1
|
Ichikawa R, Takeda T, Kakigi A, Ito H, Kobayashi T, Hyodo M. Expression of AQP-10, -11 and -12 in the rat stria vascularis. Acta Otolaryngol 2024; 144:96-99. [PMID: 38511591 DOI: 10.1080/00016489.2024.2329286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Water homeostasis is essential for inner ear function. Several aquaporins (AQPs), which are water transport proteins in the cell or plasma membrane, have been reported in the lateral wall of the rat inner ear (cochlea). However, the presence of AQP-10, -11 and -12 has not been reported in the rat stria vascularis (SV) to date. AIMS/OBJECTIVES We have aimed to clarify the expression of AQP-10, -11 and -12 in the cochlea lateral wall. MATERIALS AND METHODS Using Wistar rats, we examined the expression of AQP-10, -11 and -12 in the cochlea lateral wall using molecular approaches and immunohistochemistry. RESULTS AQP-11 was molecular biologically expressed, but the expression of AQP-10 and -12 was not observed. Immunohistochemically, AQP-11 was diffusely localized in the basal cells and marginal cells of the rat SV but was not expressed at the apical site of marginal cells with double staining. The expression of AQP-10 and -12 was not observed. CONCLUSIONS AND SIGNIFICANCE Only AQP-11 was expressed in the basal cells and marginal cells, but it was not expressed at the apical site of marginal cells. Based on this study, AQP-11 may not have an important role in water flux between the perilymph and endolymph.
Collapse
Affiliation(s)
- Rie Ichikawa
- Department of Otolaryngology, Kochi Medical School, Nankoku, Japan
- Department of Otolaryngology, Niyodo Hospital, Ino, Japan
| | - Taizo Takeda
- Department of Otolaryngology, Kochi Medical School, Nankoku, Japan
| | - Akinobu Kakigi
- Department of Otolaryngology-Head & Neck Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hiroaki Ito
- Department of Otolaryngology, Kochi Medical School, Nankoku, Japan
| | | | - Masamitsu Hyodo
- Department of Otolaryngology, Kochi Medical School, Nankoku, Japan
| |
Collapse
|
2
|
Wang Q, Hu J, Li W, Huang L, Pan X, Zhou Z, Yang T, Tao R, Huang C, Peng A, Zhang Z. Meniere's Disease Patients with Distinct Sac Pathoanatomic Findings React Differently to Endolymphatic Duct Blockage. Laryngoscope 2023; 133:2761-2769. [PMID: 36533590 DOI: 10.1002/lary.30520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To explore the possible difference in response to endolymphatic duct blockage (EDB) treatment in patients with Meniere's disease (MD) with distinct pathoanatomic characteristics of the sac. METHODS In a total of 24 patients with MD receiving EDB treatment, the dynamics of the vertigo attack, hearing, vestibular function, and endolymph hydrops (EH) before surgery and 40 months following surgery in patients with normoplastic extraosseous portion of endolymphatic sac (eES) were compared with that in patients with atrophic eES. RESULTS A higher prevalence of complete vertigo control, better cochlear and vestibular function, and lower endolymph to vestibule-volume ratio were found in patients with normoplastic eES than in those with atrophic eES. Moreover, the reversal of EH was found in a total of six patients in normoplastic eES group, but no reversal of EH was detected in the atrophic eES group after surgery. CONCLUSIONS A difference in response to EDB treatment was shown in the MD patients with normoplastic eES and those with atrophic eES; the reversal of EH was found in the normoplastic eES group, but not in the atrophic eES group after surgery, suggesting two distinct pathologies in the eESs may underlie the pathogenesis of EH in two subgroups of MD patients. LEVEL OF EVIDENCE 4 Laryngoscope, 133:2761-2769, 2023.
Collapse
Affiliation(s)
- Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junjiao Hu
- Department of radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xueying Pan
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhou Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Rong Tao
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Anquan Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwen Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Ye C, Bai Y, Zheng S, Yu H, Ni G. OCT imaging of endolymphatic hydrops in mice: association with hearing loss. Acta Otolaryngol 2023; 143:759-765. [PMID: 37782330 DOI: 10.1080/00016489.2023.2262509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND The etiology of Ménière's disease (MD) is still not completely clear, but it is believed to be associated with endolymphatic hydrops (EH), which is characterized by auditory functional disorders. Vasopressin injection in C57BL/6J mice can induce EH and serve as a model for MD. Optical Coherence Tomography (OCT) has shown its advantages as a non-invasive imaging method for observing EH.AimInvestigating the relationship between hearing loss and EH to assist clinical hearing assessments and indicate the severity of hydrops. METHODS C57BL/6J mice received 50 μg/100g/day vasopressin injections to induce EH. Auditory function was assessed using auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE). OCT was used to visualize the cochlea. RESULT OCT observed accumulation of fluid within the scala media in the cochlear apex. ABR showed significant hearing loss after 4 weeks. DPOAE revealed low-frequency hearing loss at 2 weeks and widespread damage across frequencies at 4 weeks. CONCLUSION The development of hearing loss in mouse models of MD is consistent with EH manifestations.SignificanceThis study demonstrates the possibility of indirectly evaluating the extent of EH through auditory assessment and emphasizes the significant value of OCT for imaging cochlear structures.
Collapse
Affiliation(s)
- Caihong Ye
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yanru Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Shu Zheng
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Han Yu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Guangjian Ni
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| |
Collapse
|
4
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
5
|
Day KR, Coleman A, Greenwood MA, Hammock EAD. AVPR1A distribution in the whole C57BL/6J mouse neonate. Sci Rep 2020; 10:14512. [PMID: 32884025 PMCID: PMC7471960 DOI: 10.1038/s41598-020-71392-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide arginine vasopressin (AVP) plays significant roles in maintaining homeostasis and regulating social behavior. In vaginally delivered neonates, a surge of AVP is released into the bloodstream at levels exceeding release during life-threatening conditions such as hemorrhagic shock. It is currently unknown where the potential sites of action are in the neonate for these robust levels of circulating AVP at birth. The purpose of this study is to identify the location of AVP receptor 1a (AVPR1A) sites as potential peripheral targets of AVP in the neonatal mouse. RT-qPCR analysis of a sampling of tissues from the head demonstrated the presence of Avpr1a mRNA, suggesting local peripheral translation. Using competitive autoradiography in wildtype (WT) and AVPR1A knockout (KO) postnatal day 0 (P0) male and female mice on a C57BL/6J background, specific AVPR1A ligand binding was observed in the neonatal mouse periphery in sensory tissues of the head (eyes, ears, various oronasal regions), bone, spinal cord, adrenal cortex, and the uro-anogenital region in the neonatal AVPR1A WT mouse, as it was significantly reduced or absent in the control samples (AVPR1A KO and competition). AVPR1A throughout the neonatal periphery suggest roles for AVP in modulating peripheral physiology and development of the neonate.
Collapse
Affiliation(s)
- Katherine R Day
- Department of Psychology and Program in Neuroscience, The Florida State University, 1107 West Call Street, Tallahassee, FL, 32306, USA
| | - Alexis Coleman
- Department of Psychology and Program in Neuroscience, The Florida State University, 1107 West Call Street, Tallahassee, FL, 32306, USA
| | - Maria A Greenwood
- Department of Psychology and Program in Neuroscience, The Florida State University, 1107 West Call Street, Tallahassee, FL, 32306, USA
| | - Elizabeth A D Hammock
- Department of Psychology and Program in Neuroscience, The Florida State University, 1107 West Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|
6
|
Kakigi A, Egami N, Uehara N, Fujita T, Nibu KI, Yamashita S, Yamasoba T. Live imaging and functional changes of the inner ear in an animal model of Meniere's disease. Sci Rep 2020; 10:12271. [PMID: 32704101 PMCID: PMC7378199 DOI: 10.1038/s41598-020-68352-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
The symptoms of Meniere's disease (MD) are generally considered to be related to endolymphatic hydrops (EH). There are many recent reports supporting the possibility that vasopressin (VP) is closely linked to the formation of EH in Meniere's disease. Based on this, we developed a clinically relevant animal model of Meniere's disease in which a VP type 2 receptor agonist was administered after electrocauterization of the endolymphatic sac. We report live imaging of the internal structure, and functional changes of the inner ear after electrocauterization of the endolymphatic sac and administration of a VP type 2 receptor agonist. In this model, the development of EH was visualized in vivo using optical coherence tomography, there was no rupture of Reissner's membrane, and low-tone hearing loss and vertiginous attacks were observed. This study suggested that acute attacks are caused by the abrupt development of EH. This is the first report of live imaging of the development of EH induced by the administration of a VP type 2 receptor agonist.
Collapse
Affiliation(s)
- Akinobu Kakigi
- Department of Otolaryngology-Head and Neck Surgery, Kobe University, Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Naoya Egami
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Natsumi Uehara
- Department of Otolaryngology-Head and Neck Surgery, Kobe University, Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takeshi Fujita
- Department of Otolaryngology-Head and Neck Surgery, Kobe University, Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ken-Ichi Nibu
- Department of Otolaryngology-Head and Neck Surgery, Kobe University, Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shinji Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
7
|
Xu LH, Yang Y, Liu HX, Xiao SF, Qiu WX, Wang JX, Zhao CC, Gui YH, Liu GZ, Peng B, Li X, Wang GH, Zhou X, Jiang ZL. Inner Ear Arginine Vasopressin-Vasopressin Receptor 2-Aquaporin 2 Signaling Pathway Is Involved in the Induction of Motion Sickness. J Pharmacol Exp Ther 2020; 373:248-260. [PMID: 32165443 DOI: 10.1124/jpet.119.264390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/24/2020] [Indexed: 11/22/2022] Open
Abstract
It has been identified that arginine vasopressin (AVP), vasopressin receptor 2(V2R), and the aquaporin 2 (AQP2) signaling pathway in the inner ear play important roles in hearing and balance functions through regulating the endolymph equilibrium; however, the contributions of this signaling pathway to the development of motion sickness are unclear. The present study was designed to investigate whether the activation of the AVP-V2R-AQP2 signaling pathway in the inner ear is involved in the induction of motion sickness and whether mozavaptan, a V2R antagonist, could reduce motion sickness. We found that both rotatory stimulus and intraperitoneal AVP injection induced conditioned taste aversion (a confirmed behavioral index for motion sickness) in rats and activated the AVP-V2R-AQP2 signaling pathway with a responsive V2R downregulation in the inner ears, and AVP perfusion in cultured epithelial cells from rat endolymphatic sacs induced similar changes in this pathway signaling. Vestibular training, V2R antagonist mozavaptan, or PKA inhibitor H89 blunted these changes in the V2R-AQP2 pathway signaling while reducing rotatory stimulus- or DDAVP (a V2R agonist)-induced motion sickness in rats and dogs. Therefore, our results suggest that activation of the inner ear AVP-V2R-AQP2 signaling pathway is potentially involved in the development of motion sickness; thus, mozavaptan targeting AVP V2Rs in the inner ear may provide us with a new application option to reduce motion sickness. SIGNIFICANCE STATEMENT: Motion sickness affects many people traveling or working. In the present study our results showed that activation of the inner ear arginine vasopressin-vaspopressin receptor 2 (V2R)-aquaporin 2 signaling pathway was potentially involved in the development of motion sickness and that blocking V2R with mozavaptan, a V2R antagonist, was much more effective in reducing motion sickness in both rat and dog; therefore, we demonstrated a new mechanism to underlie motion sickness and a new candidate drug to reduce motion sickness.
Collapse
Affiliation(s)
- Li-Hua Xu
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yao Yang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Hong-Xia Liu
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Shui-Feng Xiao
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Wen-Xia Qiu
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jin-Xing Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Chen-Chen Zhao
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yuan-Hong Gui
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Gui-Zhu Liu
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Bin Peng
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xia Li
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Guo-Hua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xin Zhou
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Zheng-Lin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
8
|
Takeda T, Takeda S, Kakigi A. A possible mechanism of the formation of endolymphatic hydrops and its associated inner ear disorders. Auris Nasus Larynx 2019; 47:25-41. [PMID: 31623941 DOI: 10.1016/j.anl.2019.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Abstract
The pathology of Meniere's disease (MD) is well established to be endolymphatic hydrops. However, the mechanism underlying deafness and vertigo of MD or idiopathic endolymphatic hydrops is still unknown. In order to evaluate the pathogenesis of deafness and vertigo in MD, it seems to be rational to investigate the interrelationship between hydrops and inner ear disorders using animals with experimentally-induced endolymphatic hydrops. In spite of intense efforts by many researchers, the mechanism of vertiginous attack has been unexplained, because animals with experimental hydrops usually did not show vertiginous attack. Recently, there are two reports to succeed to evoke vertiginous attack in animals with experimental hydrops. In the present paper were first surveyed past proposals about underlying mechanism of the development of hydrops and inner ear disorders associated with hydrops, and were discussed the pathogenetic mechanism of vertiginous attack in hydrops. In conclusion, abrupt development of hydrops was thought to play a pivotal role in the onset of vertiginous seizure.
Collapse
Affiliation(s)
- Taizo Takeda
- Department of Otolaryngology, Kochi Medical School, Nankoku, Kochi, Japan
| | | | - Akinobu Kakigi
- Department of Otolaryngology-Head & Neck Surgery, Kobe University, Graduate School of Medicine, Hyogo, Japan.
| |
Collapse
|
9
|
Dong SH, Kim SS, Kim SH, Yeo SG. Expression of aquaporins in inner ear disease. Laryngoscope 2019; 130:1532-1539. [PMID: 31593306 DOI: 10.1002/lary.28334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022]
Abstract
The inner ear is responsible for hearing and balance and consists of a membranous labyrinth within a bony labyrinth. The balance structure is divided into the otolith organ that recognizes linear acceleration and the semicircular canal that is responsible for rotational movement. The cochlea is the hearing organ. The external and middle ear are covered with skin and mucosa, respectively, and the space is filled with air, whereas the inner ear is composed of endolymph and perilymph. The inner ear is a fluid-filled sensory organ composed of hair cells with cilia on the upper part of the cells that convert changes in sound energy and balance into electric energy through the hair cells to transmit signals to the auditory nerve through synapses. Aquaporins (AQPs) are a family of transmembrane proteins present in all species that can be roughly divided into three subfamilies according to structure and function: 1) classical AQP, 2) aquaglyceroporin, and 3) superaquaporin. Currently, the subfamily of mammalian species is known to include 13 AQP members (AQP0-AQP12). AQPs have a variety of functions depending on their structure and are related to inner ear diseases such as Meniere's disease, sensorineural hearing loss, and presbycusis. Additional studies on the relationship between the inner ear and AQPs may be helpful in the diagnosis and treatment of inner ear disease. Laryngoscope, 130:1532-1539, 2020.
Collapse
Affiliation(s)
- Sung Hwa Dong
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Sung Su Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School, Kyung Hee University, Seoul, South Korea.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
10
|
JIANG LY, CHEN XX, HE JJ, CHEN HD. Effects of electroacupuncture on cochlear morphology and expression of aquaporins in rats with AVP-induced endolymphatic hydrops. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2019. [DOI: 10.1016/j.wjam.2019.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Nonomura Y, Sawamura S, Hanzawa K, Nishikaze T, Sekiya S, Higuchi T, Nin F, Uetsuka S, Inohara H, Okuda S, Miyoshi E, Horii A, Takahashi S, Natsuka S, Hibino H. Characterisation of N-glycans in the epithelial-like tissue of the rat cochlea. Sci Rep 2019; 9:1551. [PMID: 30733536 PMCID: PMC6367448 DOI: 10.1038/s41598-018-38079-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/17/2018] [Indexed: 01/08/2023] Open
Abstract
Membrane proteins (such as ion channels, transporters, and receptors) and secreted proteins are essential for cellular activities. N-linked glycosylation is involved in stability and function of these proteins and occurs at Asn residues. In several organs, profiles of N-glycans have been determined by comprehensive analyses. Nevertheless, the cochlea of the mammalian inner ear, a tiny organ mediating hearing, has yet to be examined. Here, we focused on the stria vascularis, an epithelial-like tissue in the cochlea, and characterised N-glycans by liquid chromatography with mass spectrometry. This hypervascular tissue not only expresses several ion transporters and channels to control the electrochemical balance in the cochlea but also harbours different transporters and receptors that maintain structure and activity of the organ. Seventy-nine N-linked glycans were identified in the rat stria vascularis. Among these, in 55 glycans, the complete structures were determined; in the other 24 species, partial glycosidic linkage patterns and full profiles of the monosaccharide composition were identified. In the process of characterisation, several sialylated glycans were subjected sequentially to two different alkylamidation reactions; this derivatisation helped to distinguish α2,3-linkage and α2,6-linkage sialyl isomers with mass spectrometry. These data should accelerate elucidation of the molecular architecture of the cochlea.
Collapse
Affiliation(s)
- Yoriko Nonomura
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Niigata University School of Medicine, Niigata, Japan
| | - Seishiro Sawamura
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
| | - Ken Hanzawa
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Sadanori Sekiya
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Taiga Higuchi
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Satoru Uetsuka
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shujiro Okuda
- Bioinformatics Laboratory, Niigata University School of Medicine, Niigata, Japan
| | - Eiji Miyoshi
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Arata Horii
- Department of Otorhinolaryngology-Head and Neck Surgery, Niigata University School of Medicine, Niigata, Japan
| | - Sugata Takahashi
- Department of Otorhinolaryngology-Head and Neck Surgery, Niigata University School of Medicine, Niigata, Japan
| | - Shunji Natsuka
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan.
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
- AMED-CREST, AMED, Niigata, Japan.
| |
Collapse
|
12
|
Musazzi UM, Franzé S, Cilurzo F. Innovative pharmaceutical approaches for the management of inner ear disorders. Drug Deliv Transl Res 2018; 8:436-449. [PMID: 28462501 DOI: 10.1007/s13346-017-0384-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sense of hearing is essential for permitting human beings to interact with the environment, and its dysfunctions can strongly impact on the quality of life. In this context, the cochlea plays a fundamental role in the transformation of the airborne sound waves into electrical signals, which can be processed by the brain. However, several diseases and external stimuli (e.g., noise, drugs) can damage the sensorineural structures of cochlea, inducing progressive hearing dysfunctions until deafness. In clinical practice, the current pharmacological approaches to treat cochlear diseases are based on the almost exclusive use of systemic steroids. In the last decades, the efficacy of novel therapeutic molecules has been proven, taking advantage from a better comprehension of the pathological mechanisms underlying many cochlear diseases. In addition, the feasibility of intratympanic administration of drugs also permitted to overcome the pharmacokinetic limitations of the systemic drug administration, opening new frontiers in drug delivery to cochlea. Several innovative drug delivery systems, such as in situ gelling systems or nanocarriers, were designed, and their efficacy has been proven in vitro and in vivo in cochlear models. The current review aims to describe the art of state in the cochlear drug delivery, highlighting lights and shadows and discussing the most critical aspects still pending in the field.
Collapse
Affiliation(s)
- Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy.
| | - Silvia Franzé
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy
| |
Collapse
|
13
|
Cochlear Transcriptome Following Acoustic Trauma and Dexamethasone Administration Identified by a Combination of RNA-seq and DNA Microarray. Otol Neurotol 2017; 38:1032-1042. [DOI: 10.1097/mao.0000000000001373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Wangemann P, Marcus DC. Ion and Fluid Homeostasis in the Cochlea. UNDERSTANDING THE COCHLEA 2017. [DOI: 10.1007/978-3-319-52073-5_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Miyoshi T, Yamaguchi T, Ogita K, Tanaka Y, Ishibashi KI, Ito H, Kobayashi T, Nakagawa T, Ito J, Omori K, Yamamoto N. Quantitative Analysis of Aquaporin Expression Levels during the Development and Maturation of the Inner Ear. J Assoc Res Otolaryngol 2016; 18:247-261. [PMID: 28004290 DOI: 10.1007/s10162-016-0607-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 11/24/2016] [Indexed: 01/30/2023] Open
Abstract
Aquaporins (AQPs) are a family of small membrane proteins that transport water molecules across the plasma membrane along the osmotic gradient. Mammals express 13 subtypes of AQPs, including the recently reported "subcellular AQPs", AQP11 and 12. Each organ expresses specific subsets of AQP subtypes, and in the inner ear, AQPs are essential for the establishment and maintenance of two distinct fluids, endolymph and perilymph. To evaluate the contribution of AQPs during the establishment of inner ear function, we used quantitative reverse transcription polymerase chain reaction to quantify the expression levels of all known AQPs during the entire development and maturation of the inner ear. Using systematic and longitudinal quantification, we found that AQP11 was majorly and constantly expressed in the inner ear, and that the expression levels of several AQPs follow characteristic longitudinal patterns: increasing (Aqp0, 1, and 9), decreasing (Aqp6, 8, and 12), and peak of expression on E18 (Aqp2, 5, and 7). In particular, the expression level of Aqp9 increased by 70-fold during P3-P21. We also performed in situ hybridization of Aqp11, and determined the unique localization of Aqp11 in the outer hair cells. Immunohistochemistry of AQP9 revealed its localization in the supporting cells inside the organ of Corti, and in the root cells. The emergence of AQP9 expression in these cells was during P3-P21, which was coincident with the marked increase of its expression level. Combining these quantification and localization data, we discuss the possible contributions of these AQPs to inner ear function.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Kyoto, Japan
| | - Taro Yamaguchi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Neyagawa, 572-0074, Osaka, Japan
| | - Kiyokazu Ogita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Neyagawa, 572-0074, Osaka, Japan
| | - Yasuko Tanaka
- Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, 204-0004, Tokyo, Japan
| | - Ken-Ichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, 204-0004, Tokyo, Japan
| | - Hiroaki Ito
- Department of Otolaryngology, Head and Neck Surgery, Kochi Medical School, Nangoku, 783-0043, Kochi, Japan
| | - Taisuke Kobayashi
- Department of Otolaryngology, Head and Neck Surgery, Kochi Medical School, Nangoku, 783-0043, Kochi, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Kyoto, Japan
| | - Juichi Ito
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Kyoto, Japan.,Shiga Medical Center Research Institute, Moriyama, 524-0022, Shiga, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Kyoto, Japan.
| |
Collapse
|
16
|
Egami N, Kakigi A, Takeda T, Yamasoba T. Dehydration effects of a V2 antagonist on endolymphatic hydrops in guinea pigs. Hear Res 2016; 332:151-159. [DOI: 10.1016/j.heares.2015.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
|
17
|
Morphological and functional changes in a new animal model of Ménière's disease. J Transl Med 2013; 93:1001-11. [PMID: 23877650 DOI: 10.1038/labinvest.2013.91] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/20/2013] [Accepted: 06/22/2013] [Indexed: 11/09/2022] Open
Abstract
The purpose of this study was to clarify the underlying mechanism of vertiginous attacks in Ménière's disease (MD) while obtaining insight into water homeostasis in the inner ear using a new animal model. We conducted both histopathological and functional assessment of the vestibular system in the guinea-pig. In the first experiment, all animals were maintained 1 or 4 weeks after electrocauterization of the endolymphatic sac of the left ear and were given either saline or desmopressin (vasopressin type 2 receptor agonist). The temporal bones from both ears were harvested and the extent of endolymphatic hydrops was quantitatively assessed. In the second experiment, either 1 or 4 weeks after surgery, animals were assessed for balance disorders and nystagmus after the administration of saline or desmopressin. In the first experiment, the proportion of endolymphatic space in the cochlea and the saccule was significantly greater in ears that survived for 4 weeks after surgery and were given desmopressin compared with other groups. In the second experiment, all animals that underwent surgery and were given desmopressin showed spontaneous nystagmus and balance disorder, whereas all animals that had surgery but without desmopressin administration were asymptomatic. Our animal model induced severe endolymphatic hydrops in the cochlea and the saccule, and showed episodes of balance disorder along with spontaneous nystagmus. These findings suggest that administration of desmopressin can exacerbate endolymphatic hydrops because of acute V2 (vasopressin type 2 receptor)-mediated effects, and, when combined with endolymphathic sac dysfunction, can cause temporary vestibular abnormalities that are similar to the vertiginous attacks in patients with MD.
Collapse
|
18
|
Takumida M, Takumida H, Kakigi A, Egami N, Nishioka R, Anniko M. Localization of aquaporins in the mouse vestibular end organs. Acta Otolaryngol 2013; 133:804-13. [PMID: 23628076 DOI: 10.3109/00016489.2013.783717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION We found that aquaporins (AQPs) in the fluid transporting cells, such as vestibular dark cells and endolymphatic sac epithelial cells, seem to be of importance in fluid transport in the inner ear, while those in the sensory and ganglion cells may play a functional role in sensory cell transduction. OBJECTIVE Expression of AQPs (0-12) was analyzed in normal mouse vestibular end organs. METHODS CBA/J mice were used in this study. Localization of AQPs 0-12 in the vestibular end organs and endolymphatic sac was investigated by immunohistochemistry. RESULTS The AQPs were found abundantly distributed in many structures in the vestibular end organs, i.e. vestibular sensory and supporting cells, vestibular dark cells, vestibular ganglion cells, and the endolymphatic sac.
Collapse
Affiliation(s)
- Masaya Takumida
- Department of Otolaryngology, Hiroshima University Hospital, Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Conner AC, Bill RM, Conner MT. An emerging consensus on aquaporin translocation as a regulatory mechanism. Mol Membr Biol 2012; 30:1-12. [DOI: 10.3109/09687688.2012.743194] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Water channel proteins in the inner ear and their link to hearing impairment and deafness. Mol Aspects Med 2012; 33:612-37. [DOI: 10.1016/j.mam.2012.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/11/2012] [Accepted: 06/17/2012] [Indexed: 11/24/2022]
|
21
|
Takumida M, Kakigi A, Egami N, Nishioka R, Anniko M. Localization of aquaporins 1, 2, and 3 and vasopressin type 2 receptor in the mouse inner ear. Acta Otolaryngol 2012; 132:807-13. [PMID: 22768909 DOI: 10.3109/00016489.2012.662718] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION It is suggested that aquaporins (AQPs) 1, 2, and 3, and vasopressin type 2 receptors (V2Rs) in the fluid transporting cells, such as stria vascularis, vestibular dark and transitional cells, and endolymphatic sac epithelial cells, have an important role in fluid transport in the inner ear, while those in the sensory and ganglion cells may play a functional role in the sensory cell transduction system. OBJECTIVE To analyze expression of AQP1, AQP2, and AQP3 as well as V2Rs in the normal mouse inner ear. METHODS CBA/J mice were used in this study. Localization of AQP1, AQP2, AQP3, and V2Rs in the inner ear, i.e. cochlea, vestibular end organs, and endolymphatic sac, was investigated by immunohistochemistry. RESULTS The results show that AQP1, AQP2, AQP3, and V2Rs are abundantly distributed in many inner ear structures, i.e. stria vascularis, inner and outer hair cells, spiral ganglion cells, vestibular sensory and ganglion cells, vestibular dark and transitional cells, and the endolymphatic sac.
Collapse
Affiliation(s)
- Masaya Takumida
- Department of Otolaryngology, Hiroshima University Hospital, Japan.
| | | | | | | | | |
Collapse
|
22
|
Borraccia V, Sblano S, Carabellese F, De Sario R, Zefferino R, Vinci F. Stress-related temporary hearing loss--evaluation of bio-humoral parameters: forensic and criminological applications. J Forensic Sci 2012; 57:946-51. [PMID: 22494363 DOI: 10.1111/j.1556-4029.2012.02161.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The body-alarm reaction results from the activation of hypothalamic-pituitary-adrenal axis, which can lead to physio-psychological phenomena such as an exclusion/occlusion of the sense of hearing. One hypothesis to explain this alteration consists in a hydromechanical dysfunction of the internal ear attributable to antidiuretic hormone. In this study, we evaluated the perception of acoustic stimuli administered in stressful conditions in 14 phobic patients and in 20 healthy subjects, in order to assess the influence of stress on perceiving capabilities. We also measured the concentration of salivary cortisol and IL-1β and neurovegetative parameters to objectivise and quantify the physiological reactions. Our results show a worse perception of the frequencies of the human voice under stress; these findings could have a dual value: in the legal field, concerning criminal liability, and on the operative context, regarding the efficiency of verbal communication among law enforcement officers in situations inducing intense emotional stress.
Collapse
Affiliation(s)
- Vito Borraccia
- Ufficio Sanitario XI Reparto Mobile, Polizia di Stato, Bari, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Huang YD, Xia SW, Dai P, Han DY. Role of AQP1 in inner ear in motion sickness. Physiol Behav 2011; 104:749-53. [PMID: 21839760 DOI: 10.1016/j.physbeh.2011.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 11/24/2022]
Abstract
Inner ear is critical for the development of motion sickness (MS). The present work was designed to test the role of aquaporins (AQPs) in inner ear in MS. After repetitive stimulus of rotation, the MS symptom was steadily alleviated in mice. After repetitive stimulus of rotation, several AQPs mRNA levels including AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP9 in the inner ears of mice were analyzed. It was found that AQP1 mRNA level was increased remarkably, which was reconfirmed by Western blotting analysis. In addition, the relationship between AQP1 expression and MS sensitivity was studied and it was shown that AQP1 mRNA level was negatively related to MS index in mice. We sought to examine the function of AQP1 in inner ear using an RNAi approach to reduce the AQP1 protein expression in vivo. It was first observed that AQP1 knockdown in inner ear resulted in a significant increase of MS sensitivity in mice. In conclusion, after repetitive stimulus of rotation, the alleviation of MS symptom in mice was, at least in part, due to the upregulation of AQP1 expression in inner ear. In addition, the sensitivity to MS in mice was, at least in part, dependent on the expression of AQP1 in inner ear. AQP1 in inner ear plays an important role in the development of MS, and might be a potential target for the prevention or management of MS.
Collapse
Affiliation(s)
- Yi-Deng Huang
- Department of Otolaryngology Head and Neck Surgery, The 118th Hospital of PLA, Wenzhou 325000, China.
| | | | | | | |
Collapse
|
24
|
Patuzzi R. Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endolymphatic potential. Hear Res 2011; 277:4-19. [DOI: 10.1016/j.heares.2011.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/15/2010] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
|
25
|
Abstract
CONCLUSION EP4, EP2, and IP prostanoid receptors exert an otoprotective function and FP may be important for fluid homeostasis in the inner ear. OBJECTIVE To investigate the expression of prostanoid receptors in the normal mouse inner ear. METHODS CBA/J mice were used in this study. The localization of prostanoid receptors, i.e. DP, EP1, EP2, EP3, EP4, FP, IP, and TP, in the inner ear, i.e. the cochlea, vestibular end organs, endolymphatic sac, was studied by immunohistochemical techniques. RESULTS The EP4, IP, and FP prostanoid receptors were found to be abundantly distributed in many inner ear structures, i.e. stria vascularis, inner and outer hair cells, spiral ganglion cells, vestibular sensory and ganglion cells, and the endolymphatic sac. EP2 and EP3 are also localized in the inner ear whereas DP, EP1, and TP are only weakly expressed.
Collapse
Affiliation(s)
- Masaya Takumida
- Department of Otolaryngology, Hiroshima University Hospital, Hiroshima, Japan.
| | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To describe ion and water homeostatic mechanisms in the inner ear, how they are compromised in hearing disorders, and what treatments are employed to restore auditory function. RECENT FINDINGS The ion and water transport functions in the inner ear help maintain the proper endolymph K concentration required for hair cell function. Gene defects and idiopathic alterations in these transport functions cause hearing loss, but often the underlying cause is unknown. Current therapies largely involve glucocorticoid treatment, although the mechanisms of restoration are often undeterminable. Recent studies of these ion homeostatic functions in the ear are characterizing their cellular and molecular control. It is anticipated that future management of these hearing disorders will be more targeted to the cellular processes involved and improve the likelihood of hearing recovery. SUMMARY A better understanding of the ion homeostatic processes in the ear will permit more effective management of their associated hearing disorders. Sufficient insight into many homeostatic hearing disorders has now been attained to usher in a new era of better therapies and improved clinical outcomes.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Department of Otolaryngology Head Neck Surgery, Oregon Health & Science University, Portland, Oregon 97239-3098, USA.
| |
Collapse
|
27
|
Current Opinion in Otolaryngology & Head and Neck Surgery. Current world literature. Curr Opin Otolaryngol Head Neck Surg 2010; 18:466-74. [PMID: 20827086 DOI: 10.1097/moo.0b013e32833f3865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|