1
|
Wu P, Becker FB, Ogelman R, Camci ED, Linbo TH, Simon JA, Rubel EW, Raible DW. Multiple mechanisms of aminoglycoside ototoxicity are distinguished by subcellular localization of action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596537. [PMID: 39005374 PMCID: PMC11244871 DOI: 10.1101/2024.05.30.596537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Mechanosensory hair cells of the inner ears and lateral line of vertebrates display heightened vulnerability to environmental insult, with damage resulting in hearing and balance disorders. An important example is hair cell loss due to exposure to toxic agents including therapeutic drugs such as the aminoglycoside antibiotics such as neomycin and gentamicin and antineoplastic agents. We describe two distinct cellular pathways for aminoglycoside-induced hair cell death in zebrafish lateral line hair cells. Neomycin exposure results in death from acute exposure with most cells dying within 1 hour of exposure. By contrast, exposure to gentamicin results primarily in delayed hair cell death, taking up to 24 hours for maximal effect. Washout experiments demonstrate that delayed death does not require continuous exposure, demonstrating two mechanisms where downstream responses differ in their timing. Acute damage is associated with mitochondrial calcium fluxes and can be alleviated by the mitochondrially-targeted antioxidant mitoTEMPO, while delayed death is independent of these factors. Conversely delayed death is associated with lysosomal accumulation and is reduced by altering endolysosomal function, while acute death is not sensitive to lysosomal manipulations. These experiments reveal the complexity of responses of hair cells to closely related compounds, suggesting that intervention focusing on early events rather than specific death pathways may be a successful therapeutic strategy.
Collapse
Affiliation(s)
- Patricia Wu
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
- Department of Biological Structure, University of Washington, Seattle, WA 98195, United States
| | - Francisco Barros Becker
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA 98195, United States
| | - Roberto Ogelman
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
- Department of Biological Structure, University of Washington, Seattle, WA 98195, United States
| | - Esra D. Camci
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA 98195, United States
| | - Tor H. Linbo
- Department of Biological Structure, University of Washington, Seattle, WA 98195, United States
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA 98195, United States
| | - Julian A. Simon
- Clinical Research, Human Biology, and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
| | - David W. Raible
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
- Department of Biological Structure, University of Washington, Seattle, WA 98195, United States
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
2
|
Fan Y, Zhang Y, Qin D, Shu X. Chemical screen in zebrafish lateral line identified compounds that ameliorate neomycin-induced ototoxicity by inhibiting ferroptosis pathway. Cell Biosci 2024; 14:71. [PMID: 38840194 DOI: 10.1186/s13578-024-01258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Ototoxicity is a major side effect of many broadly used aminoglycoside antibiotics (AGs) and no FDA-approved otoprotective drug is available currently. The zebrafish has recently become a valuable model to investigate AG-induced hair cell toxicity and an expanding list of otoprotective compounds that block the uptake of AGs have been identified from zebrafish-based screening; however, it remains to be established whether inhibiting intracellular cell death pathway(s) constitutes an effective strategy to protect against AG-induced ototoxicity. RESULTS We used the zebrafish model as well as in vitro cell-based assays to investigate AG-induced cell death and found that ferroptosis is the dominant type of cell death induced by neomycin. Neomycin stimulates lipid reactive oxygen species (ROS) accumulation through mitochondrial pathway and blocking mitochondrial ferroptosis pathway effectively protects neomycin-induced cell death. We screened an alkaloid natural compound library and identified seven small compounds that protect neomycin-induced ototoxicity by targeting ferroptosis pathway: six of them are radical-trapping agents (RTAs) while the other one (ellipticine) regulates intracellular iron homeostasis, which is essential for the generation of lipid ROS to stimulate ferroptosis. CONCLUSIONS Our study demonstrates that blocking intracellular ferroptosis pathway is an alternative strategy to ameliorate neomycin-induced ototoxicity and provides multiple hit compounds for further otoprotective drug development.
Collapse
Affiliation(s)
- Yipu Fan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihan Zhang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, China
| | - Xiaodong Shu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| |
Collapse
|
3
|
Rodríguez-Morales R. Sensing in the dark: Constructive evolution of the lateral line system in blind populations of Astyanax mexicanus. Ecol Evol 2024; 14:e11286. [PMID: 38654714 PMCID: PMC11036076 DOI: 10.1002/ece3.11286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Cave-adapted animals evolve a suite of regressive and constructive traits that allow survival in the dark. Most studies aiming at understanding cave animal evolution have focused on the genetics and environmental underpinnings of regressive traits, with special emphasis on vision loss. Possibly as a result of vision loss, other non-visual sensory systems have expanded and compensated in cave species. For instance, in many cave-dwelling fish species, including the blind cavefish of the Mexican tetra, Astyanax mexicanus, a major non-visual mechanosensory system called the lateral line, compensated for vision loss through morphological expansions. While substantial work has shed light on constructive adaptation of this system, there are still many open questions regarding its developmental origin, synaptic plasticity, and overall adaptive value. This review provides a snapshot of the current state of knowledge of lateral line adaption in A. mexicanus, with an emphasis on anatomy, synaptic plasticity, and behavior. Multiple open avenues for future research in this system, and how these can be leveraged as tools for both evolutionary biology and evolutionary medicine, are discussed.
Collapse
Affiliation(s)
- Roberto Rodríguez-Morales
- Department of Anatomy & Neurobiology, School of Medicine University of Puerto Rico San Juan Puerto Rico
| |
Collapse
|
4
|
Uribe PM, Hudson AM, Lockard G, Jiang M, Harding J, Steyger PS, Coffin AB. Hepatocyte growth factor mimetic confers protection from aminoglycoside-induced hair cell death in vitro. Hear Res 2023; 434:108786. [PMID: 37192594 DOI: 10.1016/j.heares.2023.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Loss of sensory hair cells from exposure to certain licit drugs, such as aminoglycoside antibiotics, can result in permanent hearing damage. Exogenous application of the neurotrophic molecule hepatocyte growth factor (HGF) promotes neuronal cell survival in a variety of contexts, including protecting hair cells from aminoglycoside ototoxicity. HGF itself is not an ideal therapeutic due to a short half-life and limited blood-brain barrier permeability. MM-201 is a chemically stable, blood-brain barrier permeable, synthetic HGF mimetic that serves as a functional ligand to activate the HGF receptor and its downstream signaling cascade. We previously demonstrated that MM-201 robustly protects zebrafish lateral line hair cells from aminoglycoside ototoxicity. Here, we examined the ability of MM-201 to protect mammalian sensory hair cells from aminoglycoside damage to further evaluate MM-201's clinical potential. We found that MM-201 exhibited dose-dependent protection from neomycin and gentamicin ototoxicity in mature mouse utricular explants. MM-201's protection was reduced following inhibition of mTOR, a downstream target of HGF receptor activation, implicating the activation of endogenous intracellular substrates by MM-201 as critical for the observed protection. We then asked if MM-201 altered the bactericidal properties of aminoglycosides. Using either plate or liquid growth assays we found that MM-201 did not alter the bactericidal efficacy of aminoglycoside antibiotics at therapeutically relevant concentrations. We therefore assessed the protective capacity of MM-201 in an in vivo mouse model of kanamycin ototoxicity. In contrast to our in vitro data, MM-201 did not attenuate kanamycin ototoxicity in vivo. Further, we found that MM-201 was ototoxic to mice across the dose range tested here. These data suggest species- and tissue-specific differences in otoprotective capacity. Next generation HGF mimetics are in clinical trials for neurodegenerative diseases and show excellent safety profiles, but neither preclinical studies nor clinical trials have examined hearing loss as a potential consequence of pharmaceutical HGF activation. Further research is needed to determine the consequences of systemic MM-201 application on the auditory system.
Collapse
Affiliation(s)
- Phillip M Uribe
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Alexandria M Hudson
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Gavin Lockard
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Joseph Harding
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Peter S Steyger
- Translational Hearing Center, Creighton University, Omaha, NE, 68178, USA
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA.
| |
Collapse
|
5
|
The role of calcium, Akt and ERK signaling in cadmium-induced hair cell death. Mol Cell Neurosci 2023; 124:103815. [PMID: 36634791 DOI: 10.1016/j.mcn.2023.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Exposure to heavy metals has been shown to cause damage to a variety of different tissues and cell types including hair cells, the sensory cells of our inner ears responsible for hearing and balance. Elevated levels of one such metal, cadmium, have been associated with hearing loss and shown to cause hair cell death in multiple experimental models. While the mechanisms of cadmium-induced cell death have been extensively studied in other cell types they remain relatively unknown in hair cells. We have found that calcium signaling, which is known to play a role in cadmium-induced cell death in other cell types through calmodulin and CaMKII activation as well as IP3 receptor and mitochondrial calcium uniporter mediated calcium flow, does not appear to play a significant role in cadmium-induced hair cell death. While calmodulin inhibition can partially protect hair cells this may be due to impacts on mechanotransduction activity. Removal of extracellular calcium, and inhibiting CaMKII, the IP3 receptor and the mitochondrial calcium uniporter all failed to protect against cadmium-induced hair cell death. We also found cadmium treatment increased pAkt levels in hair cells and pERK levels in supporting cells. This activation may be protective as inhibiting these pathways enhances cadmium-induced hair cell death rather than protecting cells. Thus cadmium-induced hair cell death appears distinct from cadmium-induced cell death in other cell types where calcium, Akt and ERK signaling all promote cell death.
Collapse
|
6
|
Barrallo-Gimeno A, Llorens J. Hair cell toxicology: With the help of a little fish. Front Cell Dev Biol 2022; 10:1085225. [PMID: 36582469 PMCID: PMC9793777 DOI: 10.3389/fcell.2022.1085225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Hearing or balance loss are disabling conditions that have a serious impact in those suffering them, especially when they appear in children. Their ultimate cause is frequently the loss of function of mechanosensory hair cells in the inner ear. Hair cells can be damaged by environmental insults, like noise or chemical agents, known as ototoxins. Two of the most common ototoxins are life-saving medications: cisplatin against solid tumors, and aminoglycoside antibiotics to treat infections. However, due to their localization inside the temporal bone, hair cells are difficult to study in mammals. As an alternative animal model, zebrafish larvae have hair cells similar to those in mammals, some of which are located in a fish specific organ on the surface of the skin, the lateral line. This makes them easy to observe in vivo and readily accessible for ototoxins or otoprotective substances. These features have made possible advances in the study of the mechanisms mediating ototoxicity or identifying new potential ototoxins. Most importantly, the small size of the zebrafish larvae has allowed screening thousands of molecules searching for otoprotective agents in a scale that would be highly impractical in rodent models. The positive hits found can then start the long road to reach clinical settings to prevent hearing or balance loss.
Collapse
Affiliation(s)
- Alejandro Barrallo-Gimeno
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Jordi Llorens
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
7
|
Saettele AL, Wong HTC, Kindt KS, Warchol ME, Sheets L. Prolonged Dexamethasone Exposure Enhances Zebrafish Lateral-Line Regeneration But Disrupts Mitochondrial Homeostasis and Hair Cell Function. J Assoc Res Otolaryngol 2022; 23:683-700. [PMID: 36261670 PMCID: PMC9789251 DOI: 10.1007/s10162-022-00875-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023] Open
Abstract
The synthetic glucocorticoid dexamethasone is commonly used to treat inner ear disorders. Previous work in larval zebrafish has shown that dexamethasone treatment enhances hair cell regeneration, yet dexamethasone has also been shown to inhibit regeneration of peripheral nerves after lesion. We therefore used the zebrafish model to determine the impact of dexamethasone treatment on lateral-line hair cells and primary afferents. To explore dexamethasone in the context of regeneration, we used copper sulfate (CuSO4) to induce hair cell loss and retraction of nerve terminals, and then allowed animals to recover in dexamethasone for 48 h. Consistent with previous work, we observed significantly more regenerated hair cells in dexamethasone-treated larvae. Importantly, we found that the afferent processes beneath neuromasts also regenerated in the presence of dexamethasone and formed an appropriate number of synapses, indicating that innervation of hair cells was not inhibited by dexamethasone. In addition to regeneration, we also explored the effects of prolonged dexamethasone exposure on lateral-line homeostasis and function. Following dexamethasone treatment, we observed hyperpolarized mitochondrial membrane potentials (ΔΨm) in neuromast hair cells and supporting cells. Hair cells exposed to dexamethasone were also more vulnerable to neomycin-induced cell death. In response to a fluid-jet delivered saturating stimulus, calcium influx through hair cell mechanotransduction channels was significantly reduced, yet presynaptic calcium influx was unchanged. Cumulatively, these observations indicate that dexamethasone enhances hair cell regeneration in lateral-line neuromasts, yet also disrupts mitochondrial homeostasis, making hair cells more vulnerable to ototoxic insults and possibly impacting hair cell function.
Collapse
Affiliation(s)
- Allison L Saettele
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hiu-Tung C Wong
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - Katie S Kindt
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Lukasz D, Beirl A, Kindt K. Chronic neurotransmission increases the susceptibility of lateral-line hair cells to ototoxic insults. eLife 2022; 11:77775. [PMID: 36047587 PMCID: PMC9473691 DOI: 10.7554/elife.77775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
Sensory hair cells receive near constant stimulation by omnipresent auditory and vestibular stimuli. To detect and encode these stimuli, hair cells require steady ATP production, which can be accompanied by a buildup of mitochondrial byproducts called reactive oxygen species (ROS). ROS buildup is thought to sensitize hair cells to ototoxic insults, including the antibiotic neomycin. Work in neurons has shown that neurotransmission is a major driver of ATP production and ROS buildup. Therefore, we tested whether neurotransmission is a significant contributor to ROS buildup in hair cells. Using genetics and pharmacology, we disrupted two key aspects of neurotransmission in zebrafish hair cells: presynaptic calcium influx and the fusion of synaptic vesicles. We find that chronic block of neurotransmission enhances hair-cell survival when challenged with the ototoxin neomycin. This reduction in ototoxin susceptibility is accompanied by reduced mitochondrial activity, likely due to a reduced ATP demand. In addition, we show that mitochondrial oxidation and ROS buildup are reduced when neurotransmission is blocked. Mechanistically, we find that it is the synaptic vesicle cycle rather than presynaptic- or mitochondrial-calcium influx that contributes most significantly to this metabolic stress. Our results comprehensively indicate that, over time, neurotransmission causes ROS buildup that increases the susceptibility of hair cells to ototoxins.
Collapse
Affiliation(s)
- Daria Lukasz
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| | - Alisha Beirl
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| |
Collapse
|
9
|
Coffin AB, Dale E, Doppenberg E, Fearington F, Hayward T, Hill J, Molano O. Putative COVID-19 therapies imatinib, lopinavir, ritonavir, and ivermectin cause hair cell damage: A targeted screen in the zebrafish lateral line. Front Cell Neurosci 2022; 16:941031. [PMID: 36090793 PMCID: PMC9448854 DOI: 10.3389/fncel.2022.941031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The biomedical community is rapidly developing COVID-19 drugs to bring much-need therapies to market, with over 900 drugs and drug combinations currently in clinical trials. While this pace of drug development is necessary, the risk of producing therapies with significant side-effects is also increased. One likely side-effect of some COVID-19 drugs is hearing loss, yet hearing is not assessed during preclinical development or clinical trials. We used the zebrafish lateral line, an established model for drug-induced sensory hair cell damage, to assess the ototoxic potential of seven drugs in clinical trials for treatment of COVID-19. We found that ivermectin, lopinavir, imatinib, and ritonavir were significantly toxic to lateral line hair cells. By contrast, the approved COVID-19 therapies dexamethasone and remdesivir did not cause damage. We also did not observe damage from the antibiotic azithromycin. Neither lopinavir nor ritonavir altered the number of pre-synaptic ribbons per surviving hair cell, while there was an increase in ribbons following imatinib or ivermectin exposure. Damage from lopinavir, imatinib, and ivermectin was specific to hair cells, with no overall cytotoxicity noted following TUNEL labeling. Ritonavir may be generally cytotoxic, as determined by an increase in the number of TUNEL-positive non-hair cells following ritonavir exposure. Pharmacological inhibition of the mechanotransduction (MET) channel attenuated damage caused by lopinavir and ritonavir but did not alter imatinib or ivermectin toxicity. These results suggest that lopinavir and ritonavir may enter hair cells through the MET channel, similar to known ototoxins such as aminoglycoside antibiotics. Finally, we asked if ivermectin was ototoxic to rats in vivo. While ivermectin is not recommended by the FDA for treating COVID-19, many people have chosen to take ivermectin without a doctor's guidance, often with serious side-effects. Rats received daily subcutaneous injections for 10 days with a clinically relevant ivermectin dose (0.2 mg/kg). In contrast to our zebrafish assays, ivermectin did not cause ototoxicity in rats. Our research suggests that some drugs in clinical trials for COVID-19 may be ototoxic. This work can help identify drugs with the fewest side-effects and determine which therapies warrant audiometric monitoring.
Collapse
Affiliation(s)
- Allison B. Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Emily Dale
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Emilee Doppenberg
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Forrest Fearington
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Tamasen Hayward
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Jordan Hill
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Olivia Molano
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
10
|
Mekdara PJ, Tirmizi S, Schwalbe MAB, Tytell ED. Comparison of Aminoglycoside Antibiotics and Cobalt Chloride for Ablation of the Lateral Line System in Giant Danios. Integr Org Biol 2022; 4:obac012. [PMID: 35359665 PMCID: PMC8964175 DOI: 10.1093/iob/obac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synopsis
The mechanoreceptive lateral line system in fish is composed of neuromasts containing hair cells, which can be temporarily ablated by aminoglycoside antibiotics and heavy metal ions. These chemicals have been used for some time in studies exploring the functional role of the lateral line system in many fish species. However, little information on the relative effectiveness and rate of action of these chemicals for ablation is available. In particular, aminoglycoside antibiotics are thought to affect canal neuromasts, which sit in bony or trunk canals, differently from superficial neuromasts, which sit directly on the skin. This assumed ablation pattern has not been fully quantified for commonly used lateral line ablation agents. This study provides a detailed characterization of the effects of two aminoglycoside antibiotics, streptomycin sulfate and neomycin sulfate, and a heavy metal salt, cobalt (II) chloride hexahydrate (CoCl2), on the ablation of hair cells in canal and superficial neuromasts in the giant danio (Devario aequipinnatus) lateral line system, as a model for adult teleost fishes. We also quantified the regeneration of hair cells after ablation using CoCl2 and gentamycin sulfate to verify the time course to full recovery, and whether the ablation method affects the recovery time. Using a fluorescence stain, 4-Di-2-ASP, we verified the effectiveness of each chemical by counting the number of fluorescing canal and superficial neuromasts present throughout the time course of ablation and regeneration of hair cells. We found that streptomycin and neomycin were comparably effective at ablating all neuromasts in less than 12 h using a 250 μM dosage and in less than 8 h using a 500 μM dosage. The 500 μM dosage of either streptomycin or neomycin can ablate hair cells in superficial neuromasts within 2–4 h, while leaving those in canal neuromasts mostly intact. CoCl2 (0.1 mM) worked the fastest, ablating all of the hair cells in less than 6 h. Complete regeneration of the neuromasts in the lateral line system took 7 days regardless of chemicals used to ablate the hair cells. This study adds to the growing knowledge in hearing research about how effective specific chemicals are at ablating hair cells in the acoustic system of vertebrates.
Collapse
Affiliation(s)
- P J Mekdara
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35, 2B-1004, Bethesda, MD 20892, USA
| | - S Tirmizi
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - M A B Schwalbe
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
- Department of Biology, Lake Forest College, 555 N Sheridan Road, Lake Forest, IL 60045, USA
| | - E D Tytell
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| |
Collapse
|
11
|
An Overview of Zebrafish Modeling Methods in Drug Discovery and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:145-169. [PMID: 34961915 DOI: 10.1007/5584_2021_684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animal studies are recognized as a significant step forward in the bridging between drug discovery and clinical applications. Animal models, due to their relative genetic, molecular, physiological, and even anatomical similarities to humans, can provide a suitable platform for unraveling the mechanisms underlying human diseases and discovering new therapeutic approaches as well. Recently, zebrafish has attracted attention as a valuable experimental and pharmacological model in drug discovery and development studies due to its prominent characteristics such as the high degree of genetic similarity with humans, genetic manipulability, and prominent clinical features. Since advancing a theory to a valid and reliable observation requires the manipulation of animals, it is, therefore, essential to use efficient modeling methods appropriate to the different aspects of experimental conditions. In this context, applying several various approaches such as using chemicals, pathogens, and genetic manipulation approaches allows zebrafish development into a preferable model that mimics some human disease pathophysiology. Thus, such modeling approaches not only can provide a framework for a comprehensive understanding of the human disease mechanisms that have a counterpart in zebrafish but also can pave the way for discovering new drugs that are accompanied by higher amelioration effects on different human diseases.
Collapse
|
12
|
Crouzier L, Richard EM, Sourbron J, Lagae L, Maurice T, Delprat B. Use of Zebrafish Models to Boost Research in Rare Genetic Diseases. Int J Mol Sci 2021; 22:13356. [PMID: 34948153 PMCID: PMC8706563 DOI: 10.3390/ijms222413356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Rare genetic diseases are a group of pathologies with often unmet clinical needs. Even if rare by a single genetic disease (from 1/2000 to 1/more than 1,000,000), the total number of patients concerned account for approximatively 400 million peoples worldwide. Finding treatments remains challenging due to the complexity of these diseases, the small number of patients and the challenge in conducting clinical trials. Therefore, innovative preclinical research strategies are required. The zebrafish has emerged as a powerful animal model for investigating rare diseases. Zebrafish combines conserved vertebrate characteristics with high rate of breeding, limited housing requirements and low costs. More than 84% of human genes responsible for diseases present an orthologue, suggesting that the majority of genetic diseases could be modelized in zebrafish. In this review, we emphasize the unique advantages of zebrafish models over other in vivo models, particularly underlining the high throughput phenotypic capacity for therapeutic screening. We briefly introduce how the generation of zebrafish transgenic lines by gene-modulating technologies can be used to model rare genetic diseases. Then, we describe how zebrafish could be phenotyped using state-of-the-art technologies. Two prototypic examples of rare diseases illustrate how zebrafish models could play a critical role in deciphering the underlying mechanisms of rare genetic diseases and their use to identify innovative therapeutic solutions.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Elodie M. Richard
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| |
Collapse
|
13
|
Evaluating the Death and Recovery of Lateral Line Hair Cells Following Repeated Neomycin Treatments. Life (Basel) 2021; 11:life11111180. [PMID: 34833056 PMCID: PMC8625531 DOI: 10.3390/life11111180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Acute chemical ablation of lateral line hair cells is an important tool to understand lateral line-mediated behaviors in free-swimming fish larvae and adults. However, lateral line-mediated behaviors have not been described in fish larvae prior to swim bladder inflation, possibly because single doses of ototoxin do not effectively silence lateral line function at early developmental stages. To determine whether ototoxins can disrupt lateral line hair cells during early development, we repeatedly exposed zebrafish larvae to the ototoxin neomycin during a 36 h period from 3 to 4 days post-fertilization (dpf). We use simultaneous transgenic and vital dye labeling of hair cells to compare 6-h and 12-h repeated treatment timelines and neomycin concentrations between 0 and 400 µM in terms of larval survival, hair cell death, regeneration, and functional recovery. Following exposure to neomycin, we find that the emergence of newly functional hair cells outpaces cellular regeneration, likely due to the maturation of ototoxin-resistant hair cells that survive treatment. Furthermore, hair cells of 4 dpf larvae exhibit faster recovery compared to 3 dpf larvae. Our data suggest that the rapid functional maturation of ototoxin-resistant hair cells limits the effectiveness of chemical-based methods to disrupt lateral line function. Furthermore, we show that repeated neomycin treatments can continually ablate functional lateral line hair cells between 3 and 4 dpf in larval zebrafish.
Collapse
|
14
|
Yuan X, Qin Y, Wang J, Fan C. Anisomycin induces hair cell death and blocks supporting cell proliferation in zebrafish lateral line neuromast. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109053. [PMID: 33887477 DOI: 10.1016/j.cbpc.2021.109053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Ototoxicity of drugs is an important inducement for hearing loss. Anisomycin is a candidate drug for parasite, cancer, immunosuppression, and mental disease. However, the ototoxicity of anisomycin has not been examined. In this study, the ototoxicity of anisomycin was evaluated using zebrafish lateral line. We found the zebrafish treated with anisomycin during lateral line development could inhibit hair cell formation in a time- and dose-dependent manner. After neuromasts are mature with differentiated hair cells by 5 day post-fertilization, anisomycin could induce hair cell loss effectively through chronic exposure rather than acute exposure. TUNEL assay and qPCR of apoptosis related genes tp53, casp8, casp3a, and casp3b indicated that cell apoptotic was induced by chronic anisomycin exposure. Furthermore, knocking down tp53 with antisense morpholino could attenuate the hair cell loss induced by anisomycin. In addition, we found that anisomycin chronic exposure also inhibited the proliferation of supporting cell. Together, these results indicate that chronic anisomycin exposure could induce hair cell death and block supporting cell proliferation, which causes hair cell loss in zebrafish neuromast. This study provides primary ototoxicity evaluation for anisomycin.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Yanjun Qin
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| | - Chunxin Fan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
15
|
Holmgren M, Sheets L. Influence of Mpv17 on Hair-Cell Mitochondrial Homeostasis, Synapse Integrity, and Vulnerability to Damage in the Zebrafish Lateral Line. Front Cell Neurosci 2021; 15:693375. [PMID: 34413725 PMCID: PMC8369198 DOI: 10.3389/fncel.2021.693375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Noise exposure is particularly stressful to hair-cell mitochondria, which must produce enough energy to meet high metabolic demands as well as regulate local intracellular Ca2+ concentrations. Mitochondrial Inner Membrane Protein 17 (Mpv17) functions as a non-selective cation channel and plays a role in maintaining mitochondrial homeostasis. In zebrafish, hair cells in mpv17a9/a9 mutants displayed elevated levels of reactive oxygen species (ROS), elevated mitochondrial calcium, hyperpolarized transmembrane potential, and greater vulnerability to neomycin, indicating impaired mitochondrial function. Using a strong water current to overstimulate hair cells in the zebrafish lateral line, we observed mpv17a9/a9 mutant hair cells were more vulnerable to morphological disruption than wild type (WT) siblings simultaneously exposed to the same stimulus. To determine the role of mitochondrial homeostasis on hair-cell synapse integrity, we surveyed synapse number in mpv17a9/a9 mutants and WT siblings as well as the sizes of presynaptic dense bodies (ribbons) and postsynaptic densities immediately following stimulus exposure. We observed mechanically injured mpv17a9/a9 neuromasts were not more vulnerable to synapse loss; they lost a similar number of synapses per hair cell relative to WT. Additionally, we quantified the size of hair cell pre- and postsynaptic structures following stimulation and observed significantly enlarged WT postsynaptic densities, yet relatively little change in the size of mpv17a9/a9 postsynaptic densities following stimulation. These results suggest chronically impaired hair-cell mitochondrial activity influences postsynaptic size under homeostatic conditions but does not exacerbate synapse loss following mechanical injury.
Collapse
Affiliation(s)
- Melanie Holmgren
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Jijie R, Mihalache G, Balmus IM, Strungaru SA, Baltag ES, Ciobica A, Nicoara M, Faggio C. Zebrafish as a Screening Model to Study the Single and Joint Effects of Antibiotics. Pharmaceuticals (Basel) 2021; 14:ph14060578. [PMID: 34204339 PMCID: PMC8234794 DOI: 10.3390/ph14060578] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
The overuse of antibiotics combined with the limitation of wastewater facilities has resulted in drug residue accumulation in the natural environment. Thus, in recent years, the presence of antibiotic residues in the environment has raised concerns over the potential harmful effects on ecosystems and human health. The in vivo studies represent an essential step to study the potential impact induced by pharmaceutical exposure. Due to the limitations of traditional vertebrate model systems, zebrafish (Danio rerio) has recently emerged as a promising animal model to study the toxic effects of drugs and their therapeutic efficacy. The present review summarizes the recent advances made on the toxicity of seven representative classes of antibiotics, namely aminoglycosides, β-lactams, macrolides, quinolones, sulfonamides, tetracyclines and polyether antibiotics, in zebrafish, as well as the combined effects of antibiotic mixtures, to date. Despite a significant amount of the literature describing the impact of single antibiotic exposure, little information exists on the effects of antibiotic mixtures using zebrafish as an animal model. Most of the research papers on this topic have focused on antibiotic toxicity in zebrafish across different developmental stages rather than on their efficacy assessment.
Collapse
Affiliation(s)
- Roxana Jijie
- Marine Biological Station “Prof. dr. I. Borcea”, “Alexandru Ioan Cuza” University of Iasi, Nicolae Titulescu Street, No. 163, 9007018 Agigea, Romania;
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania; (I.-M.B.); (S.-A.S.)
- Correspondence: (R.J.); (C.F.)
| | - Gabriela Mihalache
- Integrated Center of Environmental Science Studies in the North Eastern Region (CERNESIM), “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania;
- Department of Horticultural Technologies, “Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, 700440 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania; (I.-M.B.); (S.-A.S.)
| | - Stefan-Adrian Strungaru
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania; (I.-M.B.); (S.-A.S.)
| | - Emanuel Stefan Baltag
- Marine Biological Station “Prof. dr. I. Borcea”, “Alexandru Ioan Cuza” University of Iasi, Nicolae Titulescu Street, No. 163, 9007018 Agigea, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, B-dul Carol I, 700505 Iasi, Romania; (A.C.); (M.N.)
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, B-dul Carol I, 700505 Iasi, Romania; (A.C.); (M.N.)
- Doctoral School of Geosciences, Faculty of Geography-Geology, “Alexandru Ioan Cuza” University of Iasi, B-dul Carol I, 700505 Iasi, Romania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres, 31 98166 S. Agata-Messina, Italy
- Correspondence: (R.J.); (C.F.)
| |
Collapse
|
17
|
Kenyon EJ, Kirkwood NK, Kitcher SR, Goodyear RJ, Derudas M, Cantillon DM, Baxendale S, de la Vega de León A, Mahieu VN, Osgood RT, Wilson CD, Bull JC, Waddell SJ, Whitfield TT, Ward SE, Kros CJ, Richardson GP. Identification of a series of hair-cell MET channel blockers that protect against aminoglycoside-induced ototoxicity. JCI Insight 2021; 6:145704. [PMID: 33735112 PMCID: PMC8133782 DOI: 10.1172/jci.insight.145704] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
To identify small molecules that shield mammalian sensory hair cells from the ototoxic side effects of aminoglycoside antibiotics, 10,240 compounds were initially screened in zebrafish larvae, selecting for those that protected lateral-line hair cells against neomycin and gentamicin. When the 64 hits from this screen were retested in mouse cochlear cultures, 8 protected outer hair cells (OHCs) from gentamicin in vitro without causing hair-bundle damage. These 8 hits shared structural features and blocked, to varying degrees, the OHC's mechano-electrical transducer (MET) channel, a route of aminoglycoside entry into hair cells. Further characterization of one of the strongest MET channel blockers, UoS-7692, revealed it additionally protected against kanamycin and tobramycin and did not abrogate the bactericidal activity of gentamicin. UoS-7692 behaved, like the aminoglycosides, as a permeant blocker of the MET channel; significantly reduced gentamicin-Texas red loading into OHCs; and preserved lateral-line function in neomycin-treated zebrafish. Transtympanic injection of UoS-7692 protected mouse OHCs from furosemide/kanamycin exposure in vivo and partially preserved hearing. The results confirmed the hair-cell MET channel as a viable target for the identification of compounds that protect the cochlea from aminoglycosides and provide a series of hit compounds that will inform the design of future otoprotectants.
Collapse
Affiliation(s)
| | | | | | | | - Marco Derudas
- Sussex Drug Discovery Centre, School of Life Sciences, and
| | - Daire M. Cantillon
- Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | | | | | | | | | | | - James C. Bull
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Simon J. Waddell
- Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | | | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
18
|
Zallocchi M, Hati S, Xu Z, Hausman W, Liu H, He DZ, Zuo J. Characterization of quinoxaline derivatives for protection against iatrogenically induced hearing loss. JCI Insight 2021; 6:141561. [PMID: 33476306 PMCID: PMC8021103 DOI: 10.1172/jci.insight.141561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/20/2021] [Indexed: 01/20/2023] Open
Abstract
Hair cell loss is the leading cause of hearing and balance disorders in humans. It can be caused by many factors, including noise, aging, and therapeutic agents. Previous studies have shown the therapeutic potential of quinoxaline against drug-induced ototoxicity. Here, we screened a library of 68 quinoxaline derivatives for protection against aminoglycoside-induced damage of hair cells from the zebrafish lateral line. We identified quinoxaline-5-carboxylic acid (Qx28) as the best quinoxaline derivative that provides robust protection against both aminoglycosides and cisplatin in zebrafish and mouse cochlear explants. FM1-43 and aminoglycoside uptake, as well as antibiotic efficacy studies, revealed that Qx28 is neither blocking the mechanotransduction channels nor interfering with aminoglycoside antibacterial activity, suggesting that it may be protecting the hair cells by directly counteracting the ototoxin’s mechanism of action. Only when animals were incubated with higher doses of Qx28 did we observe a partial blockage of the mechanotransduction channels. Finally, we assessed the regulation of the NF-κB pathway in vitro in mouse embryonic fibroblasts and in vivo in zebrafish larvae. Those studies showed that Qx28 protects hair cells by blocking NF-κB canonical pathway activation. Thus, Qx28 is a promising and versatile otoprotectant that can act across different species and toxins.
Collapse
|
19
|
Holmgren M, Sheets L. Using the Zebrafish Lateral Line to Understand the Roles of Mitochondria in Sensorineural Hearing Loss. Front Cell Dev Biol 2021; 8:628712. [PMID: 33614633 PMCID: PMC7892962 DOI: 10.3389/fcell.2020.628712] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
Hair cells are the mechanosensory receptors of the inner ear and can be damaged by noise, aging, and ototoxic drugs. This damage often results in permanent sensorineural hearing loss. Hair cells have high energy demands and rely on mitochondria to produce ATP as well as contribute to intracellular calcium homeostasis. In addition to generating ATP, mitochondria produce reactive oxygen species, which can lead to oxidative stress, and regulate cell death pathways. Zebrafish lateral-line hair cells are structurally and functionally analogous to cochlear hair cells but are optically and pharmacologically accessible within an intact specimen, making the zebrafish a good model in which to study hair-cell mitochondrial activity. Moreover, the ease of genetic manipulation of zebrafish embryos allows for the study of mutations implicated in human deafness, as well as the generation of transgenic models to visualize mitochondrial calcium transients and mitochondrial activity in live organisms. Studies of the zebrafish lateral line have shown that variations in mitochondrial activity can predict hair-cell susceptibility to damage by aminoglycosides or noise exposure. In addition, antioxidants have been shown to protect against noise trauma and ototoxic drug–induced hair-cell death. In this review, we discuss the tools and findings of recent investigations into zebrafish hair-cell mitochondria and their involvement in cellular processes, both under homeostatic conditions and in response to noise or ototoxic drugs. The zebrafish lateral line is a valuable model in which to study the roles of mitochondria in hair-cell pathologies and to develop therapeutic strategies to prevent sensorineural hearing loss in humans.
Collapse
Affiliation(s)
- Melanie Holmgren
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
20
|
Zhu S, Chen Z, Wang H, McDermott BM. Tmc Reliance Is Biased by the Hair Cell Subtype and Position Within the Ear. Front Cell Dev Biol 2021; 8:570486. [PMID: 33490059 PMCID: PMC7817542 DOI: 10.3389/fcell.2020.570486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
Hair cells are heterogenous, enabling varied roles in sensory systems. An emerging hypothesis is that the transmembrane channel-like (Tmc) proteins of the hair cell’s mechanotransduction apparatus vary within and between organs to permit encoding of different mechanical stimuli. Five anatomical variables that may coincide with different Tmc use by a hair cell within the ear are the containing organ, cell morphology, cell position within an organ, axis of best sensitivity for the cell, and the hair bundle’s orientation within this axis. Here, we test this hypothesis in the organs of the zebrafish ear using a suite of genetic mutations. Transgenesis and quantitative measurements demonstrate two morphologically distinct hair cell types in the central thickness of a vestibular organ, the lateral crista: short and tall. In contrast to what has been observed, we find that tall hair cells that lack Tmc1 generally have substantial reductions in mechanosensitivity. In short hair cells that lack Tmc2 isoforms, mechanotransduction is largely abated. However, hair cell Tmc dependencies are not absolute, and an exceptional class of short hair cell that depends on Tmc1 is present, termed a short hair cell erratic. To further test anatomical variables that may influence Tmc use, we map Tmc1 function in the saccule of mutant larvae that depend just on this Tmc protein to hear. We demonstrate that hair cells that use Tmc1 are found in the posterior region of the saccule, within a single axis of best sensitivity, and hair bundles with opposite orientations retain function. Overall, we determine that Tmc reliance in the ear is dependent on the organ, subtype of hair cell, position within the ear, and axis of best sensitivity.
Collapse
Affiliation(s)
- Shaoyuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Zongwei Chen
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Haoming Wang
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
21
|
Body-generated hydrodynamic flows influence male–male contests and female mate choice in a freshwater fish. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Hudson AM, Lockard GM, Namjoshi OA, Wilson JW, Kindt KS, Blough BE, Coffin AB. Berbamine Analogs Exhibit Differential Protective Effects From Aminoglycoside-Induced Hair Cell Death. Front Cell Neurosci 2020; 14:234. [PMID: 32848624 PMCID: PMC7403526 DOI: 10.3389/fncel.2020.00234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Hearing loss is the third most common chronic health condition in the United States and largely results from damage to sensory hair cells. Major causes of hair cell damage include aging, noise exposure, and medications such as aminoglycoside antibiotics. Due to their potent antibacterial properties and low cost, aminoglycosides are often used for the treatment of gram-negative bacterial infections, surpassing expensive antibiotics with fewer harmful side effects. However, their use is coupled with permanent hearing loss in over 20% of patients requiring these life-sustaining antibiotics. There are currently no FDA-approved drugs that prevent hearing loss from aminoglycosides. A previous study by our group identified the plant alkaloid berbamine as a strong protectant of zebrafish lateral line hair cells from aminoglycoside damage. This effect is likely due to a block of the mechanotransduction channel, thereby reducing aminoglycoside entry into hair cells. The present study builds on this previous work, investigating 16 synthetic berbamine analogs to determine the core structure underlying their protective mechanisms. We demonstrate that nearly all of these berbamine analogs robustly protect lateral line hair cells from ototoxic damage, with ED50 values nearing 20 nM for the most potent analogs. Of the 16 analogs tested, nine strongly protected hair cells from both neomycin and gentamicin damage, while one conferred strong protection only from gentamicin. These data are consistent with prior research demonstrating that different aminoglycosides activate somewhat distinct mechanisms of damage. Regardless of the mechanism, protection required the entire berbamine scaffold. Phenolic alkylation or acylation with lipophilic groups appeared to improve protection compared to berbamine, implying that these structures may be responsible for mitigating damage. While the majority of analogs confer protection by blocking aminoglycoside uptake, 18% of our analogs also confer protection via an uptake-independent mechanism; these analogs exhibited protection when delivered after aminoglycoside removal. Based on our studies, berbamine analogs represent a promising tool to further understand the pathology of aminoglycoside-induced hearing loss and can serve as lead compounds to develop otoprotective drugs.
Collapse
Affiliation(s)
- Alexandria M Hudson
- Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| | - Gavin M Lockard
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Ojas A Namjoshi
- RTI International, Research Triangle Park, NC, United States
| | - Joseph W Wilson
- RTI International, Research Triangle Park, NC, United States
| | - Katie S Kindt
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Bruce E Blough
- RTI International, Research Triangle Park, NC, United States
| | - Allison B Coffin
- Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States.,College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
23
|
Han E, Ho Oh K, Park S, Chan Rah Y, Park HC, Koun S, Choi J. Analysis of behavioral changes in zebrafish (Danio rerio) larvae caused by aminoglycoside-induced damage to the lateral line and muscles. Neurotoxicology 2020; 78:134-142. [PMID: 32169463 DOI: 10.1016/j.neuro.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Zebrafish behavior is influenced by the lateral line hair cells and muscles. Drug-induced behavioral changes can serve as indicators in the evaluation of drug toxicity. The aminoglycoside family of antibiotics comprise a number of agents, including neomycin (NM) and gentamicin (GM). We hypothesized that NM and GM exert different effects on zebrafish larvae through their action on the lateral line and muscle fibers, inducing different swimming behavioral patterns such as locomotor behavior and the startle response. In this study, 125 μM NM and 5, 10, 20 μM GM induced hair cell damage in the anterior and posterior lateral lines of zebrafish larvae. However, unlike GM, 125 μM NM also caused muscle damage. Locomotor behavior was decreased in the 125 μM NM-exposed group compared to the group exposed to GM. Furthermore, 125 μM NM exposure induced significantly different patterns of various indices of startle behavior compared with the GM exposure groups. Additionally, the larvae exhibited different startle responses depending on the concentration of GM. These results suggest that GM may be the drug-of-choice for analyzing behavioral changes in zebrafish caused by damage to the lateral line alone. Our study highlights the importance of confirming muscle damage in behavioral analyses using zebrafish.
Collapse
Affiliation(s)
- Eunjung Han
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung Ho Oh
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hae-Chul Park
- Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea
| | - Soonil Koun
- Biomedical Research Center, Korea University Ansan Hospital, Ansan, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea.
| | - June Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea.
| |
Collapse
|
24
|
Domarecka E, Skarzynska M, Szczepek AJ, Hatzopoulos S. Use of zebrafish larvae lateral line to study protection against cisplatin-induced ototoxicity: A scoping review. Int J Immunopathol Pharmacol 2020; 34:2058738420959554. [PMID: 33084473 PMCID: PMC7786420 DOI: 10.1177/2058738420959554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
AIM The present review aimed to consolidate and analyze the recent information about the use of zebrafish in studies concerning cisplatin-induced ototoxicity and otoprotection. MATERIAL AND METHODS The PubMed, Web of Science, and Scopus databanks were searched using the following MESH terms: zebrafish, cisplatin, ototoxicity. The identified publications were screened according to inclusion and exclusion criteria and the 26 qualifying manuscripts were included in the full-text analysis. The experimental protocols, including cisplatin concentrations, the exposure duration and the outcome measurements used in zebrafish larvae studies, were evaluated and the reported knowledge was summarized. RESULTS Twenty-six substances protecting from cisplatin-induced toxicity were identified with the use of zebrafish larvae. These substances include quinine, salvianolic acid B, berbamine 6, benzamil, quercetin, dexmedetomidine, dexamethsanone, quinoxaline, edaravone, apocynin, dimethyl sulfoxide, KR-22335, SRT1720, ORC-13661, 3-MA, D-methionine, mdivi-1, FUT-175, rapamycin, Z-LLF-CHO, ATX, NAC, CYM-5478, CHCP1, CHCP2 and leupeptin. The otoprotective effects of compounds were attributed to their anti-ROS, anti-apoptotic and cisplatin uptake-blocking properties. The broadest range of protection was achieved when the experimental flow used preconditioning with an otoprotective compound and later a co-incubation with cisplatin. Protection against a high concentration of cisplatin was observed only in protocols using short exposure times (4 and 6 h). CONCLUSIONS The data extracted from the selected papers confirm that despite the differences between the human and the zebra fish hearing thresholds (as affected by cisplatin), the sensory cells of zebrafish and larval zebrafish are a valuable tool which could be used: (i) for the discovery of novel otoprotective substances and compounds; (ii) to screen their side effects and (iii) to extend the knowledge on the mechanisms of cisplatin-induced inner ear damage. For future studies, the development of a consensus experimental protocol is highly recommended.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magda Skarzynska
- Institute of Sensory Organs, Kajetany, Poland
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
25
|
The use of evoked potentials to determine sensory sub-modality contributions to acoustic and hydrodynamic sensing. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:855-865. [PMID: 31686133 DOI: 10.1007/s00359-019-01371-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Both the lateral line and the inner ear contribute to near-field dipole source detection in fish. The precise roles these two sensory modalities provide in extracting information about the flow field remain of interest. In this study, evoked potentials (EP, 30-200 Hz) for blind Mexican cavefish were measured in response to a dipole source. Greatest sensitivity was observed at the lower and upper ends of the tested frequency range. To evaluate the relative contributions of the lateral line and inner ear, we measured the effects of neomycin on EP response characteristics at 40 Hz, and used the vital dye DASPEI to verify neuromast ablation. Neomycin increased the latency of the EP response up until 60 min post-treatment. DASPEI results confirmed that neuromast hair cell death was significant in treated fish over this timeframe. These results indicate that the inner ear, whether it is sound pressure or particle motion detection, makes a significant contribution to the dipole-induced EP in blind cavefish at near-field low frequencies where the lateral line contribution would be expected to be strongest. The results from this study imply that under some circumstances, lateral line function could be complemented by the inner ear.
Collapse
|
26
|
Kitcher SR, Kirkwood NK, Camci ED, Wu P, Gibson RM, Redila VA, Simon JA, Rubel EW, Raible DW, Richardson GP, Kros CJ. ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity. JCI Insight 2019; 4:126764. [PMID: 31391343 PMCID: PMC6693895 DOI: 10.1172/jci.insight.126764] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Aminoglycoside (AG) antibiotics are widely used to prevent life-threatening infections, and cisplatin is used in the treatment of various cancers, but both are ototoxic and result in loss of sensory hair cells from the inner ear. ORC-13661 is a new drug that was derived from PROTO-1, a compound first identified as protective in a large-scale screen utilizing hair cells in the lateral line organs of zebrafish larvae. Here, we demonstrate, in zebrafish larvae and in mouse cochlear cultures, that ORC-13661 provides robust protection of hair cells against both ototoxins, the AGs and cisplatin. ORC-13661 also prevents both hearing loss in a dose-dependent manner in rats treated with amikacin and the loading of neomycin-Texas Red into lateral line hair cells. In addition, patch-clamp recordings in mouse cochlear cultures reveal that ORC-13661 is a high-affinity permeant blocker of the mechanoelectrical transducer (MET) channel in outer hair cells, suggesting that it may reduce the toxicity of AGs by directly competing for entry at the level of the MET channel and of cisplatin by a MET-dependent mechanism. ORC-13661 is therefore a promising and versatile protectant that reversibly blocks the hair cell MET channel and operates across multiple species and toxins. Candidate drug ORC-13661 robustly protects against ototoxicity by aminoglycoside antibiotics and cisplatin by reversibly blocking mechanotransduction of sensory hair cells.
Collapse
Affiliation(s)
- Siân R Kitcher
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Nerissa K Kirkwood
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Esra D Camci
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, USA
| | - Patricia Wu
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, USA.,Department of Biological Structure, University of Washington, Seattle, Washington, USA
| | - Robin M Gibson
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, USA
| | - Van A Redila
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, USA
| | - Julian A Simon
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, USA
| | - David W Raible
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, USA.,Department of Biological Structure, University of Washington, Seattle, Washington, USA
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
27
|
Genomic non-redundancy of the mir-183/96/182 cluster and its requirement for hair cell maintenance. Sci Rep 2019; 9:10302. [PMID: 31311951 PMCID: PMC6635406 DOI: 10.1038/s41598-019-46593-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/02/2019] [Indexed: 01/02/2023] Open
Abstract
microRNAs are important regulators of gene expression. In the retina, the mir-183/96/182 cluster is of particular interest due to its robust expression and studies in which loss of the cluster caused photoreceptor degeneration. However, it is unclear which of the three miRNAs in the cluster are ultimately required in photoreceptors, whether each may have independent, contributory roles, or whether a single miRNA from the cluster compensates for the loss of another. These are important questions that will not only help us to understand the role of these particular miRNAs in the retina, but will deepen our understanding of how clustered microRNAs evolve and operate. To that end, we have developed a complete panel of single, double, and triple mir-183/96/182 mutant zebrafish. While the retinas of all mutant animals were normal, the triple mutants exhibited acute hair cell degeneration which corresponded with impaired swimming and death at a young age. By measuring the penetrance of this phenotype in each mutant line, we determine which of the three miRNAs in the cluster are necessary and/or sufficient to ensure normal hair cell development and function.
Collapse
|
28
|
O'Reilly M, Kirkwood NK, Kenyon EJ, Huckvale R, Cantillon DM, Waddell SJ, Ward SE, Richardson GP, Kros CJ, Derudas M. Design, Synthesis, and Biological Evaluation of a New Series of Carvedilol Derivatives That Protect Sensory Hair Cells from Aminoglycoside-Induced Damage by Blocking the Mechanoelectrical Transducer Channel. J Med Chem 2019; 62:5312-5329. [PMID: 31083995 DOI: 10.1021/acs.jmedchem.8b01325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aminoglycosides (AGs) are broad-spectrum antibiotics used for the treatment of serious bacterial infections but have use-limiting side effects including irreversible hearing loss. Here, we assessed the otoprotective profile of carvedilol in mouse cochlear cultures and in vivo zebrafish assays and investigated its mechanism of protection which, we found, may be mediated by a block of the hair cell's mechanoelectrical transducer (MET) channel, the major entry route for the AGs. To understand the full otoprotective potential of carvedilol, a series of 18 analogues were prepared and evaluated for their effect against AG-induced damage as well as their affinity for the MET channel. One derivative was found to confer greater protection than carvedilol itself in cochlear cultures and also to bind more tightly to the MET channel. At higher concentrations, both carvedilol and this derivative were toxic in cochlear cultures but not in zebrafish, suggesting a good therapeutic window under in vivo conditions.
Collapse
Affiliation(s)
| | | | | | | | - Daire M Cantillon
- Wellcome Trust Centre for Global Health Research, Brighton and Sussex Medical School , University of Sussex , Falmer , Brighton BN1 9PX , U.K
| | - Simon J Waddell
- Wellcome Trust Centre for Global Health Research, Brighton and Sussex Medical School , University of Sussex , Falmer , Brighton BN1 9PX , U.K
| | - Simon E Ward
- Medicines Discovery Institute , Cardiff University , Park Place , Cardiff CF10 3AT , U.K
| | | | | | | |
Collapse
|
29
|
Glucococorticoid receptor activation exacerbates aminoglycoside-induced damage to the zebrafish lateral line. Hear Res 2019; 377:12-23. [PMID: 30878773 DOI: 10.1016/j.heares.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/18/2018] [Accepted: 03/04/2019] [Indexed: 01/14/2023]
Abstract
Aminoglycoside antibiotics have potent antibacterial properties but cause hearing loss in up to 25% of patients. These drugs are commonly administered in patients with high glucocorticoid stress hormone levels and can be combined with exogenous glucocorticoid treatment. However, the interaction of stress and aminoglycoside-induced hearing loss has not been fully explored. In this study, we investigated the effect of the glucocorticoid stress hormone cortisol on hair cells in the zebrafish lateral line as an important step toward understanding how physiological stressors modulate hair cell survival. We found that 24-hr cortisol incubation sensitized hair cells to neomycin damage. Pharmacological and genetic manipulation demonstrates that sensitization depended on the action of the glucocorticoid receptor but not the mineralocorticoid receptor. Blocking endogenous cortisol production reduced hair cell susceptibility to neomycin, further evidence that glucocorticoids modulate aminoglycoside ototoxicity. Glucocorticoid transcriptional activity was apparent in lateral line hair cells, suggesting a direct action of cortisol in these aminoglycoside-sensitive cells. Our work shows that the stress hormone cortisol can increase hair cell sensitivity to aminoglycoside damage, which highlights the importance of recognizing stress and the impacts of glucocorticoid signaling in both ototoxicity research and clinical practice.
Collapse
|
30
|
Stawicki TM, Linbo T, Hernandez L, Parkinson L, Bellefeuille D, Rubel EW, Raible DW. The role of retrograde intraflagellar transport genes in aminoglycoside-induced hair cell death. Biol Open 2019; 8:bio.038745. [PMID: 30578252 PMCID: PMC6361216 DOI: 10.1242/bio.038745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sensory hair cells are susceptible to numerous insults, including certain therapeutic medications like aminoglycoside antibiotics, and hearing and balance disorders are often a dose-limiting side effect of these medications. We show that mutations in multiple genes in both the retrograde intraflagellar transport (IFT) motor and adaptor complexes lead to resistance to aminoglycoside-induced hair cell death. These mutations also lead to defects in the entry of both aminoglycosides and the vital dye FM1-43 into hair cells, both processes that depend on hair cell mechanotransduction activity. However, the trafficking of proteins important for mechanotransduction activity is not altered by these mutations. Our data suggest that both retrograde IFT motor and adaptor complex genes are playing a role in aminoglycoside toxicity through affecting aminoglycoside uptake into hair cells. Summary: Here we show that both retrograde intraflagellar transport motor proteins and IFT-A adaptor molecules play a role in aminoglycoside-induced hair cell death, seemingly through regulating aminoglycoside uptake.
Collapse
Affiliation(s)
- Tamara M Stawicki
- Program in Neuroscience, Lafayette College, Easton, PA 18042, USA .,Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Liana Hernandez
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Lauren Parkinson
- Program in Neuroscience, Lafayette College, Easton, PA 18042, USA
| | | | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
31
|
Pickett SB, Raible DW. Water Waves to Sound Waves: Using Zebrafish to Explore Hair Cell Biology. J Assoc Res Otolaryngol 2019; 20:1-19. [PMID: 30635804 DOI: 10.1007/s10162-018-00711-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023] Open
Abstract
Although perhaps best known for their use in developmental studies, over the last couple of decades, zebrafish have become increasingly popular model organisms for investigating auditory system function and disease. Like mammals, zebrafish possess inner ear mechanosensory hair cells required for hearing, as well as superficial hair cells of the lateral line sensory system, which mediate detection of directional water flow. Complementing mammalian studies, zebrafish have been used to gain significant insights into many facets of hair cell biology, including mechanotransduction and synaptic physiology as well as mechanisms of both hereditary and acquired hair cell dysfunction. Here, we provide an overview of this literature, highlighting some of the particular advantages of using zebrafish to investigate hearing and hearing loss.
Collapse
Affiliation(s)
- Sarah B Pickett
- Department of Biological Structure, University of Washington, Health Sciences Building H-501, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195-7420, USA
- Graduate Program in Neuroscience, University of Washington, 1959 NE Pacific Street, Box 357270, Seattle, WA, 98195-7270, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Health Sciences Building H-501, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195-7420, USA.
- Graduate Program in Neuroscience, University of Washington, 1959 NE Pacific Street, Box 357270, Seattle, WA, 98195-7270, USA.
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, 1701 NE Columbia Rd, Box 357923, Seattle, WA, 98195-7923, USA.
| |
Collapse
|
32
|
Mitochondria-targeting nanomedicine: An effective and potent strategy against aminoglycosides-induced ototoxicity. Eur J Pharm Sci 2019; 126:59-68. [DOI: 10.1016/j.ejps.2018.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/06/2018] [Accepted: 04/19/2018] [Indexed: 12/26/2022]
|
33
|
Li J, Ling Y, Huang W, Sun L, Li Y, Wang C, Zhang Y, Wang X, Dahlgren RA, Wang H. Regulatory mechanisms of miR-96 and miR-184 abnormal expressions on otic vesicle development of zebrafish following exposure to β-diketone antibiotics. CHEMOSPHERE 2019; 214:228-238. [PMID: 30265930 DOI: 10.1016/j.chemosphere.2018.09.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Chronic ototoxicity of β-diketone antibiotics (DKAs) to zebrafish (Danio rerio) was explored in detail by following abnormal expressions of two hearing-related miRNAs. Dose-dependent down-regulation of miR-96 and miR-184 was observed in otoliths during embryonic-larval development. Continuous DKA exposure to 120-hpf larva decreased sensitivity to acoustic stimulation. Development of otolith was delayed in treatment groups, showing unclear boundaries and vacuolization at 72-hpf, and utricular enlargement as well as decreased saccular volume in 96-hpf or latter larval otoliths. If one miRNA was knocked-down and another over-expressed, only a slight influence on morphological development of the otic vesicle occurred, but knocked-down or over-expressed miRNA both significantly affected zebrafish normal development. Injection of miR-96, miR-184 or both micRNA mimics to yolk sac resulted in marked improvement of otic vesicle phenotype. However, hair cell staining showed that only the injected miR-96 mimic restored hair cell numbers after DKA exposure, demonstrating that miR-96 played an important role in otic vesicle development and formation of hearing, while miR-184 was only involved in otic vesicle construction during embryonic development. These observations advance our understanding of hearing loss owing to acute antibiotic exposure and provide theoretical guidance for early intervention and gene therapy for drug-induced diseases.
Collapse
Affiliation(s)
- Jieyi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yuhang Ling
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Limei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yanyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yuhuan Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California-Davis, CA, 95616, USA
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
34
|
Ryals M, Morell RJ, Martin D, Boger ET, Wu P, Raible DW, Cunningham LL. The Inner Ear Heat Shock Transcriptional Signature Identifies Compounds That Protect Against Aminoglycoside Ototoxicity. Front Cell Neurosci 2018; 12:445. [PMID: 30532693 PMCID: PMC6265442 DOI: 10.3389/fncel.2018.00445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022] Open
Abstract
Mechanosensory hair cells of the inner ear transduce auditory and vestibular sensory input. Hair cells are susceptible to death from a variety of stressors, including treatment with therapeutic drugs that have ototoxic side effects. There is a need for co-therapies to mitigate drug-induced ototoxicity, and we showed previously that induction of heat shock proteins (HSPs) protects against hair cell death and hearing loss caused by aminoglycoside antibiotics in mouse. Here, we utilized the library of integrated cellular signatures (LINCS) to identify perturbagens that induce transcriptional profiles similar to that of heat shock. Massively parallel sequencing of RNA (RNA-Seq) of heat shocked and control mouse utricles provided a heat shock gene expression signature that was used in conjunction with LINCS to identify candidate perturbagens, several of which were known to protect the inner ear. Our data indicate that LINCS is a useful tool to screen for compounds that generate specific gene expression signatures in the inner ear. Forty-two LINCS-identified perturbagens were tested for otoprotection in zebrafish, and three of these were protective. These compounds also induced the heat shock gene expression signature in mouse utricles, and one compound protected against aminoglycoside-induced hair cell death in whole organ cultures of utricles from adult mice.
Collapse
Affiliation(s)
- Matthew Ryals
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States.,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Daniel Martin
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Patricia Wu
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Seattle, WA, United States
| | - David W Raible
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Seattle, WA, United States.,Department of Biological Structure, University of Washington, Seattle, Seattle, WA, United States
| | - Lisa L Cunningham
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
35
|
Quinoxaline protects zebrafish lateral line hair cells from cisplatin and aminoglycosides damage. Sci Rep 2018; 8:15119. [PMID: 30310154 PMCID: PMC6181994 DOI: 10.1038/s41598-018-33520-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/01/2018] [Indexed: 01/13/2023] Open
Abstract
Hair cell (HC) death is the leading cause of hearing and balance disorders in humans. It can be triggered by multiple insults, including noise, aging, and treatment with certain therapeutic drugs. As society becomes more technologically advanced, the source of noise pollution and the use of drugs with ototoxic side effects are rapidly increasing, posing a threat to our hearing health. Although the underlying mechanism by which ototoxins affect auditory function varies, they share common intracellular byproducts, particularly generation of reactive oxygen species. Here, we described the therapeutic effect of the heterocyclic compound quinoxaline (Qx) against ototoxic insults in zebrafish HCs. Animals incubated with Qx were protected against the deleterious effects of cisplatin and gentamicin, and partially against neomycin. In the presence of Qx, there was a reduction in the number of TUNEL-positive HCs. Since Qx did not block the mechanotransduction channels, based on FM1-43 uptake and microphonic potentials, this implies that Qx’s otoprotective effect is at the intracellular level. Together, these results unravel a novel therapeutic role for Qx as an otoprotective drug against the deleterious side effects of cisplatin and aminoglycosides, offering an alternative option for patients treated with these compounds.
Collapse
|
36
|
Pindling S, Azulai D, Zheng B, Dahan D, Perron GG. Dysbiosis and early mortality in zebrafish larvae exposed to subclinical concentrations of streptomycin. FEMS Microbiol Lett 2018; 365:5062791. [PMID: 30085054 PMCID: PMC6109437 DOI: 10.1093/femsle/fny188] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Exposure to low concentrations of antibiotics found in aquatic environments can increase susceptibility to infection in adult fish due to microbiome disruption. However, little is known regarding the effect of antibiotic pollution on fish larvae. Here, we show that exposure to streptomycin, a common antibiotic used in medicine and aquaculture, disrupts the normal composition of zebrafish larvae microbiomes, significantly reducing the microbial diversity found in the fish. Exposure to streptomycin also significantly increased early mortality among fish larvae, causing full mortality within a few days of exposure at 10 μg/mL. Finally, we found that subclinical concentrations of streptomycin also increased the abundance of class 1 integrons, an integrase-dependent genetic system associated to the horizontal transfer of antibiotic resistance genes, in the larvae microbiomes. These results suggest that even low concentrations of streptomycin associated with environmental pollution could impact fish populations and lead to the creation of antibiotic resistance reservoirs.
Collapse
Affiliation(s)
- Sydney Pindling
- Department of Biology, Reem-Kayden Center for Science and Computation, 30 Campus Road, Annandale-On-Hudson, NY, 12504, USA
| | - Daniella Azulai
- Department of Biology, Reem-Kayden Center for Science and Computation, 30 Campus Road, Annandale-On-Hudson, NY, 12504, USA
| | - Brandon Zheng
- Department of Biology, Reem-Kayden Center for Science and Computation, 30 Campus Road, Annandale-On-Hudson, NY, 12504, USA
| | - Dylan Dahan
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Gabriel G Perron
- Department of Biology, Reem-Kayden Center for Science and Computation, 30 Campus Road, Annandale-On-Hudson, NY, 12504, USA
| |
Collapse
|
37
|
Zhou S, Sun Y, Kuang X, Hou S, Wang Z, Qian Z, Liu H. Mitochondria-homing peptide functionalized nanoparticles performing dual extracellular/intracellular roles to inhibit aminoglycosides induced ototoxicity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:314-323. [DOI: 10.1080/21691401.2018.1457041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shuang Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yanhui Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xiao Kuang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Shanshan Hou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Zhenjie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Zhe Qian
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
38
|
Teitz T, Fang J, Goktug AN, Bonga JD, Diao S, Hazlitt RA, Iconaru L, Morfouace M, Currier D, Zhou Y, Umans RA, Taylor MR, Cheng C, Min J, Freeman B, Peng J, Roussel MF, Kriwacki R, Guy RK, Chen T, Zuo J. CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss. J Exp Med 2018. [PMID: 29514916 PMCID: PMC5881471 DOI: 10.1084/jem.20172246] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hearing loss caused by aging, noise, cisplatin toxicity, or other insults affects 360 million people worldwide, but there are no Food and Drug Administration-approved drugs to prevent or treat it. We screened 4,385 small molecules in a cochlear cell line and identified 10 compounds that protected against cisplatin toxicity in mouse cochlear explants. Among them, kenpaullone, an inhibitor of multiple kinases, including cyclin-dependent kinase 2 (CDK2), protected zebrafish lateral-line neuromasts from cisplatin toxicity and, when delivered locally, protected adult mice and rats against cisplatin- and noise-induced hearing loss. CDK2-deficient mice displayed enhanced resistance to cisplatin toxicity in cochlear explants and to cisplatin- and noise-induced hearing loss in vivo. Mechanistically, we showed that kenpaullone directly inhibits CDK2 kinase activity and reduces cisplatin-induced mitochondrial production of reactive oxygen species, thereby enhancing cell survival. Our experiments have revealed the proapoptotic function of CDK2 in postmitotic cochlear cells and have identified promising therapeutics for preventing hearing loss.
Collapse
Affiliation(s)
- Tal Teitz
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jie Fang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Asli N Goktug
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Justine D Bonga
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Shiyong Diao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Robert A Hazlitt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Luigi Iconaru
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Marie Morfouace
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Yinmei Zhou
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Robyn A Umans
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Michael R Taylor
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Burgess Freeman
- Preclinical PK Shared Resource, St. Jude Children's Research Hospital, Memphis, TN
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
39
|
Hou S, Yang Y, Zhou S, Kuang X, Yang Y, Gao H, Wang Z, Liu H. Novel SS-31 modified liposomes for improved protective efficacy of minocycline against drug-induced hearing loss. Biomater Sci 2018; 6:1627-1635. [DOI: 10.1039/c7bm01181d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SS-31 modified, minocycline-loaded liposomes significantly increased hair cell survival against chronic exposure to gentamicin in a zebrafish model.
Collapse
Affiliation(s)
- Shanshan Hou
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Yang Yang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Shuang Zhou
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xiao Kuang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - YinXian Yang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Hailing Gao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Zhenjie Wang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Hongzhuo Liu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
40
|
Yan S, Lu Y, He L, Zhao X, Wu L, Zhu H, Jiang M, Su Y, Cao W, Tian W, Xing Q. Dynamic Editome of Zebrafish under Aminoglycosides Treatment and Its Potential Involvement in Ototoxicity. Front Pharmacol 2017; 8:854. [PMID: 29213239 PMCID: PMC5702851 DOI: 10.3389/fphar.2017.00854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/08/2017] [Indexed: 11/17/2022] Open
Abstract
RNA editing is an important co- and post-transcriptional event that generates RNA and protein diversity. Aminoglycosides are a group of bactericidal antibiotics and a mainstay of antimicrobial therapy for several life-threatening infections. However, aminoglycosides can induce ototoxicity, resulting in damage to the organs responsible for hearing and balance. At low concentrations, aminoglycosides can bind to many RNA sequences and critically influence RNA editing. We used a bioinformatics approach to investigate the effect of aminoglycosides on global mRNA editing events to gain insight into the interactions between mRNA editing and aminoglycoside ototoxicity. We identified 6,850 mRNA editing sites in protein coding genes in embryonic zebrafish, and in about 10% of these, the degree of RNA editing changed more than 15% under aminoglycosides treatment. Twelve ear-development or ototoxicity related genes, including plekhm1, fgfr1a, sox9a, and calrl2, exhibited remarkable changes in mRNA editing levels in zebrafish treated with aminoglycosides. Our results indicate that aminoglycosides may have a widespread and complicated influence on the progress of mRNA editing and expression. Furthermore, these results highlight the potential importance of mRNA editing in the pathogenesis and etiology of aminoglycoside-induced ototoxicity.
Collapse
Affiliation(s)
- Sijia Yan
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Yulan Lu
- Children's Hospital, Fudan University, Shanghai, China
| | - Lin He
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xinzhi Zhao
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Lihua Wu
- Zhengzhou People's Hospital, Zhengzhou, China
| | - Huizhong Zhu
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Menglin Jiang
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Yu Su
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Wei Cao
- Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Weidong Tian
- Department of Biostatistics and Computational Biology, School of Life Science, Fudan University, Shanghai, China
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Kuang X, Sun Y, Wang Z, Zhou S, Liu H. A mitochondrial targeting tetrapeptide Bendavia protects lateral line hair cells from gentamicin exposure. J Appl Toxicol 2017; 38:376-384. [PMID: 29105116 DOI: 10.1002/jat.3547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/29/2017] [Accepted: 09/10/2017] [Indexed: 12/18/2022]
Abstract
The hearing loss induced by aminoglycosides is caused by the permanent loss of mechanosensory hair cells of the inner ear. The aim of the present study is therefore to evaluate the protective effect of Bendavia, a novel antioxidant, on gentamicin-induced hair cell damage in zebrafish lateral lines. The results demonstrated the pretreatment of Bendavia exhibited dose-dependent protection against gentamicin in both acute and chronic exposure. We found that Bendavia at 150 μm conferred optimal protection from either acute or chronic exposure with ototoxin. Bendavia reduced uptake of fluorescent-tagged gentamicin via mechanoelectrical transduction channels, suggesting its protective effects may be partially due to decreasing ototoxic molecule uptake. The intracellular death pathways inhibition triggered by gentamicin might be also included as no blockage of gentamicin was observed. Our data suggest that Bendavia represents a novel otoprotective drug that might provide a therapeutic alternative for patients receiving aminoglycoside treatment.
Collapse
Affiliation(s)
- Xiao Kuang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yanhui Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhenjie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shuang Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| |
Collapse
|
42
|
Kuang X, Zhou S, Guo W, Wang Z, Sun Y, Liu H. SS-31 peptide enables mitochondrial targeting drug delivery: a promising therapeutic alteration to prevent hair cell damage from aminoglycosides. Drug Deliv 2017; 24:1750-1761. [PMID: 29214897 PMCID: PMC8241023 DOI: 10.1080/10717544.2017.1402220] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 01/22/2023] Open
Abstract
Aminoglycoside-induced hearing loss stems from damage or loss of mechanosensory hair cells in the inner ear. Intrinsic mitochondrial cell death pathway plays a key role in that cellular dysfunction for which no proven effective therapies against oto-toxicities exist. Therefore, the aim of the present study was to develop a new mitochondrial targeting drug delivery system (DDS) that provided improved protection from gentamicin. Particularly, SS-31 peptide-conjugated geranylgeranylacetone (GGA) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles were constructed successfully via emulsion-solvent evaporation method. The zebrafish lateral line sensory system was used as an in vivo evaluating platform to investigate the protective efficiency against gentamicin. SS-31 modification significantly reduced the activity of mechanoelectrical transduction (MET) channel and gentamicin uptake in zebrafish lateral line hair cells. As expected, SS-31 conjugated nanoparticles showed mitochondrial specific accumulation in hair cells when compared with unconjugated formulations. Furthermore, intracellular SS-31 modified PLGA NPs slightly enhanced mitochondrial membrane potential (MMP, ΔΨm) and then returned to a steady-state, indicating their effect on the respiratory chain complexes in mitochondria. GGA loaded SS-31 conjugated nanoparticles demonstrated the most favorable hair cells survivals against gentamicin when compared with unconjugated groups whereas blank formulations failed to exhibit potency, indicating that the efficiency was attributed to drug delivery of GGA. These results suggest that our constructed mitochondria-targeting PLGA based DDS have potential application in protecting hair cells from ototoxic agents.
Collapse
Affiliation(s)
- Xiao Kuang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Shuang Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Weiling Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Zhenjie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yanhui Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| |
Collapse
|
43
|
Wiedenhoft H, Hayashi L, Coffin AB. PI3K and Inhibitor of Apoptosis Proteins Modulate Gentamicin- Induced Hair Cell Death in the Zebrafish Lateral Line. Front Cell Neurosci 2017; 11:326. [PMID: 29093665 PMCID: PMC5651234 DOI: 10.3389/fncel.2017.00326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Inner ear hair cell death leads to sensorineural hearing loss and can be a direct consequence of aminoglycoside antibiotic treatment. Aminoglycosides such as gentamicin are effective therapy for serious Gram-negative bacterial infections such as some forms of meningitis, pneumonia, and sepsis. Aminoglycosides enter hair cells through mechanotransduction channels at the apical end of hair bundles and initiate intrinsic cell death cascades, but the precise cell signaling that leads to hair cell death is incompletely understood. Here, we examine the cell death pathways involved in aminoglycoside damage using the zebrafish (Danio rerio). The zebrafish lateral line contains hair cell-bearing organs called neuromasts that are homologous to hair cells of the mammalian inner ear and represents an excellent model to study ototoxicity. Based on previous research demonstrating a role for p53, Bcl2 signaling, autophagy, and proteasomal degradation in aminoglycoside-damaged hair cells, we used the Cytoscape GeneMANIA Database to identify additional proteins that might play a role in neomycin or gentamicin ototoxicity. Our bioinformatics analysis identified the pro-survival proteins phosphoinositide-dependent kinase-1 (PDK1) and X-linked inhibitor of apoptosis protein (Xiap) as potential mediators of gentamicin-induced hair cell damage. Pharmacological inhibition of PDK1 or its downstream mediator protein kinase C facilitated gentamicin toxicity, as did Xiap mutation, suggesting that both PI3K and endogenous Xiap confer protection. Surprisingly, aminoglycoside-induced hair cell death was highly attenuated in wild type Tupfel long-fin (TL fish; the background strain for the Xiap mutant line) compared to wild type ∗AB zebrafish. Pharmacologic manipulation of p53 suggested that the strain difference might result from decreased p53 in TL hair cells, allowing for increased hair cell survival. Overall, our studies identified additional steps in the cell death cascade triggered by aminoglycoside damage, suggesting possible drug targets to combat hearing loss resulting from aminoglycoside exposure.
Collapse
Affiliation(s)
- Heather Wiedenhoft
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Lauren Hayashi
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Allison B Coffin
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States.,Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| |
Collapse
|
44
|
Kirkwood NK, O'Reilly M, Derudas M, Kenyon EJ, Huckvale R, van Netten SM, Ward SE, Richardson GP, Kros CJ. d-Tubocurarine and Berbamine: Alkaloids That Are Permeant Blockers of the Hair Cell's Mechano-Electrical Transducer Channel and Protect from Aminoglycoside Toxicity. Front Cell Neurosci 2017; 11:262. [PMID: 28928635 PMCID: PMC5591855 DOI: 10.3389/fncel.2017.00262] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/14/2017] [Indexed: 12/03/2022] Open
Abstract
Aminoglycoside antibiotics are widely used for the treatment of life-threatening bacterial infections, but cause permanent hearing loss in a substantial proportion of treated patients. The sensory hair cells of the inner ear are damaged following entry of these antibiotics via the mechano-electrical transducer (MET) channels located at the tips of the hair cell's stereocilia. d-Tubocurarine (dTC) is a MET channel blocker that reduces the loading of gentamicin-Texas Red (GTTR) into rat cochlear hair cells and protects them from gentamicin treatment. Berbamine is a structurally related alkaloid that reduces GTTR labeling of zebrafish lateral-line hair cells and protects them from aminoglycoside-induced cell death. Both compounds are thought to reduce aminoglycoside entry into hair cells through the MET channels. Here we show that dTC (≥6.25 μM) or berbamine (≥1.55 μM) protect zebrafish hair cells in vivo from neomycin (6.25 μM, 1 h). Protection of zebrafish hair cells against gentamicin (10 μM, 6 h) was provided by ≥25 μM dTC or ≥12.5 μM berbamine. Hair cells in mouse cochlear cultures are protected from longer-term exposure to gentamicin (5 μM, 48 h) by 20 μM berbamine or 25 μM dTC. Berbamine is, however, highly toxic to mouse cochlear hair cells at higher concentrations (≥30 μM) whilst dTC is not. The absence of toxicity in the zebrafish assays prompts caution in extrapolating results from zebrafish neuromasts to mammalian cochlear hair cells. MET current recordings from mouse outer hair cells (OHCs) show that both compounds are permeant open-channel blockers, rapidly and reversibly blocking the MET channel with half-blocking concentrations of 2.2 μM (dTC) and 2.8 μM (berbamine) in the presence of 1.3 mM Ca2+ at −104 mV. Berbamine, but not dTC, also blocks the hair cell's basolateral K+ current, IK,neo, and modeling studies indicate that berbamine permeates the MET channel more readily than dTC. These studies reveal key properties of MET-channel blockers required for the future design of successful otoprotectants.
Collapse
Affiliation(s)
- Nerissa K Kirkwood
- Sussex Neuroscience, School of Life Sciences, University of SussexBrighton, United Kingdom
| | - Molly O'Reilly
- Sussex Neuroscience, School of Life Sciences, University of SussexBrighton, United Kingdom
| | - Marco Derudas
- Sussex Drug Discovery Centre, School of Life Sciences, University of SussexBrighton, United Kingdom
| | - Emma J Kenyon
- Sussex Neuroscience, School of Life Sciences, University of SussexBrighton, United Kingdom
| | - Rosemary Huckvale
- Sussex Drug Discovery Centre, School of Life Sciences, University of SussexBrighton, United Kingdom
| | - Sietse M van Netten
- Institute of Artificial Intelligence and Cognitive Engineering, University of GroningenGroningen, Netherlands
| | - Simon E Ward
- Sussex Drug Discovery Centre, School of Life Sciences, University of SussexBrighton, United Kingdom
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of SussexBrighton, United Kingdom
| | - Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of SussexBrighton, United Kingdom
| |
Collapse
|
45
|
Stewart WJ, Johansen JL, Liao JC. A non-toxic dose of cobalt chloride blocks hair cells of the zebrafish lateral line. Hear Res 2017; 350:17-21. [PMID: 28412580 PMCID: PMC5495470 DOI: 10.1016/j.heares.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/10/2017] [Accepted: 04/03/2017] [Indexed: 01/17/2023]
Abstract
Experiments on the flow-sensitive lateral line system of fishes have provided important insights into the function and sensory transduction of vertebrate hair cells. A common experimental approach has been to pharmacologically block lateral line hair cells and measure how behavior changes. Cobalt chloride (CoCl2) blocks the lateral line by inhibiting calcium movement through the membrane channels of hair cells, but high concentrations can be toxic, making it unclear whether changes in behavior are due to a blocked lateral line or poor health. Here, we identify a non-toxic treatment of cobalt that completely blocks lateral line hair cells. We exposed 5-day post fertilization zebrafish larvae to CoCl2 concentrations ranging from 1 to 20 mM for 15 min and measured 1) the spiking rate of the afferent neurons contacting hair cells and 2) the larvae's health and long-term survival. Our results show that a 15-min exposure to 5 mM CoCl2 abolishes both spontaneous and evoked afferent firing. This treatment does not change swimming behavior, and results in >85% survival after 5 days. Weaker treatments of CoCl2 did not eliminate afferent activity, while stronger treatments caused close to 50% mortality. Our work provides a guideline for future zebrafish investigations where physiological confirmation of a blocked lateral line system is required.
Collapse
Affiliation(s)
- William J Stewart
- Department of Biology, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Jacob L Johansen
- Department of Biology, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - James C Liao
- Department of Biology, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
46
|
Todd DW, Philip RC, Niihori M, Ringle RA, Coyle KR, Zehri SF, Zabala L, Mudery JA, Francis RH, Rodriguez JJ, Jacob A. A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay. Zebrafish 2017; 14:331-342. [PMID: 28520533 DOI: 10.1089/zeb.2016.1412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells. Building on work by our group and others, we have built a new, fully automated high-throughput behavioral assay system that uses automated image analysis techniques to quantify rheotaxis behavior. This novel system consists of a custom-designed swimming apparatus and imaging system consisting of network-controlled Raspberry Pi microcomputers capturing infrared video. Automated analysis techniques detect individual zebrafish, compute their orientation, and quantify the rheotaxis behavior of a zebrafish test population, producing a powerful, high-throughput behavioral assay. Using our fully automated biological assay to test a standardized ototoxic dose of cisplatin against varying doses of compounds that protect or regenerate hair cells may facilitate rapid translation of candidate drugs into preclinical mammalian models of hearing loss.
Collapse
Affiliation(s)
- Douglas W Todd
- 1 Department of Electrical and Computer Engineering, The University of Arizona , Tucson, Arizona
| | - Rohit C Philip
- 1 Department of Electrical and Computer Engineering, The University of Arizona , Tucson, Arizona
| | - Maki Niihori
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,3 The University of Arizona Cancer Center , Tucson, Arizona
| | - Ryan A Ringle
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona
| | - Kelsey R Coyle
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona
| | - Sobia F Zehri
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona
| | - Leanne Zabala
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,4 College of Medicine, The University of Arizona , Tucson, Arizona
| | - Jordan A Mudery
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,4 College of Medicine, The University of Arizona , Tucson, Arizona
| | - Ross H Francis
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,4 College of Medicine, The University of Arizona , Tucson, Arizona
| | - Jeffrey J Rodriguez
- 1 Department of Electrical and Computer Engineering, The University of Arizona , Tucson, Arizona
| | - Abraham Jacob
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,3 The University of Arizona Cancer Center , Tucson, Arizona.,5 BIO5 Institute, The University of Arizona , Tucson, Arizona.,6 Ear & Hearing, Center for Neurosciences , Tucson, Arizona
| |
Collapse
|
47
|
Stengel D, Zindler F, Braunbeck T. An optimized method to assess ototoxic effects in the lateral line of zebrafish (Danio rerio) embryos. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:18-29. [PMID: 27847309 DOI: 10.1016/j.cbpc.2016.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/22/2016] [Accepted: 11/11/2016] [Indexed: 12/27/2022]
Abstract
In order to clarify the suitability of the lateral line of zebrafish (Danio rerio) embryos as a model for the screening of ototoxic (neurotoxic) effects, existing neuromast assays were adapted, improved and validated with a series of chemicals known or unknown for their ototoxic potential (caffeine copper sulfate, dichlorvos, 2.4-dinitrotoluene, neomycin, 4-nonylphenol, perfluorooctanesulfonic acid). Present methods were improved by (1) the introduction of a 4-step scoring system, (2) the selection of neuromasts from both the anterior and posterior lateral line systems, (3) a combined DASPEI/DAPI staining applied after both a continuous and pulse exposure scenario, and (4) an additional screening for nuclear fragmentation. Acute toxicities of the model substances were determined by means of the fish embryo test as specified in OECD TG 236, and EC10 concentrations were used as the highest test concentration in the neuromast assay. The enhanced neuromast assay identified known ototoxic substances such as neomycin and copper sulfate as ototoxic at sensitivities similar to those of established methods, with pulse exposure leading to stronger effects than continuous exposure. Except for caffeine, all substances tested (dichlorvos, 2.4-dinitrotoluene, 4-nonylphenol, perfluorooctanesulfonic acid) produced significant toxic effects in neuromasts at EC10 concentrations. Depending on the test substances and their location along the lateral line, specific neuromasts differed in sensitivity. Generally, neuromasts proved more sensitive in the pulse exposure scenario. Whereas for neomycin and copper sulfate neuromasts located along the anterior lateral line were more sensitive, posterior lateral line neuromasts proved more sensitive for the other test substances. Nuclear fragmentation could not only be associated with all test substances, but, albeit at lower frequencies, also with negative controls, and could, therefore, not be assigned specifically to chemical damage. The study thus documented that for a comprehensive evaluation of lateral line damage both neuromasts from the anterior and the posterior lateral line have to be considered. Given the apparently rapid regeneration of hair cells, pulse exposure seems more appropriate for the identification of lateral line neurotoxicity than continuous exposure.
Collapse
Affiliation(s)
- Daniel Stengel
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany
| | - Florian Zindler
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Ionizing Radiation Blocks Hair Cell Regeneration in Zebrafish Lateral Line Neuromasts by Preventing Wnt Signaling. Mol Neurobiol 2017; 55:1639-1651. [DOI: 10.1007/s12035-017-0430-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023]
|
49
|
Wang Z, Kuang X, Shi J, Guo W, Liu H. Targeted delivery of geranylgeranylacetone to mitochondria by triphenylphosphonium modified nanoparticles: a promising strategy to prevent aminoglycoside-induced hearing loss. Biomater Sci 2017. [DOI: 10.1039/c7bm00224f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TPP induced and GGA loaded mitochondria-targeting nanoparticles could efficiently protect hair cells from damage.
Collapse
Affiliation(s)
- Zhenjie Wang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xiao Kuang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Jia Shi
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Weiling Guo
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Hongzhuo Liu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
50
|
Nasri A, Valverde AJ, Roche DB, Desrumaux C, Clair P, Beyrem H, Chaloin L, Ghysen A, Perrier V. Neurotoxicity of a Biopesticide Analog on Zebrafish Larvae at Nanomolar Concentrations. Int J Mol Sci 2016; 17:ijms17122137. [PMID: 27999363 PMCID: PMC5187937 DOI: 10.3390/ijms17122137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/07/2016] [Accepted: 12/10/2016] [Indexed: 12/15/2022] Open
Abstract
Despite the ever-increasing role of pesticides in modern agriculture, their deleterious effects are still underexplored. Here we examine the effect of A6, a pesticide derived from the naturally-occurring α-terthienyl, and structurally related to the endocrine disrupting pesticides anilinopyrimidines, on living zebrafish larvae. We show that both A6 and an anilinopyrimidine, cyprodinyl, decrease larval survival and affect central neurons at micromolar concentrations. Focusing on a superficial and easily observable sensory system, the lateral line system, we found that defects in axonal and sensory cell regeneration can be observed at much lower doses, in the nanomolar range. We also show that A6 accumulates preferentially in lateral line neurons and hair cells. We examined whether A6 affects the expression of putative target genes, and found that genes involved in apoptosis/cell proliferation are down-regulated, as well as genes reflecting estrogen receptor activation, consistent with previous reports that anilinopyrimidines act as endocrine disruptors. On the other hand, canonical targets of endocrine signaling are not affected, suggesting that the neurotoxic effect of A6 may be due to the binding of this compound to a recently identified, neuron-specific estrogen receptor.
Collapse
Affiliation(s)
- Ahmed Nasri
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), 34095 Montpellier, France.
- BioCampus, University of Montpellier, 34095 Montpellier, France.
- EPHE (Ecole Pratique des Hautes Etudes), 75007 Paris, France.
- Laboratory of Environment Biomonitoring, Faculty of Sciences of Bizerta, University of Carthage, 7021 Zarzouna, Tunisia.
| | - Audrey J Valverde
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), 34095 Montpellier, France.
- BioCampus, University of Montpellier, 34095 Montpellier, France.
- EPHE (Ecole Pratique des Hautes Etudes), 75007 Paris, France.
| | - Daniel B Roche
- IBC (Computational Biology Institute), CNRS (National Center for Scientific Research), University of Montpellier, 860 rue Saint Priest, 34095 Montpellier, France.
- CRBM (Research Center for Cell Biology in Montpellier), UMR 5237, CNRS, 1919 route de Mende, 34293 Montpellier, France.
| | - Catherine Desrumaux
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), 34095 Montpellier, France.
- BioCampus, University of Montpellier, 34095 Montpellier, France.
- EPHE (Ecole Pratique des Hautes Etudes), 75007 Paris, France.
| | - Philippe Clair
- MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France.
| | - Hamouda Beyrem
- CRBM (Research Center for Cell Biology in Montpellier), UMR 5237, CNRS, 1919 route de Mende, 34293 Montpellier, France.
| | - Laurent Chaloin
- CPBS (Center for Study of Pathogens and Biotechnologies for Health), FRE 3689, CNRS, University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| | - Alain Ghysen
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), 34095 Montpellier, France.
- BioCampus, University of Montpellier, 34095 Montpellier, France.
- EPHE (Ecole Pratique des Hautes Etudes), 75007 Paris, France.
| | - Véronique Perrier
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), 34095 Montpellier, France.
- BioCampus, University of Montpellier, 34095 Montpellier, France.
- EPHE (Ecole Pratique des Hautes Etudes), 75007 Paris, France.
| |
Collapse
|