory cortex and then to the auditory midbrain in mice. We observed the changes of receptive fields in the central nucleus of the inferior colliculus of the midbrain evoked by focal electrical stimulation of the ventral division of the medial geniculate body of the thalamus. The receptive field of an auditory neuron was characterized by five parameters: the best frequency, minimum threshold, bandwidth, size of receptive field, and average spike number. We found that focal thalamic stimulation changed the parametric values characterizing the recorded collicular receptive fields toward those characterizing the stimulated thalamic receptive fields. Cortical inactivation with muscimol prevented the development of the collicular plasticity induced by focal thalamic stimulation. Our data suggest that the intact colliculo-thalamo-cortico-collicular loops are important for the coordination of sound-guided plasticity in the central auditory system.
Collapse
Affiliation(s)
- Yamin Wu
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Jun Yan
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
30
|
Zhou X, Jen PHS. Corticofugal modulation of multi-parametric auditory selectivity in the midbrain of the big brown bat. J Neurophysiol 2007; 98:2509-16. [PMID: 17804577 DOI: 10.1152/jn.00613.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticofugal modulation of sub-cortical auditory selectivity has been shown previously in mammals for frequency, amplitude, time, and direction domains in separate studies. As such, these studies do not show if multi-parametric corticofugal modulation can be mediated through the same sub-cortical neuron. Here we specifically studied corticofugal modulation of best frequency (BF), best amplitude (BA), and best azimuth (BAZ) at the same neuron in the inferior colliculus of the big brown bat, Eptesicus fuscus, using focal electrical stimulation in the auditory cortex. Among 53 corticofugally inhibited collicular neurons examined, cortical electrical stimulation produced a shift of all three measurements (i.e., BF, BA, and BAZ) toward the value of stimulated cortical neuron in 13 (24.5%) neurons, two measurements (i.e., BF and BAZ or BA and BAZ) in 19 (36%) neurons, and one measurement in 16 (30%) neurons. Cortical electrical stimulation did not shift any of these measurements in the remaining five (9.5%) neurons. Corticofugally induced collicular BF shift was symmetrical, whereas the shift in collicular BA or BAZ was asymmetrical. The amount of shift in each measurement was significantly correlated with each measurement difference between recorded collicular and stimulated cortical neurons. However, shifts of three measurements were not correlated with each other. Furthermore, average measurement difference between collicular and cortical neurons was larger for collicular neurons with measurement shifts than for those without shifts. These data indicate that multi-parametric corticofugal modulation can be mediated through the same subcortical neuron based on the difference in auditory selectivity between subcortical and cortical neurons.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Division of Biological Sciences, University of Missouri-Columbia, Missouri, USA
| | | |
Collapse
|
31
|
Peterson DC, Schofield BR. Projections from auditory cortex contact ascending pathways that originate in the superior olive and inferior colliculus. Hear Res 2007; 232:67-77. [PMID: 17643879 PMCID: PMC2682707 DOI: 10.1016/j.heares.2007.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/08/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
The superior olivary complex (SOC) and inferior colliculus (IC) are targets of cortical projections as well as sources of major ascending auditory pathways. This study examines whether the cortical projections contact cells in the SOC or IC that project to higher levels. First, we placed an anterograde tracer into the auditory cortex to label cortico-olivary axons and a retrograde tracer into the IC to label olivocollicular cells in guinea pigs. Cortical axons contacted many labeled cells in the ipsilateral SOC and fewer labeled cells in the contralateral SOC. Contacted cells projected to the ipsilateral or contralateral IC. In a second experiment, we labeled corticocollicular axons with an anterograde tracer and injected retrograde tracers into the medial geniculate (MG) to label colliculogeniculate cells. In the IC ipsilateral to the cortical injection, many cortical axons contacted colliculogeniculate cells in the dorsal cortex and external cortex of the IC. The contacted cells projected to the ipsilateral MG or, less often, to the contralateral MG. The results indicate that cortical projections are likely to contact cells in the SOC and IC that project to higher centers. This suggests that auditory cortex can modulate the ascending auditory pathways at multiple levels of the brainstem.
Collapse
Affiliation(s)
| | - Brett R. Schofield
- Correspondence to: Brett R. Schofield, PhD, Department of Neurobiology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, PO Box 95, Rootstown, OH 44272 USA, Telephone: 330-325-6655, Fax: 330-325-5916,
| |
Collapse
|
32
|
Ma X, Suga N. Multiparametric corticofugal modulation of collicular duration-tuned neurons: modulation in the amplitude domain. J Neurophysiol 2007; 97:3722-30. [PMID: 17376844 DOI: 10.1152/jn.01268.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The subcortical auditory nuclei contain not only neurons tuned to a specific frequency but also those tuned to multiple parameters characterizing a sound. All these neurons are potentially subject to modulation by descending fibers from the auditory cortex (corticofugal modulation). In the past, we electrically stimulated cortical duration-tuned neurons of the big brown bat, Eptesicus fuscus, and found that its collicular duration-tuned neurons were corticofugally modulated in the frequency and time (duration) domains. In the current paper, we report that they were also corticofugally modulated in the amplitude (intensity) domain. We found the following collicular changes evoked by focal cortical electric stimulation. 1) Corticofugal modulation in the amplitude domain differed depending on whether recorded collicular neurons matched in best frequency (BF) with stimulated cortical neurons. BF-matched neurons decreased their thresholds, whereas BF-unmatched neurons increased their thresholds: the larger the BF difference between the recorded collicular and stimulated cortical neurons, the larger the threshold increase. 2) In general, the dynamic range for amplitude coding was larger in the inferior colliculus than in the auditory cortex. BF-matched neurons increased their dynamic ranges and response magnitude, whereas BF-unmatched neurons decreased them. 3) Single duration-tuned neurons were simultaneously modulated by cortical electric stimulation in the amplitude, frequency and time domains. 4) Corticofugal modulation in these three domains indicates that the contrast of the neural representation of repeatedly delivered sound stimuli is increased.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Dept. of Biology, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|