1
|
Liu YC, Xu K. Macrophage-related immune responses in inner ear: a potential therapeutic target for sensorineural hearing loss. Front Neurosci 2024; 17:1339134. [PMID: 38274500 PMCID: PMC10808290 DOI: 10.3389/fnins.2023.1339134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Hearing loss is the most common sensory disorder in human beings. Cochlear sensory cells are the basis of hearing. Cochlear sensory cells suffer from various acute or chronic injuries, such as excessive sound stimulation, ototoxic drugs, and age-related degeneration. In response to these stresses, the cochlea develops an immune response. In recent years, studies have shown that the immune response of the inner ear has been regarded as one of the important pathological mechanisms of inner ear injury. Therapeutic interventions for inflammatory responses can effectively alleviate different types of inner ear injury. As the main immune cells in the inner ear, macrophages are involved in the process of inner ear injury caused by various exogenous factors. However, its specific role in the immune response of the inner ear is still unclear. This review focuses on discusses the dynamic changes of macrophages during different types of inner ear injury, and clarifies the potential role of macrophage-related immune response in inner ear injury.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Grzybowski M, Malfeld K, Lenarz T, Scheper V, Schurzig D. Optimization of pharmacological interventions in the guinea pig animal model-a new approach to calculate the perilymph volume of the scala tympani. Front Neurosci 2023; 17:1297046. [PMID: 38161797 PMCID: PMC10754993 DOI: 10.3389/fnins.2023.1297046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Objective The guinea pig serves as a well-established animal model for inner ear research, offering valuable insights into the anatomy, physiology, and therapeutic interventions of the auditory system. However, the heterogeneity of results observed in both in-vivo experiments and clinical studies poses challenges in understanding and optimizing pharmacotherapy outcomes. This heterogeneity may be due to individual differences in the size of the guinea pig cochlea and thus in the volume of the scala tympani (ST), which can lead to different drug concentrations in the ST, a fact that has been largely overlooked thus far. To address this issue, we aimed to develop an approach for calculating the individual volume of perilymph within the ST before and after cochlear implant insertion. Method In this study, high-resolution μCT images of a total of n = 42 guinea pig temporal bones were used to determine the volume of the ST. We compared fresh, frozen, and fixed tissues from both colored and albino strains to evaluate the potential influence of tissue condition and strain on the results. Results Our findings demonstrate a variability in mean ST volume with a relative standard deviation (RSD) of 14.7%, comparable to studies conducted with humans (range RSD: 5 to 20%). This indicates that the guinea pig cochlea exhibits similar variability to that of the human cochlea. Consequently, it is crucial to consider this variability when designing and conducting studies utilizing the guinea pig as an animal model. Furthermore, we successfully developed a tool capable of estimating ST volume without the need for manual segmentation, employing two geometric parameters, basal diameter (A) and width (B) of the cochlea, corresponding to the cochlear footprint. The tool is available for free download and use on our website. Conclusion This novel approach provides researchers with a valuable tool to calculate individual ST volume in guinea pigs, enabling more precise dosing strategies and optimization of drug concentrations for pharmacotherapy studies. Moreover, our study underscores the importance of acknowledging and accounting for inter-individual variability in animal models to enhance the translational relevance and applicability of research outcomes in the field of inner ear investigations.
Collapse
Affiliation(s)
- Marleen Grzybowski
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- German Hearing Center Hannover, Hannover Medical School, Hannover, Germany
| | - Kathrin Malfeld
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- German Hearing Center Hannover, Hannover Medical School, Hannover, Germany
- Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Daniel Schurzig
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
- MED-EL Research Center, Hannover, Germany
| |
Collapse
|
3
|
Delaney DS, Liew LJ, Lye J, Atlas MD, Wong EYM. Overcoming barriers: a review on innovations in drug delivery to the middle and inner ear. Front Pharmacol 2023; 14:1207141. [PMID: 37927600 PMCID: PMC10620978 DOI: 10.3389/fphar.2023.1207141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Despite significant advances in the development of therapeutics for hearing loss, drug delivery to the middle and inner ear remains a challenge. As conventional oral or intravascular administration are ineffective due to poor bioavailability and impermeability of the blood-labyrinth-barrier, localized delivery is becoming a preferable approach for certain drugs. Even then, localized delivery to the ear precludes continual drug delivery due to the invasive and potentially traumatic procedures required to access the middle and inner ear. To address this, the preclinical development of controlled release therapeutics and drug delivery devices have greatly advanced, with some now showing promise clinically. This review will discuss the existing challenges in drug development for treating the most prevalent and damaging hearing disorders, in particular otitis media, perforation of the tympanic membrane, cholesteatoma and sensorineural hearing loss. We will then address novel developments in drug delivery that address these including novel controlled release therapeutics such as hydrogel and nanotechnology and finally, novel device delivery approaches such as microfluidic systems and cochlear prosthesis-mediated delivery. The aim of this review is to investigate how drugs can reach the middle and inner ear more efficiently and how recent innovations could be applied in aiding drug delivery in certain pathologic contexts.
Collapse
Affiliation(s)
- Derek S. Delaney
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Lawrence J. Liew
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Joey Lye
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Elaine Y. M. Wong
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley, WA, Australia
| |
Collapse
|
4
|
Isaakidou A, Apachitei I, Fratila-Apachitei LE, Zadpoor AA. High-Precision 3D Printing of Microporous Cochlear Implants for Personalized Local Drug Delivery. J Funct Biomater 2023; 14:494. [PMID: 37888159 PMCID: PMC10607433 DOI: 10.3390/jfb14100494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Hearing loss is a highly prevalent multifactorial disorder affecting 20% of the global population. Current treatments using the systemic administration of drugs are therapeutically ineffective due to the anatomy of the cochlea and the existing blood-labyrinth barrier. Local drug delivery systems can ensure therapeutic drug concentrations locally while preventing adverse effects caused by high dosages of systemically administered drugs. Here, we aimed to design, fabricate, and characterize a local drug delivery system for the human cochlea. The design was relevant to the size of the human ear, included two different shapes, and incorporated two different microporous structures acting as reservoirs for drug loading and release. The four cochlear implant designs were printed using the two-photon polymerization (2PP) technique and the IP-Q photoresist. The optimized 2PP process enabled the fabrication of the cochlear implants with great reproducibility and shape fidelity. Rectangular and cylindrical implants featuring cylindrical and tapered tips, respectively, were successfully printed. Their outer dimensions were 0.6 × 0.6 × 2.4 mm3 (L × W × H). They incorporated internal porous networks that were printed with high accuracy, yielding pore sizes of 17.88 ± 0.95 μm and 58.15 ± 1.62 μm for the designed values of 20 μm and 60 μm, respectively. The average surface roughness was 1.67 ± 0.24 μm, and the water contact angle was 72.3 ± 3.0°. A high degree of polymerization (~90%) of the IP-Q was identified after printing, and the printed material was cytocompatible with murine macrophages. The cochlear implants designed and 3D printed in this study, featuring relevant sizes for the human ear and tunable internal microporosity, represent a novel approach for personalized treatment of hearing loss through local drug delivery.
Collapse
Affiliation(s)
- Aikaterini Isaakidou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands; (I.A.); (A.A.Z.)
| | | | - Lidy Elena Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands; (I.A.); (A.A.Z.)
| | | |
Collapse
|
5
|
The Augmented Cochlear Implant: a Convergence of Drugs and Cochlear Implantation for the Treatment of Hearing Loss. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-022-00426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Rahman MT, Chari DA, Ishiyama G, Lopez I, Quesnel AM, Ishiyama A, Nadol JB, Hansen MR. Cochlear implants: Causes, effects and mitigation strategies for the foreign body response and inflammation. Hear Res 2022; 422:108536. [PMID: 35709579 PMCID: PMC9684357 DOI: 10.1016/j.heares.2022.108536] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Cochlear implants provide effective auditory rehabilitation for patients with severe to profound sensorineural hearing loss. Recent advances in cochlear implant technology and surgical approaches have enabled a greater number of patients to benefit from this technology, including those with significant residual low frequency acoustic hearing. Nearly all cochleae implanted with a cochlear implant electrode array develop an inflammatory and fibrotic response. This tissue reaction can have deleterious consequences for implant function, residual acoustic hearing, and the development of the next generation of cochlear prosthetics. This article reviews the current understanding of the inflammatory/foreign body response (FBR) after cochlear implant surgery, its impact on clinical outcome, and therapeutic strategies to mitigate this response. Findings from both in human subjects and animal models across a variety of species are highlighted. Electrode array design, surgical techniques, implant materials, and the degree and type of electrical stimulation are some critical factors that affect the FBR and inflammation. Modification of these factors and various anti-inflammatory pharmacological interventions have been shown to mitigate the inflammatory/FBR response. Ongoing and future approaches that seek to limit surgical trauma and curb the FBR to the implanted biomaterials of the electrode array are discussed. A better understanding of the anatomical, cellular and molecular basis of the inflammatory/FBR response after cochlear implantation has the potential to improve the outcome of current cochlear implants and also facilitate the development of the next generation of neural prostheses.
Collapse
Affiliation(s)
- Muhammad T Rahman
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA
| | - Divya A Chari
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Gail Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Ivan Lopez
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Alicia M Quesnel
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Akira Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Joseph B Nadol
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
7
|
Abstract
INTRODUCTION More than 5% of the world's population have a disabling hearing loss which can be managed by hearing aids or implanted electrical devices. However, outcomes are highly variable, and the sound perceived by recipients is far from perfect. Sparked by the discovery of progenitor cells in the cochlea and rapid progress in drug delivery to the cochlea, biological and pharmaceutical therapies are currently in development to improve the function of the cochlear implant or eliminate the need for it altogether. AREAS COVERED This review highlights progress in emerging regenerative strategies to restore hearing and adjunct therapies to augment the cochlear implant. Novel approaches include the reprogramming of progenitor cells to restore the sensory hair cell population in the cochlea, gene therapy and gene editing to treat hereditary and acquired hearing loss. A detailed review of optogenetics is also presented as a technique that could enable optical stimulation of the spiral ganglion neurons, replacing or complementing electrical stimulation. EXPERT OPINION Increasing evidence of substantial reversal of hearing loss in animal models, alongside rapid advances in delivery strategies to the cochlea and learnings from clinical trials will amalgamate into a biological or pharmaceutical therapy to replace or complement the cochlear implant.
Collapse
Affiliation(s)
- Elise Ajay
- Bionics Institute, East Melbourne, Victoria, Australia.,University of Melbourne, Department of Engineering
| | | | - Rachael Richardson
- Bionics Institute, East Melbourne, Victoria, Australia.,University of Melbourne, Medical Bionics Department, Parkville, Victoria, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), East Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Kunelskaya NL, Garov EV, Garova EE, Yanyushkina ES, Nikitkina YY, Manaenkova EA, Pryakhina MA, Kovtun OV. [Glucocorticosteroids in the treatment of acute neurosensory hearing loss. The current state of the problem. Part 2]. Vestn Otorinolaringol 2022; 87:70-74. [PMID: 36404694 DOI: 10.17116/otorino20228705170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Modern literature data are presented on the choice of a drug for hormonal therapy in acute neurosensory hearing loss of various origins, the doses used for systemic therapy, the features and methods of intratympanic administration of glucocorticosteroids, and the evaluation of the effectiveness of treatment with this group of drugs.
Collapse
Affiliation(s)
- N L Kunelskaya
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow, Russia
- Russian National Medical Research University N.I. Pirogova, Moscow, Russia
| | - E V Garov
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow, Russia
- Russian National Medical Research University N.I. Pirogova, Moscow, Russia
| | - E E Garova
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow, Russia
| | - E S Yanyushkina
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow, Russia
| | - Ya Yu Nikitkina
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow, Russia
| | - E A Manaenkova
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow, Russia
| | - M A Pryakhina
- Russian National Medical Research University N.I. Pirogova, Moscow, Russia
| | - O V Kovtun
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow, Russia
| |
Collapse
|
9
|
Jaudoin C, Carré F, Gehrke M, Sogaldi A, Steinmetz V, Hue N, Cailleau C, Tourrel G, Nguyen Y, Ferrary E, Agnely F, Bochot A. Transtympanic injection of a liposomal gel loaded with N-acetyl-L-cysteine: A relevant strategy to prevent damage induced by cochlear implantation in guinea pigs? Int J Pharm 2021; 604:120757. [PMID: 34058306 DOI: 10.1016/j.ijpharm.2021.120757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023]
Abstract
Patients with residual hearing can benefit from cochlear implantation. However, insertion can damage cochlear structures and generate oxidative stress harmful to auditory cells. The antioxidant N-acetyl-L-cysteine (NAC) is a precursor of glutathione (GSH), a powerful endogenous antioxidant. NAC local delivery to the inner ear appeared promising to prevent damage after cochlear implantation in animals. NAC-loaded liposomal gel was specifically designed for transtympanic injection, performed both 3 days before and on the day of surgery. Hearing thresholds were recorded over 30 days in implanted guinea pigs with and without NAC. NAC, GSH, and their degradation products, N,N'-diacetyl-L-cystine (DiNAC) and oxidized glutathione (GSSG) were simultaneously quantified in the perilymph over 15 days in non-implanted guinea pigs. For the first time, endogenous concentrations of GSH and GSSG were determined in the perilymph. Although NAC-loaded liposomal gel sustained NAC release in the perilymph over 15 days, it induced hearing loss in both implanted and non-implanted groups with no perilymphatic GSH increase. Under physiological conditions, NAC appeared poorly stable within liposomes. As DiNAC was quantified at concentrations which were twice as high as NAC in the perilymph, it was hypothesized that DiNAC could be responsible for the adverse effects on hearing.
Collapse
Affiliation(s)
- Céline Jaudoin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Fabienne Carré
- Inserm/Institut Pasteur, Institut de l'audition, Technologies et thérapie génique pour la surdité, 63 rue de Charenton, 75012 Paris, France.
| | - Maria Gehrke
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Audrey Sogaldi
- UMS IPSIT, SAMM, Faculté de Pharmacie, Université Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Vincent Steinmetz
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France.
| | - Nathalie Hue
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France.
| | - Catherine Cailleau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Guillaume Tourrel
- Oticon Medical/Neurelec SAS, Research & Technology Department, 2720 chemin Saint-Bernard, Vallauris, France.
| | - Yann Nguyen
- Inserm/Institut Pasteur, Institut de l'audition, Technologies et thérapie génique pour la surdité, 63 rue de Charenton, 75012 Paris, France; Sorbonne Université, AP-HP, GHU Pitié-Salpêtrière, DMU ChIR, Service ORL, GRC Robotique et Innovation Chirurgicale, 47-83, boulevard de l'hôpital, 75013 Paris, France.
| | - Evelyne Ferrary
- Inserm/Institut Pasteur, Institut de l'audition, Technologies et thérapie génique pour la surdité, 63 rue de Charenton, 75012 Paris, France.
| | - Florence Agnely
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Amélie Bochot
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
10
|
A new method for three-dimensional immunofluorescence study of the cochlea. Hear Res 2020; 392:107956. [PMID: 32464455 DOI: 10.1016/j.heares.2020.107956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 01/07/2023]
Abstract
Visualisation of cochlear histopathology in three-dimensions has been long desired in the field of hearing research. This paper outlines a technique that has made this possible and shows a research application in the field of hearing protection after cochlear implantation. The technique utilises robust immunofluorescent labelling followed by effective tissue clearing and fast image acquisition using Light Sheet Microscopy. We can access the health of individual components by immunofluorescent detection of proteins such as myosin VIIa to look at cochlear hair cells, NaKATPase alpha 3 to look at spiral ganglion neurons, and IBA1 to look at macrophages within a single cochlea, whilst maintaining the integrity of fine membranous structures and keeping the cochlear implant in place. This allows the tissue response to cochlear implantation to be studied in detail, including the immune reaction to the implant and the impact on the structure and health of neural components such as hair cells. This technique reduces time and labour required for sectioning of cochleae and can allow visualisation of cellular detail. Use of image analysis software allows conversion of high-resolution image stacks into three-dimensional interactive data sets so volumes and numbers of surfaces can be measured. Immunofluorescent whole cochlea labelling and Light Sheet Microscopy have the capacity to be applied to many questions in hearing research of both the cochlea and vestibular system.
Collapse
|
11
|
Bielefeld EC, Harrison RT, Riley DeBacker J. Pharmaceutical otoprotection strategies to prevent impulse noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3790. [PMID: 31795721 DOI: 10.1121/1.5132285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the ongoing challenges for hearing researchers is successful protection of the ear from noise injury. For decades, the most effective methods have been based on modifying the acoustic properties of the noise, either by reducing noise output from various sources, interfering in the acoustic exposure path with environmental controls, or altering the noise dose for the individual with personal hearing protection devices. Because of the inefficiencies of some of the acoustic modification procedures, pharmaceutical otoprotection is targeted at making the cochlea less susceptible to injury. Short-duration, high-level impulse noises, typically caused by small-scale explosions, cause different sets of injuries in the ear than long-duration, low-variance noise exposures. Therefore, the expectation is that the ears exposed to impulse noise may need different pharmaceutical interventions, both in type of compounds used and the time course of administration of the compounds. The current review discusses four different classes of compounds that have been tested as impulse noise otoprotectants. In the process of describing those experiments, particular emphasis is placed on the acoustic properties of the impulses used, with the goal of providing context for evaluating the relevance of these different models to human impulse noise-induced hearing loss.
Collapse
Affiliation(s)
- Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, Ohio 43220, USA
| | - Ryan T Harrison
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, Ohio 43220, USA
| | - J Riley DeBacker
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, Ohio 43220, USA
| |
Collapse
|
12
|
Needham K, Stathopoulos D, Newbold C, Leavens J, Risi F, Manouchehri S, Durmo I, Cowan R. Electrode impedance changes after implantation of a dexamethasone-eluting intracochlear array. Cochlear Implants Int 2019; 21:98-109. [DOI: 10.1080/14670100.2019.1680167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Karina Needham
- The HEARing CRC, Carlton, Australia
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, Australia
- Otolaryngology, Department of Surgery, The University of Melbourne, East Melbourne, Australia
| | - Dimitra Stathopoulos
- The HEARing CRC, Carlton, Australia
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, Australia
| | - Carrie Newbold
- The HEARing CRC, Carlton, Australia
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, Australia
- Otolaryngology, Department of Surgery, The University of Melbourne, East Melbourne, Australia
| | - Jason Leavens
- Cochlear Ltd, Macquarie University, Sydney, Australia
| | - Frank Risi
- Cochlear Ltd, Macquarie University, Sydney, Australia
| | | | - Irfan Durmo
- Cochlear Ltd, Macquarie University, Sydney, Australia
| | - Robert Cowan
- The HEARing CRC, Carlton, Australia
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, Australia
| |
Collapse
|
13
|
Honeder C, Zhu C, Gausterer JC, Schöpper H, Ahmadi N, Saidov N, Nieratschker M, Gabor F, Arnoldner C. Sustained-Release Triamcinolone Acetonide Hydrogels Reduce Hearing Threshold Shifts in a Model for Cochlear Implantation with Hearing Preservation. Audiol Neurootol 2019; 24:237-244. [PMID: 31574511 DOI: 10.1159/000501331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/04/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION In recent years, the preservation of residual hearing has become a major factor in patients undergoing cochlear implantation (CI). In studies attempting to pharmaceutically improve hearing preservation rates, glucocorticoids (GCs) applied perioperatively in many institutions have emerged as a promising treatment regimen. Although dexamethasone is most commonly used and has been applied successfully by various research groups, recently pharmacological properties have been reported to be relatively unsuitable for topical delivery to the inner ear. Consequently other glucocorticoids merit further evaluation. The aim of this study was therefore to evaluate the otoprotective effects of the topical application of a sustained-release triamcinolone acetonide (TAAC) hydrogel in CI with hearing preservation. METHODS Normal-hearing pigmented guinea pigs were randomized into a group receiving a single dose of a 6% TAAC poloxamer 407 hydrogel, a group receiving a 30% TAAC hydrogel and a control group. All hydrogel applications were performed 1 day prior to CI. After a cochleostomy was drilled, a specifically designed silicone electrode was inserted into the scala tympani for 5 mm. Frequency-specific compound action potentials of the auditory nerve (0.5-32 kHz) were measured pre- and directly postoperatively as well as on days 3, 7, 14, 21, and 28. Finally, temporal bones were harvested for histological evaluation. RESULTS Application of the TAAC hydrogels resulted in significantly reduced hearing threshold shifts in low, middle and high frequencies and improved spiral ganglion cell survival in the second turn of the cochlea. Outer hair cell numbers in the basal and second turn of the cochlea were slightly reduced after TAAC application. CONCLUSION In summary, we were able to demonstrate functional benefits of a single preoperative application of a TAAC hydrogel in a guinea pig model for CI, which persisted until the end of the observational period, that is, 28 days after surgery.
Collapse
Affiliation(s)
- Clemens Honeder
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Chengjing Zhu
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Julia Clara Gausterer
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Hanna Schöpper
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Navid Ahmadi
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Nodir Saidov
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Michael Nieratschker
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria,
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Jang J, Kim J, Kim YC, Kim S, Chou N, Lee S, Choung Y, Kim S, Brugger J, Choi H, Jang JH. A 3D Microscaffold Cochlear Electrode Array for Steroid Elution. Adv Healthc Mater 2019; 8:e1900379. [PMID: 31532887 DOI: 10.1002/adhm.201900379] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/04/2019] [Indexed: 11/05/2022]
Abstract
In cochlear implants, the electrode insertion trauma during surgery can cause damage residual hearing. Preserving the residual hearing is an important challenge and the localized administration of drugs, such as steroids, is one of the most promising ways, but remains a challenge. Here, a microscaffold cochlear electrode array (MiSCEA) consisting of a microfabricated flexible electrode array and a 3D microscaffold for steroid reservoir is reported. The MiSCEA without loaded drug is tested by measuring the electrically evoked auditory brainstem response of the cochlea in guinea pigs (n = 4). The scaffold is then coated with steroid (dexamethasone) encapsulated in polylactic-co-glycolic acid and the continuous release of the steroid into artificial perilymph during six weeks is monitored. The steroid-containing scaffolds are then implanted into guinea pigs (n = 4) and threshold shifts are analyzed for four weeks by measuring the acoustically evoked auditory brainstem response. The threshold shifts tend to be lower in the group implanted with the steroid-containing MiSCEAs. The feasibility of 3D MiSCEA opens up the development of potential next-generation cochlear electrode with improved steroid release dynamics into cochlea.
Collapse
Affiliation(s)
- Jongmoon Jang
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobot Research CenterDGIST Daegu 42988 Republic of Korea
- Microsystem LaboratoryÉcole Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH‐1015 Switzerland
| | - Jin‐young Kim
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobot Research CenterDGIST Daegu 42988 Republic of Korea
| | - Yeong Cheol Kim
- Department of OtolaryngologyAjou University School of Medicine Suwon 16499 Republic of Korea
- Department of Biomedical SciencesBK21 Plus Research Center for Biomedical SciencesAjou University Graduate School of Medicine Suwon 16499 Republic of Korea
| | - Sangwon Kim
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobot Research CenterDGIST Daegu 42988 Republic of Korea
| | - Namsun Chou
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Seungmin Lee
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobot Research CenterDGIST Daegu 42988 Republic of Korea
| | - Yun‐Hoon Choung
- Department of OtolaryngologyAjou University School of Medicine Suwon 16499 Republic of Korea
- Department of Biomedical SciencesBK21 Plus Research Center for Biomedical SciencesAjou University Graduate School of Medicine Suwon 16499 Republic of Korea
| | - Sohee Kim
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Juergen Brugger
- Microsystem LaboratoryÉcole Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH‐1015 Switzerland
| | - Hongsoo Choi
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobot Research CenterDGIST Daegu 42988 Republic of Korea
| | - Jeong Hun Jang
- Department of OtolaryngologyAjou University School of Medicine Suwon 16499 Republic of Korea
| |
Collapse
|
15
|
Glucocorticoid for Hearing Preservation After Cochlear Implantation: A Systemic Review and Meta-analysis of Animal Studies. Otol Neurotol 2019; 40:1178-1185. [DOI: 10.1097/mao.0000000000002383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
16
|
Cochlear Glucocorticoid Receptor and Serum Corticosterone Expression in a Rodent Model of Noise-induced Hearing Loss: Comparison of Timing of Dexamethasone Administration. Sci Rep 2019; 9:12646. [PMID: 31477769 PMCID: PMC6718671 DOI: 10.1038/s41598-019-49133-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoid (GC) is a steroid hormone secreted from the adrenal cortex in response to stress, which acts by binding to cytoplasmic glucocorticoid receptors (GRs). Dexamethasone (DEX) is a synthetic GC exhibiting immunosuppressive effects in both human and rodent models of hearing loss. While clinical evidence has shown the effectiveness of DEX for treatment of various inner ear diseases, its mechanisms of action and the optimal timing of treatment are not well understood. In the present study, intergroup comparisons were conducted based on the time point of treatment with DEX: (1) pretreatment; (2) posttreatment; and (3) pre&post-noise. The pre&post DEX treatment group showed a significant improvement in threshold shift at 1 day post-noise exposure as compared to the TTS (transient threshold shift)-only group at 8 and 16 kHz. Both TTS and PTS (permanent threshold shift) significantly reduced cochlear GR mRNA expression and increased serum corticosterone and cochlear inflammatory cytokines. The pre&post DEX treatment group showed a significant decrease in serum corticosterone level as compared to other DEX treatment groups and TTS-treated group at 3 days after acoustic trauma. Our results suggest that the timing of DEX administration differentially modulates systemic steroid levels, GR expression and cochlear cytokine expression.
Collapse
|
17
|
Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther 2019; 200:190-209. [PMID: 31075354 DOI: 10.1016/j.pharmthera.2019.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
An estimated 466 million people suffer from hearing loss worldwide. Sensorineural hearing loss is characterized by degeneration of key structures of the sensory pathway in the cochlea such as the sensory hair cells, the primary auditory neurons and their synaptic connection to the hair cells - the ribbon synapse. Various strategies to protect or regenerate these sensory cells and structures are the subject of intensive research. Yet despite recent advances in our understandings of the capacity of the cochlea for repair and regeneration there are currently no pharmacological or biological interventions for hearing loss. Current research focusses on localized cochlear drug, gene and cell-based therapies. One of the more promising drug-based therapies is based on neurotrophic factors for the repair of the ribbon synapse after noise exposure, as well as preventing loss of primary auditory neurons and regrowth of the auditory neuron fibers after severe hearing loss. Drug therapy delivery technologies are being employed to address the specific needs of neurotrophin and other therapies for hearing loss that include the need for high doses, long-term delivery, localised or cell-specific targeting and techniques for their safe and efficacious delivery to the cochlea. Novel biomaterials are enabling high payloads of drugs to be administered to the cochlea with subsequent slow-release properties that are proving to be beneficial for treating hearing loss. In parallel, new gene therapy technologies are addressing the need for cell specificity and high efficacy for the treatment of both genetic and acquired hearing loss with promising reports of hearing recovery. Some biomaterials and cell therapies are being used in conjunction with the cochlear implant ensuring therapeutic benefit to the primary neurons during electrical stimulation. This review will introduce the auditory system, hearing loss and the potential for repair and regeneration in the cochlea. Drug delivery to the cochlea will then be reviewed, with a focus on new biomaterials, gene therapy technologies, cell therapy and the use of the cochlear implant as a vehicle for drug delivery. With the current pre-clinical research effort into therapies for hearing loss, including clinical trials for gene therapy, the future for the treatment for hearing loss is looking bright.
Collapse
Affiliation(s)
- Yutian Ma
- Bionics Institute, East Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia; University of Melbourne, Department of Chemical Engineering, Parkville, Victoria, Australia
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Robert K Shepherd
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Rachael T Richardson
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia.
| |
Collapse
|
18
|
Ralli M, Rolesi R, Anzivino R, Turchetta R, Fetoni AR. Acquired sensorineural hearing loss in children: current research and therapeutic perspectives. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:500-508. [PMID: 29327735 PMCID: PMC5782428 DOI: 10.14639/0392-100x-1574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/02/2017] [Indexed: 01/03/2023]
Abstract
The knowledge of mechanisms responsible for acquired sensorineural hearing loss in children, such as viral and bacterial infections, noise exposure, aminoglycoside and cisplatin ototoxicity, is increasing and progressively changing the clinical management of affected patients. Viral infections are by far the most relevant cause of acquired hearing loss, followed by aminoglycoside and platinum derivative ototoxicity; moreover, cochlear damage induced by noise overexposure, mainly in adolescents, is an emerging topic. Pharmacological approaches are still challenging to develop a truly effective cochlear protection; however, the use of steroids, antioxidants, antiviral drugs and other small molecules is encouraging for clinical practice. Most of evidence on the effectiveness of antioxidants is still limited to experimental models, while the use of corticosteroids and antiviral drugs has a wide correspondence in literature but with controversial safety. Future therapeutic perspectives include innovative strategies to transport drugs into the cochlea, such as molecules incorporated in nanoparticles that can be delivered to a specific target. Innovative approaches also include the gene therapy designed to compensate for abnormal genes or to make proteins by introducing genetic material into cells; finally, regenerative medicine (including stem cell approaches) may play a central role in the upcoming years in hearing preservation and restoration even if its role in the inner ear is still debated.
Collapse
Affiliation(s)
- M Ralli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Italy
| | - R Rolesi
- Department of Otolaryngology, Catholic University of Sacred Heart, Rome, Italy
| | - R Anzivino
- Department of Otolaryngology, Catholic University of Sacred Heart, Rome, Italy
| | - R Turchetta
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - A R Fetoni
- Department of Otolaryngology, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
19
|
Creber NJ, Eastwood HT, Hampson AJ, Tan J, O'Leary SJ. A comparison of cochlear distribution and glucocorticoid receptor activation in local and systemic dexamethasone drug delivery regimes. Hear Res 2018; 368:75-85. [DOI: 10.1016/j.heares.2018.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/10/2018] [Accepted: 03/15/2018] [Indexed: 12/26/2022]
|
20
|
Chambers S, Newbold C, Stathopoulos D, Needham K, Miller C, Risi F, Enke YL, Timbol G, Cowan R. Protecting against electrode insertion trauma using dexamethasone. Cochlear Implants Int 2018; 20:1-11. [PMID: 30126345 DOI: 10.1080/14670100.2018.1509531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To compare the benefits of a dexamethasone-eluting array for hearing preservation and cochlear histopathology in low trauma (soft-surgery) and high trauma models of cochlear implant surgery. METHODS Adult guinea pigs were implanted with an intra-cochlear array using two different surgical procedures: either a soft-surgery approach or following generation of electrode insertion trauma (high trauma). Two methods of dexamethasone delivery were evaluated: elution from an electrode array alone, and elution from a cochlear implant electrode array in combination with a pre-operative systemic injection. All electrode arrays were implanted for a period of 4 weeks. Outcome measures at 4 weeks post-implantation included auditory brainstem response (ABR) thresholds, histological analysis of spiral ganglion neuron density, fibrotic tissue, new bone growth, and cochlear damage. RESULTS Animals exposed to high surgical trauma showed greater hearing loss than those in the low trauma model, irrespective of the presence of dexamethasone. Whilst the area of intra-cochlear fibrotic tissue growth post-implantation was also independent of dexamethasone administration, new bone growth was significantly reduced in its presence. Our high trauma model effectively obliterated the organ of Corti and significantly reduced spiral ganglion neuron densities in the lower basal turn. This trauma-induced reduction in spiral ganglion neuron survival decreased with the inclusion of a dexamethasone-eluting array. A pre-operative systemic injection of dexamethasone did not significantly improve any outcome measures beyond those provided with a dexamethasone-eluting array alone. CONCLUSION Dexamethasone-eluting intra-cochlear arrays may inhibit osteoneogenesis, and reduce spiral ganglion neuron loss following traumatic cochlear implantation.
Collapse
Affiliation(s)
- Scott Chambers
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia
| | - Carrie Newbold
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia.,c Otolaryngology, Department of Surgery , The University of Melbourne , East Melbourne , Australia
| | - Dimitra Stathopoulos
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia
| | - Karina Needham
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia.,c Otolaryngology, Department of Surgery , The University of Melbourne , East Melbourne , Australia
| | - Chris Miller
- d Cochlear Ltd at Macquarie University , Sydney , NSW , Australia
| | - Frank Risi
- d Cochlear Ltd at Macquarie University , Sydney , NSW , Australia
| | - Ya Lang Enke
- d Cochlear Ltd at Macquarie University , Sydney , NSW , Australia
| | - Godofredo Timbol
- d Cochlear Ltd at Macquarie University , Sydney , NSW , Australia
| | - Robert Cowan
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia
| |
Collapse
|
21
|
Creber NJ, Eastwood HT, Hampson AJ, Tan J, O'Leary SJ. Adjuvant agents enhance round window membrane permeability to dexamethasone and modulate basal to apical cochlear gradients. Eur J Pharm Sci 2018; 126:69-81. [PMID: 30107228 DOI: 10.1016/j.ejps.2018.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/22/2018] [Accepted: 08/09/2018] [Indexed: 01/09/2023]
Abstract
Glucocorticoids have direct anti-inflammatory, anti-oxidant and anti-apoptotic effects on cochlear hair cells. Cochlear glucocorticoid therapy has gained particular attention for its ability to enhance the protection of residual hearing following hearing preservation cochlear implantation. Local drug delivery methods achieve high drug concentrations within the inner ear fluids but are reliant upon diffusion across the round window membrane. Diffusion has been shown to demonstrate large individual variability. This study explores the role of "adjuvant agents", which when administered with glucocorticoids, enhance inner ear absorption and distribution. Guinea pig cochleae were administered either dexamethasone alone or in combination with hyaluronic acid, histamine, or combination histamine and hyaluronic acid, targeted at the round window membrane. Control subjects received saline. Perilymph was sampled from the cochlear apex, and basal to apical dexamethasone concentrations recorded with mass spectroscopy. Cochleae were harvested, and immunohistochemistry employed to explore dexamethasone tissue penetration and distribution. Basal to apical gradients were observed along the scala tympani, with higher dexamethasone concentrations observed at the cochlear base. Gradients were more pronounced and uniform when administered on a hyaluronic acid sponge, while histamine increased absolute concentrations reaching the inner ear. Tissue penetration correlated with perilymph concentration. Our results demonstrate that adjuvant agents can be employed to enhance dexamethasone absorption and distribution in the inner ear, thus proposing therapeutic strategies that may enhance steroid facilitated hearing protection.
Collapse
Affiliation(s)
- Nathan J Creber
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia.
| | - Hayden T Eastwood
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Amy J Hampson
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Justin Tan
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Stephen J O'Leary
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia; Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| |
Collapse
|
22
|
Abstract
Drug delivery to the inner ear is an ideal method to treat a wide variety of otologic conditions. A broad range of potential applications is just beginning to be explored. New approaches combine principles of inner ear pharmacokinetics with emerging technologies of drug delivery including novel delivery systems, drug-device combinations, and new categories of drugs. Strategies include cell-specific targeting, manipulation of gene expression, local activation following systemic delivery, and use of stem cells, viral vectors, and gene editing systems. Translation of these therapies to the clinic remains challenging given the potential risks of intracochlear and intralabyrinthine trauma, our limited understanding of the etiologies of particular inner ear disorders, and paucity of accurate diagnostic tools at the cellular level. This review provides an overview of future methods, delivery systems, disease targets, and clinical considerations required for translation to clinical medicine.
Collapse
|
23
|
Xu M, Ma D, Chen D, Cai J, He Q, Shu F, Tang J, Zhang H. Preparation, characterization and application research of a sustained dexamethasone releasing electrode coating for cochlear implantation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:16-26. [PMID: 29853079 DOI: 10.1016/j.msec.2018.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 03/24/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
Cochlear inflammatory response after cochlear implantation (CI) is an important mechanism for implantation trauma and hearing loss. The hearing loss was also caused by damage to auditory hair cells (HCs), whereas ion homeostasis within the cochlea can ensure survival of HCs. In our study, pure hyaluronic acid (HA) was crosslinked with 1, 4-butanediol diglycidyl ether (BDDE) and the successful preparation of the cross-linked hydrogel (CHA) was confirmed by rheological characteristics and FTIR spectra. Artificial perilymph (APL) was prepared to simulate the ion homeostasis microenvironment within scala tympani of human cochlear, and served as the major component of artificial perilymph soaked CHA (APL-CHA). The conductivity experiment indicated that APL-CHA is more suitable to the requirements of the electrical conductivity in scala tympani. The electrode coating process found that the extrusion coating method have advantages of controllable adhesive capacity of APL-CHA, uniform coating thickness and smooth surface as compared to common method. Due to CI surgery application requirement, optimization of coating process was selected as follows: extrusion coating method, degree of 3.6 vol%, pinhole diameter of 32G (110 μm), pressure of 200 ± 15.81 Psi. Controlled dexamethasone 21-phosphate sodium salt (DSP) release of 20 days could be demonstrated using the hydrogel filled reservoir via a validated HPLC method. The morphological structure of CHA showed different sizes of porous structure among APL-CHA provided structural basis for drug delivery. L929 fibroblasts culture and Spiral Ganglion Neuron Explants culture results revealed that APL-CHA possesses fine biological compatibility. APL-CHA shows a promising application in CI surgery and has great potential in preventing hearing loss with well simulation of ion homeostasis within the cochlear, local DSP delivery for target anti-inflammatory, approximate conductivity within the scala tympani and optimization of electrode coating process.
Collapse
Affiliation(s)
- Muqing Xu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Dongxiu Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jieqing Cai
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qiaofang He
- Operating Room of Anesthesiology Department, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Fan Shu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Institute of Mental Health, Southern Medical University, Guangzhou, 510515, China
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
24
|
Effects of dexamethasone on intracochlear inflammation and residual hearing after cochleostomy: A comparison of administration routes. PLoS One 2018; 13:e0195230. [PMID: 29601595 PMCID: PMC5877881 DOI: 10.1371/journal.pone.0195230] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Preservation of residual hearing after cochlear implant is an important issue with regards to hearing performance. Various methods of steroid administration have been widely used in clinical practice to reduce inflammation and preserve residual hearing. Here we compare the effect of different routes of dexamethasone administration on intracochlear inflammation and residual hearing in guinea pig ears. Dexamethasone was delivered into the guinea pigs either through intracochlear, intratympanic or systemic route. The intracochlear concentration of dexamethasone, residual hearing, inflammatory cytokines and histopathologic changes were evaluated over time. A higher intracochlear dexamethasone concentration was observed after intracochlear administration than through the other routes. Residual hearing was better preserved with local dexamethasone administration as was supported by the reduced inflammatory cytokines, more hair cell survival and less severe intracochlear fibrosis and ossification concurrently seen in the local delivery group than in the systemic group. The results demonstrate that local dexamethasone delivery can reduce intracochlear inflammation and preserve residual hearing better than in systemically administered dexamethasone.
Collapse
|
25
|
Kuthubutheen J, Joglekar S, Smith L, Friesen L, Smilsky K, Millman T, Ng A, Shipp D, Coates H, Arnoldner C, Nedzelski J, Chen J, Lin V. The Role of Preoperative Steroids for Hearing Preservation Cochlear Implantation: Results of a Randomized Controlled Trial. Audiol Neurootol 2018; 22:292-302. [DOI: 10.1159/000485310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
Objectives: To determine whether preoperative steroids can improve hearing outcomes in cochlear implantation (CI). Methods: This is a randomized controlled trial involving 30 postlingual deaf CI patients. Subjects had preoperative thresholds of better than or equal to 80 dB at 125 and 250 Hz, and better than or equal to 90 dB at 500 and 1,000 Hz. The subjects were randomized to a control group, an oral steroid group (receiving 1 mg/kg/day of prednisolone for 6 days prior to surgery), or a transtympanic steroid group (receiving a single dose of 0.5 mL of 10 mg/mL dexamethasone at 24 h prior to surgery). Results: The subjects receiving transtympanic steroids had a significant decrease in the pure tone average over 3 months compared to the control and oral steroid group, which persisted over 12 months (p < 0.05). Conclusion: A single dose of preoperative transtympanic steroids prior to CI appears to have a beneficial effect, at least in the short term, with minimal effects seen in the longer term.
Collapse
|
26
|
Survey of the American Neurotology Society on Cochlear Implantation: Part 2, Surgical and Device-Related Practice Patterns. Otol Neurotol 2018; 39:e20-e27. [DOI: 10.1097/mao.0000000000001631] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
The Effect of Systemic Steroid on Hearing Preservation After Cochlear Implantation via Round Window Approach: A Guinea Pig Model. Otol Neurotol 2017; 38:962-969. [DOI: 10.1097/mao.0000000000001453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Lee JJ, Jang JH, Choo OS, Lim HJ, Choung YH. Steroid intracochlear distribution differs by administration method: Systemic versus intratympanic injection. Laryngoscope 2017; 128:189-194. [PMID: 28304075 DOI: 10.1002/lary.26562] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/13/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Steroids have been widely used to treat inner-ear diseases such as sudden sensorineural hearing loss, tinnitus, and Meniere's disease. They can be given via either systemic or intratympanic (IT) injection. The purpose of the present study was to explore differences in intracochlear steroid distribution by the administration method employed (systemic vs. IT injection). STUDY DESIGN Animal study. METHODS Twenty-three Sprague-Dawley rats were given fluorescein isothiocyanate-labeled dexamethasone (FITC-DEX) three times (on successive days) via intraperitoneal (IP) or IT injection. Cochlear uptake of FITC-DEX was evaluated via immunohistochemistry and flow cytometry at 6 hours, and 3 and 7 days after the final injection. RESULTS FITC-DEX uptake was evident in spiral ganglion cells (SGs), the organ of Corti (OC), and the lateral walls (LWs), the basal turns of which were stained relatively prominently in both groups. Animals receiving IP injections exhibited higher FITC-DEX uptakes by the SGs and OC, whereas IT injection triggered higher-level FITC-DEX accumulation by the OC and LWs. Flow cytometry revealed that intracochlear FITC-DEX uptake by IT-injected animals was higher and more prolonged than in animals subjected to IP injections. CONCLUSION We thus describe differences in cochlear steroid distributions after systemic and IT injections. This finding could help our understanding of the pharmacokinetics of steroids in the cochlea. LEVEL OF EVIDENCE NA. Laryngoscope, 128:189-194, 2018.
Collapse
Affiliation(s)
- Jong Joo Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Bk21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
29
|
The effect of systemic lipoic acid on hearing preservation after cochlear implantation via the round window approach: A guinea pig model. Eur J Pharmacol 2017; 799:67-72. [PMID: 28159538 DOI: 10.1016/j.ejphar.2017.01.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/01/2023]
Abstract
The present study aimed to evaluate the effects of systemic lipoic acid on hearing preservation after cochlear implantation. Twelve Dunkin-Hartley guinea pigs were randomly divided into two groups: the control group and the lipoic acid group. Animals in the lipoic acid group received lipoic acid intraperitoneally for 4 weeks. A sterilised silicone electrode-dummy was inserted through the round window to a depth of approximately 5 mm. The hearing level was measured using auditory brainstem responses (ABRs) prior to electrode-dummy insertion, and at 4 days and 1, 2, 3 and 4 weeks after electrode-dummy insertion. The threshold shift was defined as the difference between the pre-operative threshold and each of the post-operative thresholds. The cochleae were examined histologically 4 weeks after electrode-dummy insertion. Threshold shifts changed with frequency but not time. At 2kHz, ABR threshold shifts were statistically significantly lower in the lipoic acid group than the control group. At 8, 16 and 32kHz, there was no significant difference in the ABR threshold shift between the two groups. Histologic review revealed less intracochlear fibrosis along the electrode-dummy insertion site in the lipoic acid group than in the control group. The spiral ganglion cell densities of the basal, middle and apical turns were significantly higher in the lipoic acid group compared with the control group. Therefore, systemic lipoic acid administration appears to effectively preserve hearing at low frequencies in patients undergoing cochlear implantation. These effects may be attributed to the protection of spiral ganglion cells and prevention of intracochlear fibrosis.
Collapse
|
30
|
The effect of local application of insulin-like growth factor for prevention of inner-ear damage caused by electrode trauma. The Journal of Laryngology & Otology 2017; 131:245-252. [PMID: 28124637 DOI: 10.1017/s0022215117000135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Electrode insertion during cochlear implantation causes cochlear damage and apoptosis. Insulin-like growth factor applied locally was investigated in 21 rats. METHODS In the sham group, an intracochlear dummy electrode was inserted through the round window. In the control group, after the same insertion procedure, saline-soaked porcine skin gelatine was placed on the round window. In the study group, insulin-like growth factor 1 soaked gelatine was placed on the round window. Auditory brainstem response thresholds were measured and histopathological examination was performed. RESULTS In the study group, at 2-4 kHz, one rat had deterioration, one showed improvement and the rest had stable thresholds 14 days after intervention. At 6 kHz, four rats showed improvement and the rest remained stable. At 8 kHz, four showed improvement, one had deterioration and two remained stable. In the other groups, hearing loss deteriorated in about half of the rats and remained stable in the rest. The mean post-operative 6 kHz threshold was significantly lower than that immediately after the intervention in the study group, contrary to the other groups. The study group had significantly better mean histopathological grading than the other groups. CONCLUSION Local insulin-like growth factor 1 application may protect hearing after cochlear implantation.
Collapse
|
31
|
Honeder C, Zhu C, Schöpper H, Gausterer JC, Walter M, Landegger LD, Saidov N, Riss D, Plasenzotti R, Gabor F, Arnoldner C. Effects of sustained release dexamethasone hydrogels in hearing preservation cochlear implantation. Hear Res 2016; 341:43-49. [PMID: 27519654 DOI: 10.1016/j.heares.2016.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/28/2016] [Accepted: 08/08/2016] [Indexed: 01/12/2023]
Abstract
It has been shown that glucocorticoids reduce the hearing threshold shifts associated with cochlear implantation. Previous studies evaluated the administration of glucocorticoids immediately before surgery or the repeated pre- or perioperative systemic application of glucocorticoids. The aim of this study was to evaluate the effects of a sustained release dexamethasone hydrogel in hearing preservation cochlear implantation. To address this issue, a guinea pig model of cochlear implantation was used. 30 normal hearing pigmented guinea pigs were randomized into a group receiving a single dose of a dexamethasone/poloxamer407 hydrogel one day prior to surgery, a second group receiving the hydrogel seven days prior to surgery and a control group. A silicone cochlear implant electrode designed for the use in guinea pigs was inserted to a depth of 5 mm through a cochleostomy. Compound action potentials of the auditory nerve (frequency range 0.5-32 kHz) were measured preoperatively, directly postoperatively and on postoperative days 3, 7, 14, 21 and 28. Following the last audiometry, temporal bones were harvested and histologically evaluated. Dexamethasone hydrogel application one day prior to surgery resulted in significantly reduced hearing threshold shifts at low, middle and high frequencies measured at postoperative day 28 (p < 0.05). Application of the hydrogel seven days prior to surgery did not show such an effect. Dexamethasone application one day prior to surgery resulted in increased outer hair cell counts in the cochlear apex and in reduced spiral ganglion cell counts in the basal and middle turn of the cochlea, a finding that was associated with a higher rate of electrode translocation in this group. In this study, we were able to demonstrate functional benefits of a single preoperative intratympanic application of a sustained release dexamethasone hydrogel in a guinea pig model of cochlear implantation.
Collapse
Affiliation(s)
- Clemens Honeder
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Chengjing Zhu
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Hanna Schöpper
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia Clara Gausterer
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Manuel Walter
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | - Nodir Saidov
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Dominik Riss
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Bas E, Bohorquez J, Goncalves S, Perez E, Dinh CT, Garnham C, Hessler R, Eshraghi AA, Van De Water TR. Electrode array-eluted dexamethasone protects against electrode insertion trauma induced hearing and hair cell losses, damage to neural elements, increases in impedance and fibrosis: A dose response study. Hear Res 2016; 337:12-24. [DOI: 10.1016/j.heares.2016.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/30/2015] [Accepted: 02/11/2016] [Indexed: 12/13/2022]
|
33
|
Kuthubutheen J, Smith L, Hwang E, Lin V. Preoperative steroids for hearing preservation cochlear implantation: A review. Cochlear Implants Int 2016; 17:63-74. [PMID: 26913646 DOI: 10.1080/14670100.2016.1148319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Preoperative steroids have been shown to be beneficial in reducing the hearing loss associated with cochlear implantation. This review article discusses the mechanism of action, effects of differing routes of administration, and side effects of steroids administered to the inner ear. Studies on the role of preoperative steroids in animal and human studies are also examined and future directions for research in this area are discussed.
Collapse
Affiliation(s)
- Jafri Kuthubutheen
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada.,b Department of Otolaryngology - Head and Neck Surgery , School of Surgery, University of Western Australia , Perth , Australia
| | - Leah Smith
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada
| | - Euna Hwang
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada
| | - Vincent Lin
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada
| |
Collapse
|
34
|
Sweeney AD, Hunter JB, Carlson ML, Rivas A, Bennett ML, Gifford RH, Noble JH, Haynes DS, Labadie RF, Wanna GB. Durability of Hearing Preservation after Cochlear Implantation with Conventional-Length Electrodes and Scala Tympani Insertion. Otolaryngol Head Neck Surg 2016; 154:907-13. [PMID: 26908553 DOI: 10.1177/0194599816630545] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/13/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To analyze factors that influence hearing preservation over time in cochlear implant recipients with conventional-length electrode arrays located entirely within the scala tympani. STUDY DESIGN Case series with planned chart review. SETTING Single tertiary academic referral center. SUBJECTS AND METHODS A retrospective review was performed to analyze a subgroup of cochlear implant recipients with residual acoustic hearing. Patients were included in the study only if their electrode arrays remained fully in the scala tympani after insertion and serviceable acoustic hearing (≤80 dB at 250 Hz) was preserved. Electrode array location was verified through a validated radiographic assessment tool. Patients with <6 months of audiologic follow-up were excluded. The main outcome measure was change in acoustic hearing thresholds from implant activation to the last available follow-up. RESULTS A total of 16 cases met inclusion criteria (median age, 70.6 years; range, 29.4-82.2; 50% female). The average follow-up was 18.0 months (median, 16.1; range, 6.2-36.4). Patients with a lateral wall electrode array were more likely to have stable acoustic thresholds over time (P < .05). Positive correlations were seen between continued hearing loss following activation and larger initial postoperative acoustic threshold shifts, though statistical significance was not achieved. Age, sex, and noise exposure had no significant influence on continued hearing preservation over time. CONCLUSIONS To control for hearing loss associated with interscalar excursion during cochlear implantation, the present study evaluated patients only with conventional electrode arrays located entirely within the scala tympani. In this group, the style of electrode array may influence residual hearing preservation over time.
Collapse
Affiliation(s)
- Alex D Sweeney
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob B Hunter
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew L Carlson
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, Minnesota, USA
| | - Alejandro Rivas
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marc L Bennett
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rene H Gifford
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jack H Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David S Haynes
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert F Labadie
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George B Wanna
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
35
|
Hearing Loss After Activation of Hearing Preservation Cochlear Implants Might Be Related to Afferent Cochlear Innervation Injury. Otol Neurotol 2016; 36:1035-44. [PMID: 25955750 DOI: 10.1097/mao.0000000000000754] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Characterize hearing loss (HL) after hearing preservation cochlear implantation and determine the association between high charge electrical stimulation (ES) and late loss of acoustic hearing. METHODS A retrospective cohort analysis of all hearing preservation implantees at our center (n = 42) assayed HL as a function of maximum charge. We analyzed serial audiometry from 85 patients enrolled in the multicenter Hybrid S8 trial to detail the hearing loss greater than 1 month after implantation. Cochleotypic explant cultures were used to assess susceptibility to high levels of ES. RESULTS Early HL after implantation tends to be mild and averages 12.2 dB. After activation of the Hybrid S8 device, 17 (20%) of 85 patients experienced acceleration of HL. Compared with the majority of patients who did not lose significant hearing after activation, these patients experienced more severe HL at 1 year. Five patients implanted at our center experienced acceleration of HL after high charge exposure. In patients implanted at our center, high charge was associated with late HL (Pearson 0.366, p = 0.016). In rat cochleotypic explants, high voltage ES damaged afferent nerve fibers, reflected by blebbing and a 50% reduction in the number of fibers innervating the organ of Corti. In contrast, hair cells displayed only minor differences in cell number and morphology. CONCLUSIONS Based on clinical and in vitro data, we theorize that the combination of acoustic amplification and ES in the setting of intact hair cells and neural architecture may contribute, in part, to cochlear toxicity, perhaps by damaging the afferent innervation.
Collapse
|
36
|
Jia H, François F, Bourien J, Eybalin M, Lloyd RV, Van De Water TR, Puel JL, Venail F. Prevention of trauma-induced cochlear fibrosis using intracochlear application of anti-inflammatory and antiproliferative drugs. Neuroscience 2015; 316:261-78. [PMID: 26718602 DOI: 10.1016/j.neuroscience.2015.12.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022]
Abstract
Cochlear fibrosis is a common finding following cochlear implantation. Evidence suggests that cochlear fibrosis could be triggered by inflammation and epithelial-to-mesenchymal cell transition (EMT). In this study, we investigate the mechanisms of cochlear fibrosis and the risk/benefit ratio of local administration of the anti-inflammatory drug dexamethasone (DEX) and antimitotic drug aracytine (Ara-C). Cochlear fibrosis was evaluated in cochlear fibrosis models of rat cochlear slices in vitro and in KLH-induced immune labyrinthitis and platinum wire cochlear implantation-induced fibrosis in vivo. Cochleae were invaded with tissue containing fibroblastic cells expressing α-SMA (alpha smooth muscle actin), which along with collagen I, fibronectin, and laminin in the extracellular matrix, suggests the involvement of a fibrotic process triggered by EMT in vitro and in vivo. After perilymphatic injection of an adenoviral vector expressing GFP in vivo, we demonstrated that the fibroblastic cells derived from the mesothelial cells of the scalae tympani and vestibuli. Activation of inflammatory and EMT pathways was further assessed by ELISA analysis of the expression of IL-1β and TGF-β1. Both markers were elevated in vitro and in vivo, and DEX and Ara-C were able to reduce IL-1β and TGF-β1 production. After 5days of culture in vitro, quantification of calcein-positive cells revealed that Ara-C was 30-fold more efficient in preventing fibrosis, and provoked less sensory hair cell loss, than DEX. In KLH-induced immune labyrinthitis and platinum wire-implanted models, Ara-C was more efficient in preventing proliferation of fibrosis with less side effects on hair cells and neurons than DEX. In conclusion, DEX and Ara-C both prevent fibrosis in the cochlea. Analysis of the risk/benefit ratio favors the use of Ara-C for preventing cochlear fibrosis.
Collapse
Affiliation(s)
- H Jia
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France; Department of ORL H&N Surgery, Xinhua Hospital - Ear Institute, Shanghai Jiaotong University School of Medicine, China.
| | - F François
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France.
| | - J Bourien
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France.
| | - M Eybalin
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France.
| | - R V Lloyd
- ENT Department, The Tunbridge Wells Hospital, Tunbridge Wells, UK.
| | - T R Van De Water
- Department of Otolaryngology, University of Miami Ear Institute, Miami, FL, USA.
| | - J-L Puel
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France.
| | - F Venail
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France; ENT Department, University Hospital Gui de Chauliac, Montpellier, France.
| |
Collapse
|
37
|
Kopelovich JC, Robinson BK, Soken H, Verhoeven KJ, Kirk JR, Goodman SS, Hansen MR. Acoustic Hearing After Murine Cochlear Implantation: Effects of Trauma and Implant Type. Ann Otol Rhinol Laryngol 2015; 124:931-9. [PMID: 26091845 PMCID: PMC7607423 DOI: 10.1177/0003489415592162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To model the contribution of implant material and insertion trauma on loss of acoustic hearing after cochlear implantation in an appropriate animal model. METHODS Sixty-five C57Bl/6J mice underwent unilateral implantation with implant grade materials: 2 implant grade silicones and a third uncoated platinum wire. A sham surgery group was included as a control. Serial auditory brainstem response (ABR) thresholds and distortion product otoacoustic emissions (DPOAEs) were used to discern effects on hearing over 22 weeks. Histologic measurements of damage to the organ of Corti and spiral ganglion were correlated with degree of hearing loss and material type. RESULTS Organ of Corti damage correlated with rate of hearing loss soon after implantation (0-2 weeks) but not subsequently (2-22 weeks). Organ of Corti damage did not depend on implant type and was present even in sham surgery subjects when hearing was severely damaged. Spiral ganglia appeared unaffected. There was no evidence of an inflammatory or toxic effect of the materials beyond the site of implant insertion. CONCLUSIONS Hearing loss and cochlear damage appear to be related to insertion trauma, with minimal effect on delayed hearing loss caused by different materials. In the C57Bl/6J mouse model, the sensory epithelium appears to be the location of damage after cochlear implantation.
Collapse
Affiliation(s)
- Jonathan C Kopelovich
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Barbara K Robinson
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| | - Hakan Soken
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA Eskisehir Military Hospital, Eskisehir, Turkey
| | | | - Jonathon R Kirk
- Cochlear Ltd, Research and Technology Laboratories, Centennial, Colorado, USA
| | - Shawn S Goodman
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA Department of Neurosurgery, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
38
|
Impact of Perioperative Oral Steroid Use on Low-frequency Hearing Preservation After Cochlear Implantation. Otol Neurotol 2015; 36:1480-5. [DOI: 10.1097/mao.0000000000000847] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Ryu KA, Lyu AR, Park H, Choi JW, Hur GM, Park YH. Intracochlear Bleeding Enhances Cochlear Fibrosis and Ossification: An Animal Study. PLoS One 2015; 10:e0136617. [PMID: 26308864 PMCID: PMC4550248 DOI: 10.1371/journal.pone.0136617] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/12/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to investigate the effects of intracochlear bleeding during cochleostomy on cochlear inflammatory response and residual hearing in a guinea pig animal model. Auditory brainstem response threshold shifts were greater in blood injected ears (p<0.05). Interleukin-1β, interleukin-10, tumor necrosis factor-α and nitric oxide synthase 2, cytokines that are related to early stage inflammation, were significantly increased in blood injected ears compared to normal and cochleostomy only ears at 1 day after surgery; with the increased IL-1β being sustained until 3 days after the surgery (p<0.05). Hair cells were more severely damaged in blood injected ears than in cochleostomy only ears. Histopathologic examination revealed more extensive fibrosis and ossification in blood injected ears than cochleostomy only ears. These results show that intracochlear bleeding enhanced cochlear inflammation resulting in increased fibrosis and ossification in an experimental animal model.
Collapse
Affiliation(s)
- Kyeung A. Ryu
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ah-Ra Lyu
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Heesung Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Woong Choi
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
40
|
Ihler F, Pelz S, Coors M, Matthias C, Canis M. Application of a TNF-alpha-inhibitor into the scala tympany after cochlear electrode insertion trauma in guinea pigs: preliminary audiologic results. Int J Audiol 2015; 53:810-6. [PMID: 25311100 DOI: 10.3109/14992027.2014.938369] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Cochlear implantation trauma causes both macroscopic and inflammatory trauma. The aim of the present study was to evaluate the effectiveness of the TNF-alpha inhibitor etanercept applied after cochlear implantation trauma on the preservation of acoustic hearing. DESIGN Guinea pigs were randomly assigned to three groups receiving cochlear implantation trauma by cochleostomy. In one group, the site was sealed by bone cement with no further treatment. A second group was additionally implanted with an osmotic minipump delivering artificial perilymph into the scala tympani for seven days. In the third group, etanercept 1 mg/ml was added to artificial perilymph. Hearing was assessed by auditory brainstem responses at 2, 4, 6, and 8 kHz prior to and after surgery and on days 3, 5, 7, 14, 28. STUDY SAMPLE Fifteen healthy guinea pigs. RESULTS The trauma led to threshold shifts from 50.3 dB ± 16.3 dB to 68.0 dB ± 19.3 dB. Hearing thresholds were significantly lower in etanercept-treated animals compared to controls on day 28 at 8 kHz and from day 3 onwards at 4 and 2 kHz (p < 0.01; two-way RM ANOVA / Bonferroni t-test). CONCLUSION The application of etanercept led to preservation of acoustic hearing after cochlear implantation trauma.
Collapse
Affiliation(s)
- Friedrich Ihler
- * Department of Otorhinolaryngology, University Medical Center Göttingen , Germany
| | | | | | | | | |
Collapse
|
41
|
Recent advances in local drug delivery to the inner ear. Int J Pharm 2015; 494:83-101. [PMID: 26260230 DOI: 10.1016/j.ijpharm.2015.08.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
Inner ear diseases are not adequately treated by systemic drug administration mainly because of the blood-perilymph barrier that reduces exchanges between plasma and inner ear fluids. Local drug delivery methods including intratympanic and intracochlear administrations are currently developed to treat inner ear disorders more efficiently. Intratympanic administration is minimally invasive but relies on diffusion through middle ear barriers for drug entry into the cochlea, whereas intracochlear administration offers direct access to the colchlea but is rather invasive. A wide range of drug delivery systems or devices were evaluated in research and clinic over the last decade for inner ear applications. In this review, different strategies including medical devices, hydrogels and nanoparticulate systems for intratympanic administration, and cochlear implant coating or advanced medical devices for intracoclear administration were explored with special attention to in vivo studies. This review highlights the promising systems for future clinical applications as well as the current hurdles that remain to be overcome for efficient inner ear therapy.
Collapse
|
42
|
Kuthubutheen J, Coates H, Rowsell C, Nedzelski J, Chen JM, Lin V. The role of extended preoperative steroids in hearing preservation cochlear implantation. Hear Res 2015; 327:257-64. [PMID: 26117408 DOI: 10.1016/j.heares.2015.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/03/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Steroids have been shown to reduce the hearing threshold shifts associated with cochlear implantation. Previous studies have examined only the administration of steroids just prior to surgery. The aim of this study is to examine the role of extended preoperative systemic steroids in hearing preservation cochlear implantation. METHODS An animal model of cochlear implantation was used. 24 Hartley strain guinea pigs with a mean weight of 768 g and normal hearing were randomised into a control group, a second group receiving a single dose of systemic dexamethasone one day prior to surgery, and a third group receiving a daily dose of systemic dexamethasone for 5 days prior to surgery. A specially designed cochlear implant electrode by Med-EL (Innsbruck) was inserted through a dorsolateral approach to an insertion depth of 5 mm and left in-situ. Auditory brain stem responses at 8 kHz, 16 kHz and 32 kHz were measured preoperatively, and 1 week, 1 month and 2 months postoperatively. Cochlear histopathology was examined at the conclusion of the study. RESULTS At 1-week post operative, both groups receiving dexamethasone prior to implantation had smaller threshold shifts across all frequencies and which was significant at 32 kHz (p < 0.05). There were no differences among the three groups in the area of electrode related fibrosis. Spiral ganglion neuron (SGN) density was significantly higher in the group receiving steroids for 5 days, but only in the basal cochlear turn. DISCUSSION This is study demonstrates the benefits of extended preoperative systemic steroids on hearing outcomes and SGN density in an animal model of cochlear implantation surgery.
Collapse
Affiliation(s)
- Jafri Kuthubutheen
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada; School of Surgery, University of Western Australia, Perth, Western Australia, Australia.
| | - Harvey Coates
- School of Surgery, University of Western Australia, Perth, Western Australia, Australia
| | - Corwyn Rowsell
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Julian Nedzelski
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Joseph M Chen
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Vincent Lin
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
43
|
Local Delivery of Brain-Derived Neurotrophic Factor on the Perforated Round Window Membrane in Guinea Pigs. Otol Neurotol 2015; 36:705-13. [DOI: 10.1097/mao.0000000000000634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
|
45
|
Ayoob AM, Borenstein JT. The role of intracochlear drug delivery devices in the management of inner ear disease. Expert Opin Drug Deliv 2014; 12:465-79. [PMID: 25347140 DOI: 10.1517/17425247.2015.974548] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Diseases of the inner ear include those of the auditory and vestibular systems, and frequently result in disabling hearing loss or vertigo. Despite a rapidly expanding pipeline of potential cochlear therapeutics, the inner ear remains a challenging organ for targeted drug delivery, and new technologies are required to deliver these therapies in a safe and efficacious manner. In addition to traditional approaches for direct inner ear drug delivery, novel microfluidics-based systems are under development, promising improved control over pharmacokinetics over longer periods of delivery, ultimately with application towards hair cell regeneration in humans. AREAS COVERED Advances in the development of intracochlear drug delivery systems are reviewed, including passive systems, active microfluidic technologies and cochlear prosthesis-mediated delivery. This article provides a description of novel delivery systems and their potential future clinical applications in treating inner ear disease. EXPERT OPINION Recent progresses in microfluidics and miniaturization technologies are enabling the development of wearable and ultimately implantable drug delivery microsystems. Progress in this field is being spurred by the convergence of advances in molecular biology, microfluidic flow control systems and models for drug transport in the inner ear. These advances will herald a new generation of devices, with near-term applications in preclinical models, and ultimately with human clinical use for a range of diseases of the inner ear.
Collapse
|
46
|
Stathopoulos D, Chambers S, Adams L, Robins-Browne R, Miller C, Enke YL, Wei BPC, O'Leary S, Cowan R, Newbold C. Meningitis and a safe dexamethasone-eluting intracochlear electrode array. Cochlear Implants Int 2014; 16:201-7. [DOI: 10.1179/1754762814y.0000000099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
47
|
Honeder C, Engleder E, Schöpper H, Gabor F, Reznicek G, Wagenblast J, Gstoettner W, Arnoldner C. Sustained release of triamcinolone acetonide from an intratympanically applied hydrogel designed for the delivery of high glucocorticoid doses. Audiol Neurootol 2014; 19:193-202. [PMID: 24714604 PMCID: PMC4717230 DOI: 10.1159/000358165] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
The pharmacokinetic properties and tolerability of a triamcinolone acetonide poloxamer 407 hydrogel for intratympanic application were investigated in a guinea pig model. Evaluation of in vivo release kinetics showed very high initial perilymph drug levels, with clinically relevant levels present for a minimum of 10 days. Assessment of auditory brainstem response thresholds showed a minimal, delayed and transient threshold shift, which was apparent on day 3 and resolved by day 10. No relevant histological changes of the middle and inner ear structures were noted, and hair cell counts showed no significant differences between treated and untreated ears. Thus, the triamcinolone-acetonide-loaded poloxamer 407 hydrogel is an effective vehicle for sustained high-dose inner ear glucocorticoid delivery.
Collapse
Affiliation(s)
- Clemens Honeder
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Douchement D, Terranti A, Lamblin J, Salleron J, Siepmann F, Siepmann J, Vincent C. Dexamethasone eluting electrodes for cochlear implantation: Effect on residual hearing. Cochlear Implants Int 2014; 16:195-200. [PMID: 24593762 DOI: 10.1179/1754762813y.0000000053] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE The aim of this study was to compare a cochlear implant electrode array loaded with dexamethasone (DXM) with a conventional passive electrode array for the preservation of residual hearing in gerbils. METHODS Thirty Mongolian gerbils (Meriones unguiculatus) were implanted with an eluting electrode loaded with DXM (1 and 10%) on one side and a conventional passive electrode on the other side. Hearing thresholds were determined by tone bursts auditory brainstem responses at 4-6 weeks post-implantation and 1-year post-implantation for older gerbils. RESULTS After 4-6 weeks post-implantation, residual hearing was statistically more preserved with electrode arrays loaded with DXM, regardless of concentration, for the frequencies 16 000 Hz (P = 0.0008), 4000 Hz (P = 0.0038), 1000 Hz (P = 0.0349), and 500 Hz (P = 0.0030). After 1 year, the difference in favor of the DXM+ electrode array was found statistically significant only for the frequency 16 000 Hz (P = 0.0103) but against it for the frequencies 1000 Hz (P = 0.0368) and 500 Hz (P = 0.0010). CONCLUSION Electrode array with prolonged release of DXM improved short-term preservation of residual hearing after implantation for the frequencies 500, 1000, 4000, and 16 000 Hz in gerbils. The long-term results at 1 year confirmed these data for higher frequencies, but must be verified for the lower frequencies of 500 and 1000 Hz.
Collapse
|
49
|
Stathopoulos D, Chambers S, Enke YL, Timbol G, Risi F, Miller C, Cowan R, Newbold C. Development of a safe dexamethasone-eluting electrode array for cochlear implantation. Cochlear Implants Int 2014; 15:254-63. [PMID: 24621150 DOI: 10.1179/1754762813y.0000000054] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Cochlear implantation can result in trauma leading to increased tissue response and loss of residual hearing. A single intratympanic application of the corticosteroid dexamethasone is sometimes used clinically during surgery to combat the potential effect of trauma on residual hearing. This project looked at the safety and efficacy of dexamethasone eluted from an intracochlear array in vivo. METHODS Three trials were conducted using normal hearing adult guinea pigs implanted with successive iterations of dexamethasone-eluting (DX1, DX2, and DX3) or non-eluting (control) intracochlear electrode arrays. The experimental period for each animal was 90 days during which hearing tests were performed at multiple time points. RESULTS There was no significant difference between matched control array and dexamethasone array groups in terms of spiral ganglion neuron density, organ of Corti condition, or fibrosis and ossification. A cochleostomy seal was present in all implanted cochleae. There were no differences in the degree of hearing threshold shifts between DX1 and DX3 and their respective control arrays. Cochleae implanted with DX2 arrays showed less hearing loss and marginally better spiral ganglion neuron survival than their control array counterparts. Post-explant inspection of the DX2 and DX3 arrays revealed a difference in pore density following dexamethasone elution. CONCLUSION The dexamethasone doses used were safe in the guinea pig cochlea. Dexamethasone did not inhibit formation of a cochleostomy seal. The level of hearing protection afforded by dexamethasone eluting from an intracochlear array may depend upon the degree of elution and level of trauma inflicted.
Collapse
|
50
|
Farhadi M, Jalessi M, Salehian P, Ghavi FF, Emamjomeh H, Mirzadeh H, Imani M, Jolly C. Dexamethasone eluting cochlear implant: Histological study in animal model. Cochlear Implants Int 2013; 14:45-50. [PMID: 22333428 DOI: 10.1179/1754762811y.0000000024] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE New cochlear implant (CI) designs and developments in implantation techniques have revolutionized the management of hearing loss. However, cochlear implantation still has some disadvantages, such as its potential to initiate an inflammatory response that may lead to further hair cell damage. Recent topics of investigation have been the effect of glucocorticoids on inflammatory tissue response reduction, glucocorticoid dosage levels, and drug-delivery methods. In the present study, dexamethasone delivery via a drug-eluting CI was evaluated histologically through assessing inflammatory cell infiltration. METHODS AND MATERIALS Thirty healthy, adult male guinea pigs were included and randomly assigned to one of three surgical groups that underwent cochleostomy of the basal turn. The experimental group (Group 1) of 12 animals were implanted with a dexamethasone-loaded silicone elastomer shaped like a CI electrode. The primary control group (Group 2) of 12 animals were implanted with a simple CI (non-eluting). A second control group (Group 3) of six animals underwent cochleostomy only. Inflammatory responses were compared between groups by evaluating inflammatory cell infiltration in inner-ear specimens at days 3 and 13. RESULTS The Mann‐Whitney test revealed reduction in most of the inflammatory indices in Group 1 compared with Group 2. This was significant for fibrocyte, macrophage, and giant cell infiltration at day 3 as well as lymphocyte, macrophage infiltration, and capillary formation at day 13. CONCLUSION This study showed some attenuation in inflammatory response following insertion of a dexamethasone-eluting CI, suggesting that it could be a route for local drug delivery into the cochlea.
Collapse
Affiliation(s)
- Mohammad Farhadi
- ENT-Head and Neck Research Center and Department, Hazrat Rasool Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|