1
|
Potential Effects on Human Safety and Health from Infrasound and Audible Frequencies Generated by Vibrations of Diesel Engines Using Biofuel Blends at the Workplaces of Sustainable Engineering Systems. SUSTAINABILITY 2022. [DOI: 10.3390/su14137554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Employees involved in various occupational environments that include vibration machines and any kind of vehicles are adversely subjected to multiple source noise. Thus, the corresponding noise frequencies (and mainly the infrasound ones) present high interest, especially from the viewpoint of sustainability, due to the potential effects on human safety and health (H_S&H) in sustainable engineering projects. Moreover, the occupational safety and health (OSH) visualization (a fact of unveiling the social dimension of sustainability) of occupational workplaces (by evaluating the infrasound and audible noise frequencies generated by diesel engines) could help a safety officer to lessen crucial risk factors in the OSH field and also to protect, more efficiently, the employees by taking the most essential safety measures. This study (i) suggests a technique to determine the infrasound and audible sound frequencies produced due to vibrations of diesel engines, by using biofuels (i.e., sustainable utilization of resources), in order to evaluate potential effects on human safety and health at the workplaces of sustainable engineering projects, and (ii) it ultimately aims to contribute to the improvement of the three “sustainability pillars” (economy, social, and environmental). Therefore, it provides experimental results of the frequency of the noise (regarding the infrasound and audible spectrum) that a diesel motor generates by vibration, in the frame of using different engine rpms (850, 1150, and 2000) and a variety of biofuel mixtures (B20-D80, B40-D60, B60-D40, and B80-D20). The article shows that the fuel blend meaningfully affects the generated noise, and more particularly, the usage of biofuel blends coming from mixing diesel oil with biodiesel (a fact of the emerging environmental dimension of sustainability) can produce various noise frequencies, which are determined in the infrasound and audible spectra (~10–23 Hz). The suggested technique, by ameliorating the OSH situation, doubtless will help enterprises to achieve the finest allocation of limited financial resources (a fact corresponding to the economic dimension of sustainability), allowing financial managers to have more available budget for implementing other risk-reduction projects.
Collapse
|
2
|
Baeza Moyano D, González Lezcano RA. Effects of infrasound on health: looking for improvements in housing conditions. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2020; 28:809-823. [PMID: 33019907 DOI: 10.1080/10803548.2020.1831787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The latest technological innovations have considerably increased the field of application for infrasound, and the possible risks that infrasound may present to those exposed to it must be taken into account. The main task of this article is to organize and summarize recent studies on the most common artificial emitting sources and the effects that these non-audible frequencies have on health when absorbed by the body, as well as presenting the existing regulations, a discussion and a series of conclusions that clarify aspects of infrasound. The intention of the authors of this article is that what is exposed in this review can be used to address and determine future lines of research and promote architects to take the spaces of installations within a building very seriously as well as carry out competent administration considering a minimum distance from the road to where habitable buildings are planned.
Collapse
Affiliation(s)
- David Baeza Moyano
- Department of Chemistry and Biochemistry, University San Pablo CEU, Spain
| | | |
Collapse
|
3
|
Lubner RJ, Kondamuri NS, Knoll RM, Ward BK, Littlefield PD, Rodgers D, Abdullah KG, Remenschneider AK, Kozin ED. Review of Audiovestibular Symptoms Following Exposure to Acoustic and Electromagnetic Energy Outside Conventional Human Hearing. Front Neurol 2020; 11:234. [PMID: 32411067 PMCID: PMC7199630 DOI: 10.3389/fneur.2020.00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: We aim to examine the existing literature on, and identify knowledge gaps in, the study of adverse animal and human audiovestibular effects from exposure to acoustic or electromagnetic waves that are outside of conventional human hearing. Design/Setting/Participants: A review was performed, which included searches of relevant MeSH terms using PubMed, Embase, and Scopus. Primary outcomes included documented auditory and/or vestibular signs or symptoms in animals or humans exposed to infrasound, ultrasound, radiofrequency, and magnetic resonance imaging. The references of these articles were then reviewed in order to identify primary sources and literature not captured by electronic search databases. Results: Infrasound and ultrasound acoustic waves have been described in the literature to result in audiovestibular symptomology following exposure. Technology emitting infrasound such as wind turbines and rocket engines have produced isolated reports of vestibular symptoms, including dizziness and nausea and auditory complaints, such as tinnitus following exposure. Occupational exposure to both low frequency and high frequency ultrasound has resulted in reports of wide-ranging audiovestibular symptoms, with less robust evidence of symptomology following modern-day exposure via new technology such as remote controls, automated door openers, and wireless phone chargers. Radiofrequency exposure has been linked to both auditory and vestibular dysfunction in animal models, with additional historical evidence of human audiovestibular disturbance following unquantifiable exposure. While several theories, such as the cavitation theory, have been postulated as a cause for symptomology, there is extremely limited knowledge of the pathophysiology behind the adverse effects that particular exposure frequencies, intensities, and durations have on animals and humans. This has created a knowledge gap in which much of our understanding is derived from retrospective examination of patients who develop symptoms after postulated exposures. Conclusion and Relevance: Evidence for adverse human audiovestibular symptomology following exposure to acoustic waves and electromagnetic energy outside the spectrum of human hearing is largely rooted in case series or small cohort studies. Further research on the pathogenesis of audiovestibular dysfunction following acoustic exposure to these frequencies is critical to understand reported symptoms.
Collapse
Affiliation(s)
- Rory J. Lubner
- Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Neil S. Kondamuri
- Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Renata M. Knoll
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Bryan K. Ward
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Derek Rodgers
- Madigan Army Medical Center, Tacoma, WA, United States
| | - Kalil G. Abdullah
- Department of Neurosurgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Aaron K. Remenschneider
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
- Department of Otolaryngology, University of Massachusetts Medical Center, Worcester, MA, United States
| | - Elliott D. Kozin
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| |
Collapse
|
4
|
Behler O, Uppenkamp S. Activation in human auditory cortex in relation to the loudness and unpleasantness of low-frequency and infrasound stimuli. PLoS One 2020; 15:e0229088. [PMID: 32084171 PMCID: PMC7034801 DOI: 10.1371/journal.pone.0229088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/29/2020] [Indexed: 11/18/2022] Open
Abstract
Low frequency noise (LFS) and infrasound (IS) are controversially discussed as potential causes of annoyance and distress experienced by many people. However, the perception mechanisms for IS in the human auditory system are not completely understood yet. In the present study, sinusoids at 32 Hz (at the lower limit of melodic pitch for tonal stimulation), as well as 8 Hz (IS range) were presented to a group of 20 normal hearing subjects, using monaural stimulation via a loudspeaker sound source coupled to the ear canal by a long silicone rubber tube. Each participant attended two experimental sessions. In the first session, participants performed a categorical loudness scaling procedure as well as an unpleasantness rating task in a sound booth. In the second session, the loudness scaling procedure was repeated while brain activation was measured using functional magnetic resonance imaging (fMRI). Subsequently, activation data were collected for the respective stimuli presented at fixed levels adjusted to the individual loudness judgments. Silent trials were included as a baseline condition. Our results indicate that the brain regions involved in processing LFS and IS are similar to those for sounds in the typical audio frequency range, i.e., mainly primary and secondary auditory cortex (AC). In spite of large variation across listeners with respect to judgments of loudness and unpleasantness, neural correlates of these interindividual differences could not yet be identified. Still, for individual listeners, fMRI activation in the AC was more closely related to individual perception than to the physical stimulus level.
Collapse
Affiliation(s)
- Oliver Behler
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- * E-mail:
| | - Stefan Uppenkamp
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4All, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
5
|
Dragicevic CD, Marcenaro B, Navarrete M, Robles L, Delano PH. Oscillatory infrasonic modulation of the cochlear amplifier by selective attention. PLoS One 2019; 14:e0208939. [PMID: 30615632 PMCID: PMC6322828 DOI: 10.1371/journal.pone.0208939] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/26/2018] [Indexed: 11/18/2022] Open
Abstract
Evidence shows that selective attention to visual stimuli modulates the gain of cochlear responses, probably through auditory-cortex descending pathways. At the cerebral cortex level, amplitude and phase changes of neural oscillations have been proposed as a correlate of selective attention. However, whether sensory receptors are also influenced by the oscillatory network during attention tasks remains unknown. Here, we searched for oscillatory attention-related activity at the cochlear receptor level in humans. We used an alternating visual/auditory selective attention task and measured electroencephalographic activity simultaneously to distortion product otoacoustic emissions (a measure of cochlear receptor-cell activity). In order to search for cochlear oscillatory activity, the otoacoustic emission signal, was included as an additional channel in the electroencephalogram analyses. This method allowed us to evaluate dynamic changes in cochlear oscillations within the same range of frequencies (1–35 Hz) in which cognitive effects are commonly observed in electroencephalogram works. We found the presence of low frequency (<10 Hz) brain and cochlear amplifier oscillations during selective attention to visual and auditory stimuli. Notably, switching between auditory and visual attention modulates the amplitude and the temporal order of brain and inner ear oscillations. These results extend the role of the oscillatory activity network during cognition in neural systems to the receptor level.
Collapse
Affiliation(s)
| | - Bruno Marcenaro
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marcela Navarrete
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Robles
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paul H. Delano
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Otolaryngology Department, Clinical Hospital, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
6
|
Raufer S, Masud SF, Nakajima HH. Infrasound transmission in the human ear: Implications for acoustic and vestibular responses of the normal and dehiscent inner ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:332. [PMID: 30075646 PMCID: PMC6072551 DOI: 10.1121/1.5046523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/16/2018] [Accepted: 06/27/2018] [Indexed: 05/10/2023]
Abstract
The transmission of infrasound within the human ear is not well understood. To investigate infrasound propagation through the middle and inner ear, velocities of the stapes and round window membrane were measured to very low frequencies (down to 0.9 Hz from 2000 Hz) in fresh cadaveric human specimens. Results from ear-canal sound stimulation responses show that below 200 Hz, the middle ear impedance is dominated by its stiffness term, limiting sound transmission to the inner ear. During air-conduction, normal ears have approximately equal volume velocities at the oval (stapes) and round windows, known as a two-window system. However, perturbing the impedance of the inner ear with a superior canal dehiscence (SCD), a pathological opening of the bone surrounding the semicircular canal, breaks down this simple two-window system. SCD changes the volume velocity flow in the inner ear, particularly at low frequencies. The experimental findings and model predictions in this study demonstrate that low-frequency auditory and vestibular sound transmission can be affected by a change in the inner-ear impedance due to a SCD.
Collapse
Affiliation(s)
- Stefan Raufer
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Tosteson Medical Education Center 35, 260 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Salwa F Masud
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Tosteson Medical Education Center 35, 260 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Hideko H Nakajima
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
7
|
Carlile S, Davy JL, Hillman D, Burgemeister K. A Review of the Possible Perceptual and Physiological Effects of Wind Turbine Noise. Trends Hear 2018; 22:2331216518789551. [PMID: 30084316 PMCID: PMC6081752 DOI: 10.1177/2331216518789551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022] Open
Abstract
This review considers the nature of the sound generated by wind turbines focusing on the low-frequency sound (LF) and infrasound (IS) to understand the usefulness of the sound measures where people work and sleep. A second focus concerns the evidence for mechanisms of physiological transduction of LF/IS or the evidence for somatic effects of LF/IS. While the current evidence does not conclusively demonstrate transduction, it does present a strong prima facia case. There are substantial outstanding questions relating to the measurement and propagation of LF and IS and its encoding by the central nervous system relevant to possible perceptual and physiological effects. A range of possible research areas are identified.
Collapse
Affiliation(s)
- Simon Carlile
- Faculty of Medicine, University of Sydney, Australia
- Starkey Hearing Research Centre, Berkeley, CA, USA
| | - John L. Davy
- Royal Melbourne Institute of Technology University, Australia
- CSIRO Infrastructure Technologies, Clayton South, Australia
| | | | | |
Collapse
|
8
|
Weichenberger M, Bauer M, Kühler R, Hensel J, Forlim CG, Ihlenfeld A, Ittermann B, Gallinat J, Koch C, Kühn S. Altered cortical and subcortical connectivity due to infrasound administered near the hearing threshold - Evidence from fMRI. PLoS One 2017; 12:e0174420. [PMID: 28403175 PMCID: PMC5389622 DOI: 10.1371/journal.pone.0174420] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/08/2017] [Indexed: 11/18/2022] Open
Abstract
In the present study, the brain's response towards near- and supra-threshold infrasound (IS) stimulation (sound frequency < 20 Hz) was investigated under resting-state fMRI conditions. The study involved two consecutive sessions. In the first session, 14 healthy participants underwent a hearing threshold-as well as a categorical loudness scaling measurement in which the individual loudness perception for IS was assessed across different sound pressure levels (SPL). In the second session, these participants underwent three resting-state acquisitions, one without auditory stimulation (no-tone), one with a monaurally presented 12-Hz IS tone (near-threshold) and one with a similar tone above the individual hearing threshold corresponding to a 'medium loud' hearing sensation (supra-threshold). Data analysis mainly focused on local connectivity measures by means of regional homogeneity (ReHo), but also involved independent component analysis (ICA) to investigate inter-regional connectivity. ReHo analysis revealed significantly higher local connectivity in right superior temporal gyrus (STG) adjacent to primary auditory cortex, in anterior cingulate cortex (ACC) and, when allowing smaller cluster sizes, also in the right amygdala (rAmyg) during the near-threshold, compared to both the supra-threshold and the no-tone condition. Additional independent component analysis (ICA) revealed large-scale changes of functional connectivity, reflected in a stronger activation of the right amygdala (rAmyg) in the opposite contrast (no-tone > near-threshold) as well as the right superior frontal gyrus (rSFG) during the near-threshold condition. In summary, this study is the first to demonstrate that infrasound near the hearing threshold may induce changes of neural activity across several brain regions, some of which are known to be involved in auditory processing, while others are regarded as keyplayers in emotional and autonomic control. These findings thus allow us to speculate on how continuous exposure to (sub-)liminal IS could exert a pathogenic influence on the organism, yet further (especially longitudinal) studies are required in order to substantialize these findings.
Collapse
Affiliation(s)
- Markus Weichenberger
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Martin Bauer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Robert Kühler
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Hensel
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Caroline Garcia Forlim
- University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany
| | - Albrecht Ihlenfeld
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jürgen Gallinat
- University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany
| | - Christian Koch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Simone Kühn
- University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany
| |
Collapse
|
9
|
Jurado C, Marquardt T. The effect of the helicotrema on low-frequency loudness perception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:3799. [PMID: 27908034 DOI: 10.1121/1.4967295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Below approximately 40 Hz, the cochlear travelling wave reaches the apex, and differential pressure is shunted through the helicotrema, reducing hearing sensitivity. Just above this corner frequency, a resonance feature is often observed in objectively measured middle-ear-transfer functions (METFs). This study inquires whether overall and fine structure characteristics of the METF are also perceptually evident. Equal-loudness-level contours (ELCs) were measured between 20 and 160 Hz for 14 subjects in a purpose-built test chamber. In addition, the inverse shapes of their METFs were obtained by adjusting the intensity of a low-frequency suppressor tone to maintain an equal suppression depth of otoacoustic emissions for various suppressor tone frequencies (20-250 Hz). For 11 subjects, the METFs showed a resonance. Six of them had coinciding features in both ears, and also in their ELC. For two subjects only the right-ear METF was obtainable, and in one case it was consistent with the ELC. One other subject showed a consistent lack of the feature in their ELC and in both METFs. Although three subjects displayed clear inconsistencies between both measures, the similarity between inverse METF and ELC for most subjects shows that the helicotrema has a marked impact on low-frequency sound perception.
Collapse
Affiliation(s)
- Carlos Jurado
- Section of Acoustics, Department of Electronic Systems, Aalborg University, Fredrik Bajersvej 7-A, Denmark
| | - Torsten Marquardt
- UCL Ear Institute, University College London, 332 Grays Inn Road, London, WC1X 8EE, United Kingdom
| |
Collapse
|
10
|
Drexl M, Otto L, Wiegrebe L, Marquardt T, Gürkov R, Krause E. Low-frequency sound exposure causes reversible long-term changes of cochlear transfer characteristics. Hear Res 2016; 332:87-94. [DOI: 10.1016/j.heares.2015.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023]
|
11
|
Kugler K, Wiegrebe L, Gürkov R, Krause E, Drexl M. Concurrent Acoustic Activation of the Medial Olivocochlear System Modifies the After-Effects of Intense Low-Frequency Sound on the Human Inner Ear. J Assoc Res Otolaryngol 2015; 16:713-25. [PMID: 26264256 DOI: 10.1007/s10162-015-0538-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
>Human hearing is rather insensitive for very low frequencies (i.e. below 100 Hz). Despite this insensitivity, low-frequency sound can cause oscillating changes of cochlear gain in inner ear regions processing even much higher frequencies. These alterations outlast the duration of the low-frequency stimulation by several minutes, for which the term 'bounce phenomenon' has been coined. Previously, we have shown that the bounce can be traced by monitoring frequency and level changes of spontaneous otoacoustic emissions (SOAEs) over time. It has been suggested elsewhere that large receptor potentials elicited by low-frequency stimulation produce a net Ca(2+) influx and associated gain decrease in outer hair cells. The bounce presumably reflects an underdamped, homeostatic readjustment of increased Ca(2+) concentrations and related gain changes after low-frequency sound offset. Here, we test this hypothesis by activating the medial olivocochlear efferent system during presentation of the bounce-evoking low-frequency (LF) sound. The efferent system is known to modulate outer hair cell Ca(2+) concentrations and receptor potentials, and therefore, it should modulate the characteristics of the bounce phenomenon. We show that simultaneous presentation of contralateral broadband noise (100 Hz-8 kHz, 65 and 70 dB SPL, 90 s, activating the efferent system) and ipsilateral low-frequency sound (30 Hz, 120 dB SPL, 90 s, inducing the bounce) affects the characteristics of bouncing SOAEs recorded after low-frequency sound offset. Specifically, the decay time constant of the SOAE level changes is shorter, and the transient SOAE suppression is less pronounced. Moreover, the number of new, transient SOAEs as they are seen during the bounce, are reduced. Taken together, activation of the medial olivocochlear system during induction of the bounce phenomenon with low-frequency sound results in changed characteristics of the bounce phenomenon. Thus, our data provide experimental support for the hypothesis that outer hair cell calcium homeostasis is the source of the bounce phenomenon.
Collapse
Affiliation(s)
- Kathrin Kugler
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Division of Neurobiology, Department Biology II, University of Munich, 82152, Martinsried, Germany
| | - Lutz Wiegrebe
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Division of Neurobiology, Department Biology II, University of Munich, 82152, Martinsried, Germany
| | - Robert Gürkov
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany
| | - Eike Krause
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany
| | - Markus Drexl
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany. .,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany. .,Division of Neurobiology, Department Biology II, University of Munich, 82152, Martinsried, Germany.
| |
Collapse
|
12
|
Weichenberger M, Kühler R, Bauer M, Hensel J, Brühl R, Ihlenfeld A, Ittermann B, Gallinat J, Koch C, Sander T, Kühn S. Brief bursts of infrasound may improve cognitive function--an fMRI study. Hear Res 2015; 328:87-93. [PMID: 26260309 DOI: 10.1016/j.heares.2015.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 12/23/2022]
Abstract
At present, infrasound (sound frequency < 20 Hz; IS) is being controversially discussed as a potential mediator of several adverse bodily as well as psychological effects. However, it remains unclear, if and in what way IS influences cognition. Here, we conducted an fMRI experiment, in which 13 healthy participants were exposed to IS, while cognitive performance was assessed in an n-back working memory paradigm. During the task, short sinusoidal tone bursts of 12 Hz were administered monaurally with sound pressure levels that had been determined individually in a categorical loudness scaling session prior to the fMRI experiment. We found that task execution was associated with a significant activation of the prefrontal and the parietal cortex, as well as the striatum and the cerebellum, indicating the recruitment of a cognitive control network. Reverse contrast analysis (n-back with tone vs. n-back without tone) revealed a significant activation of the bilateral primary auditory cortex (Brodmann areas 41, 42). Surprisingly, we also found a strong, yet non-significant trend for an improvement of task performance during IS exposure. There was no correlation between performance and brain activity measures in tone and no-tone condition with sum scores of depression-, anxiety-, and personality factor assessment scales (BDI, STAIX1/X2, BFI-S). Although exerting a pronounced effect on cortical brain activity, we obtained no evidence for an impairment of cognition due to brief bursts of IS. On the contrary, potential improvement of working memory function introduces an entirely new aspect to the debate on IS-related effects.
Collapse
Affiliation(s)
- Markus Weichenberger
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195 Berlin, Germany.
| | - Robert Kühler
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Martin Bauer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Johannes Hensel
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Albrecht Ihlenfeld
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Jürgen Gallinat
- University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| | - Christian Koch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Tilmann Sander
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Simone Kühn
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
13
|
Schmidt JH, Klokker M. Health effects related to wind turbine noise exposure: a systematic review. PLoS One 2014; 9:e114183. [PMID: 25474326 PMCID: PMC4256253 DOI: 10.1371/journal.pone.0114183] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/05/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Wind turbine noise exposure and suspected health-related effects thereof have attracted substantial attention. Various symptoms such as sleep-related problems, headache, tinnitus and vertigo have been described by subjects suspected of having been exposed to wind turbine noise. OBJECTIVE This review was conducted systematically with the purpose of identifying any reported associations between wind turbine noise exposure and suspected health-related effects. DATA SOURCES A search of the scientific literature concerning the health-related effects of wind turbine noise was conducted on PubMed, Web of Science, Google Scholar and various other Internet sources. STUDY ELIGIBILITY CRITERIA All studies investigating suspected health-related outcomes associated with wind turbine noise exposure were included. RESULTS Wind turbines emit noise, including low-frequency noise, which decreases incrementally with increases in distance from the wind turbines. Likewise, evidence of a dose-response relationship between wind turbine noise linked to noise annoyance, sleep disturbance and possibly even psychological distress was present in the literature. Currently, there is no further existing statistically-significant evidence indicating any association between wind turbine noise exposure and tinnitus, hearing loss, vertigo or headache. LIMITATIONS Selection bias and information bias of differing magnitudes were found to be present in all current studies investigating wind turbine noise exposure and adverse health effects. Only articles published in English, German or Scandinavian languages were reviewed. CONCLUSIONS Exposure to wind turbines does seem to increase the risk of annoyance and self-reported sleep disturbance in a dose-response relationship. There appears, though, to be a tolerable level of around LAeq of 35 dB. Of the many other claimed health effects of wind turbine noise exposure reported in the literature, however, no conclusive evidence could be found. Future studies should focus on investigations aimed at objectively demonstrating whether or not measureable health-related outcomes can be proven to fluctuate depending on exposure to wind turbines.
Collapse
Affiliation(s)
- Jesper Hvass Schmidt
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Audiology, Odense University Hospital, Odense, Denmark
- Department of ENT Head and Neck Surgery, Odense University Hospital, Odense, Denmark
| | - Mads Klokker
- Department of ENT Head and Neck Surgery & Audiology, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
14
|
Drexl M, Gürkov R, Krause E. Low-frequency modulated quadratic and cubic distortion product otoacoustic emissions in humans. Hear Res 2012; 287:91-101. [DOI: 10.1016/j.heares.2012.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 01/13/2023]
Affiliation(s)
- Markus Drexl
- Integrated Centre for Research and Treatment of Vertigo, Balance and Ocular Motor Disorders, Ludwig-Maximilians University Munich, Marchioninistr 15, 81377 Munich, Germany.
| | | | | |
Collapse
|
15
|
On the differential diagnosis of Ménière's disease using low-frequency acoustic biasing of the 2f1-f2 DPOAE. Hear Res 2011; 282:119-27. [PMID: 21944944 DOI: 10.1016/j.heares.2011.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/01/2011] [Accepted: 09/08/2011] [Indexed: 01/13/2023]
Abstract
We have cyclically suppressed the 2f1-f2 distortion product otoacoustic emission (DPOAE) with low-frequency tones (17-97 Hz) as a way of differentially diagnosing the endolymphatic hydrops assumed to be associated with Ménière's syndrome. Round-window electrocochleography (ECochG) was performed in subjects with sensorineural hearing loss (SNHL) on the day of DPOAE testing, and from which the amplitude of the summating potential (SP) was measured, to support the diagnosis of Ménière's syndrome based on symptoms. To summarize and compare the cyclic patterns of DPOAE modulation in these groups we have used the simplest model of DPOAE generation and modulation, by assuming that the DPOAEs were generated by a 1st-order Boltzmann nonlinearity so that the magnitude of the 2f1-f2 DPOAE resembled the 3rd derivative of the Boltzmann function. We have also assumed that the modulation of the DPOAEs by the low-frequency tones was simply due to a sinusoidal change in the operating point on the Boltzmann nonlinearity. We have found the cyclic DPOAE modulation to be different in subjects with Ménière's syndrome (n = 16) when compared to the patterns in normal subjects (n = 16) and in other control subjects with non-Ménière's SNHL and/or vestibular disorders (n = 13). The DPOAEs of normal and non-Ménière's ears were suppressed more during negative ear canal pressure than during positive ear canal pressure. By contrast, DPOAE modulation in Ménière's ears with abnormal ECochG was greatest during positive ear canal pressures. This test may provide a tool for diagnosing Ménière's in the early stages, and might be used to investigate the pathological mechanism underlying the hearing symptoms of this syndrome.
Collapse
|
16
|
Jurado C, Moore BCJ. Frequency selectivity for frequencies below 100 Hz: comparisons with mid-frequencies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:3585-3596. [PMID: 21218891 DOI: 10.1121/1.3504657] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Auditory filter shapes were derived for signal frequencies (f(s)) between 50 and 1000 Hz, using the notched-noise method. The masker spectrum level (N(0)) was 50 dB (re 20 μPa). For f(s) = 63 and 50 Hz, measurements were also made with N(0) = 62 dB for the lower band. The data were fitted using a rounded-exponential filter model, with special consideration of the filtering effects of the middle-ear transfer function (METF) at low frequencies. The results showed: (1) For very low values of f(s), the lower skirts of the filters were only well defined when N(0) = 62 dB for the lower band; (2) the sharpness of both sides of the filters decreased with decreasing f(s); (3) the dynamic range of the filters decreased with decreasing f(s); (4) the equivalent rectangular bandwidth of the filters decreased with decreasing f(s) down to f(s) = 80 Hz, but increased for f(s) below that; (5) the assumed METF, which includes the shunt effect of the helicotrema for frequencies below 50 Hz, increasingly influenced the low-frequency skirt of the filters as f(s) decreased; and (6) detection efficiency worsened with decreasing f(s) for f(s) between 100 and 500 Hz, but improved slightly below that.
Collapse
Affiliation(s)
- Carlos Jurado
- Section of Acoustics, Department of Electronic Systems, Aalborg University, Fredrik Bajersvej 7-A, Denmark.
| | | |
Collapse
|
17
|
Salt AN, Hullar TE. Responses of the ear to low frequency sounds, infrasound and wind turbines. Hear Res 2010; 268:12-21. [PMID: 20561575 PMCID: PMC2923251 DOI: 10.1016/j.heares.2010.06.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 01/12/2023]
Abstract
Infrasonic sounds are generated internally in the body (by respiration, heartbeat, coughing, etc) and by external sources, such as air conditioning systems, inside vehicles, some industrial processes and, now becoming increasingly prevalent, wind turbines. It is widely assumed that infrasound presented at an amplitude below what is audible has no influence on the ear. In this review, we consider possible ways that low frequency sounds, at levels that may or may not be heard, could influence the function of the ear. The inner ear has elaborate mechanisms to attenuate low frequency sound components before they are transmitted to the brain. The auditory portion of the ear, the cochlea, has two types of sensory cells, inner hair cells (IHC) and outer hair cells (OHC), of which the IHC are coupled to the afferent fibers that transmit "hearing" to the brain. The sensory stereocilia ("hairs") on the IHC are "fluid coupled" to mechanical stimuli, so their responses depend on stimulus velocity and their sensitivity decreases as sound frequency is lowered. In contrast, the OHC are directly coupled to mechanical stimuli, so their input remains greater than for IHC at low frequencies. At very low frequencies the OHC are stimulated by sounds at levels below those that are heard. Although the hair cells in other sensory structures such as the saccule may be tuned to infrasonic frequencies, auditory stimulus coupling to these structures is inefficient so that they are unlikely to be influenced by airborne infrasound. Structures that are involved in endolymph volume regulation are also known to be influenced by infrasound, but their sensitivity is also thought to be low. There are, however, abnormal states in which the ear becomes hypersensitive to infrasound. In most cases, the inner ear's responses to infrasound can be considered normal, but they could be associated with unfamiliar sensations or subtle changes in physiology. This raises the possibility that exposure to the infrasound component of wind turbine noise could influence the physiology of the ear.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, Box 8115, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| | | |
Collapse
|
18
|
Auditory cortex stimulation by low-frequency tones—An fMRI study. Brain Res 2009; 1304:129-37. [DOI: 10.1016/j.brainres.2009.09.089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/25/2009] [Accepted: 09/22/2009] [Indexed: 11/22/2022]
|
19
|
Brown DJ, Hartsock JJ, Gill RM, Fitzgerald HE, Salt AN. Estimating the operating point of the cochlear transducer using low-frequency biased distortion products. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:2129-2145. [PMID: 19354389 PMCID: PMC2736732 DOI: 10.1121/1.3083228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 05/27/2023]
Abstract
Distortion products in the cochlear microphonic (CM) and in the ear canal in the form of distortion product otoacoustic emissions (DPOAEs) are generated by nonlinear transduction in the cochlea and are related to the resting position of the organ of Corti (OC). A 4.8 Hz acoustic bias tone was used to displace the OC, while the relative amplitude and phase of distortion products evoked by a single tone [most often 500 Hz, 90 dB SPL (sound pressure level)] or two simultaneously presented tones (most often 4 kHz and 4.8 kHz, 80 dB SPL) were monitored. Electrical responses recorded from the round window, scala tympani and scala media of the basal turn, and acoustic emissions in the ear canal were simultaneously measured and compared during the bias. Bias-induced changes in the distortion products were similar to those predicted from computer models of a saturating transducer with a first-order Boltzmann distribution. Our results suggest that biased DPOAEs can be used to non-invasively estimate the OC displacement, producing a measurement equivalent to the transducer operating point obtained via Boltzmann analysis of the basal turn CM. Low-frequency biased DPOAEs might provide a diagnostic tool to objectively diagnose abnormal displacements of the OC, as might occur with endolymphatic hydrops.
Collapse
Affiliation(s)
- Daniel J Brown
- Department of Otolaryngology, School of Medicine, Washington University in St Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
20
|
Bian L. Effects of low-frequency biasing on spontaneous otoacoustic emissions: frequency modulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:3009-3021. [PMID: 19045788 PMCID: PMC2677352 DOI: 10.1121/1.2990716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 08/29/2008] [Accepted: 09/02/2008] [Indexed: 05/27/2023]
Abstract
It was previously reported that low-frequency biasing of cochlear structures can suppress and modulate the amplitudes of spontaneous otoacoustic emissions (SOAEs) in humans [Bian, L. and Watts, K. L. (2008). "Effects of low-frequency biasing on spontaneous otoacoustic emissions: Amplitude modulation," J. Acoust. Soc. Am. 123, 887-898]. In addition to amplitude modulation, the bias tone produced an upward shift of the SOAE frequency and a frequency modulation. These frequency effects usually occurred prior to significant modifications of SOAE amplitudes and were dependent on the relative strength of the bias tone and a particular SOAE. The overall SOAE frequency shifts were usually less than 2%. A quasistatic modulation pattern showed that biasing in either positive or negative pressure direction increased SOAE frequency. The instantaneous SOAE frequency revealed a "W-shaped" modulation pattern within one biasing cycle. The SOAE frequency was maximal at the biasing extremes and minimized at the zero crossings of the bias tone. The temporal modulation of SOAE frequency occurred with a short delay. These static and dynamic effects indicate that modifications of the mechanical properties of the cochlear transducer could underlie the frequency shift and modulation. These biasing effects are consistent with the suppression and modulation of SOAE amplitude due to shifting of the cochlear transducer operating point.
Collapse
Affiliation(s)
- Lin Bian
- Auditory Physiology Laboratory, 3430 Coor Hall, Department of Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287-0102, USA.
| |
Collapse
|