1
|
Liu Q, Zhang L, Chen Z, He Y, Huang Y, Qiu C, Zhu C, Zhou D, Gan Z, Gao X, Wan G. Metabolic Profiling of Cochlear Organoids Identifies α-Ketoglutarate and NAD + as Limiting Factors for Hair Cell Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308032. [PMID: 38993037 PMCID: PMC11425867 DOI: 10.1002/advs.202308032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/11/2024] [Indexed: 07/13/2024]
Abstract
Cochlear hair cells are the sensory cells responsible for transduction of acoustic signals. In mammals, damaged hair cells do not regenerate, resulting in permanent hearing loss. Reprogramming of the surrounding supporting cells to functional hair cells represent a novel strategy to hearing restoration. However, cellular processes governing the efficient and functional hair cell reprogramming are not completely understood. Employing the mouse cochlear organoid system, detailed metabolomic characterizations of the expanding and differentiating organoids are performed. It is found that hair cell differentiation is associated with increased mitochondrial electron transport chain (ETC) activity and reactive oxidative species generation. Transcriptome and metabolome analyses indicate reduced expression of oxidoreductases and tricyclic acid (TCA) cycle metabolites. The metabolic decoupling between ETC and TCA cycle limits the availability of the key metabolic cofactors, α-ketoglutarate (α-KG) and nicotinamide adenine dinucleotide (NAD+). Reduced expression of NAD+ in cochlear supporting cells by PGC1α deficiency further impairs hair cell reprogramming, while supplementation of α-KG and NAD+ promotes hair cell reprogramming both in vitro and in vivo. These findings reveal metabolic rewiring as a central cellular process during hair cell differentiation, and highlight the insufficiency of key metabolites as a metabolic barrier for efficient hair cell reprogramming.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Linqing Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Zhen Chen
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Yihan He
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Yuhang Huang
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Cui Qiu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Chengwen Zhu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Xia Gao
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Guoqiang Wan
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| |
Collapse
|
2
|
Cheng CG, Chen YH, Chang YH, Lin HC, Chin PW, Lin YY, Yung MC, Cheng CA. Underestimated Subsequent Sensorineural Hearing Loss after Septicemia. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1897. [PMID: 38003946 PMCID: PMC10673047 DOI: 10.3390/medicina59111897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Hearing loss after septicemia has been found in mice; the long-term risk increased 50-fold in young adults in a previous study. Hearing loss after septicemia has not received much attention. The aim of this study was to assess the relationship between septicemia and subsequent hearing loss. Materials and Methods: Inpatient data were obtained from the Taiwan Insurance Database. We defined patients with sensorineural hearing loss and excluded patients under 18 years of age. Patients without hearing loss were selected as controls at a frequency of 1:5. The date of admission was defined as the date of diagnosis. Comorbidities in the 3 years preceding the date of diagnosis were retrieved retrospectively. Associations with hearing loss were established by multiple logistic regression and forward stepwise selection. Results: The odds ratio (OR) for the association between sepsis and hearing loss was 3.052 (95% CI: 1.583-5.884). Autoimmune disease (OR: 5.828 (95% CI: 1.906-17.816)), brain injury (OR: 2.264 (95% CI: 1.212-4.229)) and ischemic stroke (OR: 1.47 (95% CI: 1.087-1.988)) were associated with hearing loss. Conclusions: Our study shows that hearing loss occurred after septicemia. Apoptosis caused by sepsis and ischemia can lead to hair cell damage, leading to hearing loss. Clinicians should be aware of possible subsequent complications of septicemia and provide appropriate treatment and prevention strategies for complications.
Collapse
Affiliation(s)
- Chun-Gu Cheng
- Department of Emergency, Taoyuan Armed Forces General Hospital, Taoyuan 32549, Taiwan; (C.-G.C.)
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yu-Hsuan Chen
- Division of Chest Medicine, Department of Internal Medicine, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
| | - Yin-Han Chang
- Department of Psychology, National Taiwan University, Taipei 10621, Taiwan
| | - Hui-Chen Lin
- School of Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan;
| | - Pi-Wei Chin
- Department of Nursing, Ministry of Health and Welfare, Hua-Lien Hospital, Hualien 97061, Taiwan
| | - Yen-Yue Lin
- Department of Emergency, Taoyuan Armed Forces General Hospital, Taoyuan 32549, Taiwan; (C.-G.C.)
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ming-Chi Yung
- Department of Cardiovascular Surgery, Taiwan Adventist Hospital, Taipei 10540, Taiwan
| | - Chun-An Cheng
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
3
|
Tasdemir-Yilmaz OE, Druckenbrod NR, Olukoya OO, Dong W, Yung AR, Bastille I, Pazyra-Murphy MF, Sitko AA, Hale EB, Vigneau S, Gimelbrant AA, Kharchenko PV, Goodrich LV, Segal RA. Diversity of developing peripheral glia revealed by single-cell RNA sequencing. Dev Cell 2021; 56:2516-2535.e8. [PMID: 34469751 DOI: 10.1016/j.devcel.2021.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
The peripheral nervous system responds to a wide variety of sensory stimuli, a process that requires great neuronal diversity. These diverse neurons are closely associated with glial cells originating from the neural crest. However, the molecular nature and diversity among peripheral glia are not understood. Here, we used single-cell RNA sequencing to profile developing and mature glia from somatosensory dorsal root ganglia and auditory spiral ganglia. We found that glial precursors (GPs) in these two systems differ in their transcriptional profiles. Despite their unique features, somatosensory and auditory GPs undergo convergent differentiation to generate molecularly uniform myelinating and non-myelinating Schwann cells. By contrast, somatosensory and auditory satellite glial cells retain system-specific features. Lastly, we identified a glial signature gene set, providing new insights into commonalities among glia across the nervous system. This survey of gene expression in peripheral glia constitutes a resource for understanding functions of glia across different sensory modalities.
Collapse
Affiliation(s)
- Ozge E Tasdemir-Yilmaz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Noah R Druckenbrod
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Weixiu Dong
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isle Bastille
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maria F Pazyra-Murphy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Evan B Hale
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sébastien Vigneau
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Abstract
The ability of sepsis to induce acute phase hearing impairment has been evaluated in septic and sepsis-surviving mice. The relationship between septicemia and long-term hearing impairment remains unknown in humans.The data were obtained from the Taiwan Longitudinal National Health Insurance Database from 2000 to 2013. We identified patients suffering from septicemia after discharge, excluding those younger than 18 years old and older than 65 years old. The comparison group was matched based on age, sex, and comorbidities. The outcome was hearing impairment occurring after septicemia. The risk factors associated with hearing impairment were established using multivariate Cox proportional hazard regression.Our study found that septicemia associated with hearing impairment had an adjusted hazard ratio (HR) of 53.11 (95% confidence interval [CI]: 41.74-67.59). The other factors related to hearing impairment in young and middle-aged septicemia survivors included male sex (adjusted HR 1.31 [95% CI: 1.14-1.5]), chronic kidney disease (adjusted HR 1.63 [95% CI: 1.38-1.94]), and otoscleroisis (adjusted HR 231.54 [95% CI: 31.61-1695.8]).Our study revealed that septicemia was associated with increased development of hearing impairment in young and middle-aged humans in the long term. Clinicians should be aware of long-term septicemia-related hearing impairment and provide prevention strategies for otopathy in septicemia survivors.
Collapse
Affiliation(s)
- Chun-Gu Cheng
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, National Defense Medical Center, Taoyuan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
- Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital
- School of Public Health
- Graduate Institute of Life and Medical Sciences
| | - Hung-Che Lin
- Graduate Institute of Life and Medical Sciences
- Department of Otolaryngology-Head and Neck Surgery
| | - Hui-Chen Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital
- School of Public Health
| | - Chun-An Cheng
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
5
|
He L, Guo JY, Qu TF, Wei W, Liu K, Peng Z, Wang GP, Gong SS. Cellular origin and response of flat epithelium in the vestibular end organs of mice to Atoh1 overexpression. Hear Res 2020; 391:107953. [DOI: 10.1016/j.heares.2020.107953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 02/01/2023]
|
6
|
Abstract
PURPOSE OF REVIEW The incidence of blast injuries has increased, and the ear is the highest risk organ. Ear injury induced by blast exposure is important in both military and civilian conditions. The permanent hearing loss caused by blast exposure is associated with a decline in the quality of life. In this review, I describe recent therapeutic strategies for each of the ear pathologies caused by blast exposure. RECENT FINDINGS For tympanic membrane perforation after blast exposure, basic fibroblast growth factor (bFGF) has been used as a less invasive treatment to repair the tympanic membrane. The closure rates of tympanic membrane perforations treated with bFGF were reported to be comparable to those following conventional tympanoplasty.For sensorineural hearing loss after blast exposure, treatment with neurotrophic factors, such as nerve growth factor (NGF) or neurotrophin-3, antioxidants, and Atoh1 induction have recently been applied, and some of them were considered for clinical application. SUMMARY Recent advances of therapeutics for blast-induced hearing loss, based on their pathologies, have been outlined. There are several promising therapeutic approaches for both middle and inner ear disorders after blast exposure; however, further research is needed to establish new treatments for blast-induced hearing dysfunction.
Collapse
|
7
|
Büning H, Schambach A, Morgan M, Rossi A, Wichova H, Staecker H, Warnecke A, Lenarz T. Challenges and advances in translating gene therapy for hearing disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1707077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Braunschweig, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Axel Rossi
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Helena Wichova
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, USA
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, USA
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Jen HI, Hill MC, Tao L, Sheng K, Cao W, Zhang H, Yu HV, Llamas J, Zong C, Martin JF, Segil N, Groves AK. Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. eLife 2019; 8:e44328. [PMID: 31033441 PMCID: PMC6504235 DOI: 10.7554/elife.44328] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/28/2019] [Indexed: 12/30/2022] Open
Abstract
The mammalian cochlea loses its ability to regenerate new hair cells prior to the onset of hearing. In contrast, the adult vestibular system can produce new hair cells in response to damage, or by reprogramming of supporting cells with the hair cell transcription factor Atoh1. We used RNA-seq and ATAC-seq to probe the transcriptional and epigenetic responses of utricle supporting cells to damage and Atoh1 transduction. We show that the regenerative response of the utricle correlates with a more accessible chromatin structure in utricle supporting cells compared to their cochlear counterparts. We also provide evidence that Atoh1 transduction of supporting cells is able to promote increased transcriptional accessibility of some hair cell genes. Our study offers a possible explanation for regenerative differences between sensory organs of the inner ear, but shows that additional factors to Atoh1 may be required for optimal reprogramming of hair cell fate.
Collapse
Affiliation(s)
- Hsin-I Jen
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
| | - Matthew C Hill
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
| | - Litao Tao
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Kuanwei Sheng
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonUnited States
| | - Wenjian Cao
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Hongyuan Zhang
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| | - Haoze V Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Juan Llamas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Chenghang Zong
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - James F Martin
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
- Department of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonUnited States
- The Texas Heart InstituteHoustonUnited States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Andrew K Groves
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| |
Collapse
|
9
|
Ohlemiller KK, Kaur T, Warchol ME, Withnell RH. The endocochlear potential as an indicator of reticular lamina integrity after noise exposure in mice. Hear Res 2018; 361:138-151. [PMID: 29426600 DOI: 10.1016/j.heares.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022]
Abstract
The endocochlear potential (EP) provides part of the electrochemical drive for sound-driven currents through cochlear hair cells. Intense noise exposure (110 dB SPL, 2 h) differentially affects the EP in three inbred mouse strains (C57BL/6 [B6], CBA/J [CBA], BALB/cJ [BALB]) (Ohlemiller and Gagnon, 2007, Hearing Research 224:34-50; Ohlemiller et al., 2011, JARO 12:45-58). At least for mice older than 3 mos, B6 mice are unaffected, CBA mice show temporary EP reduction, and BALB mice may show temporary or permanent EP reduction. EP reduction was well correlated with histological metrics for injury to stria vascularis and spiral ligament, and little evidence was found for holes or tears in the reticular lamina that might 'short out' the EP. Thus we suggested that the genes and processes that underlie the strain EP differences primarily impact cochlear lateral wall, not the organ of Corti. Our previous work did not test the range of noise exposure conditions over which strain differences apply. It therefore remained possible that the relation between exposure severity and acute EP reduction simply has a higher exposure threshold in B6 mice compared to CBA and BALB. We also did not test for age dependence. It is well established that young adult animals are especially vulnerable to noise-induced permanent threshold shifts (NIPTS). It is unknown, however, whether heightened vulnerability of the lateral wall contributes to this condition. The present study extends our previous work to multiple noise exposure levels and durations, and explicitly compares young adult (6-7 wks) and older mice (>4 mos). We find that the exposure level-versus-acute EP relation is dramatically strain-dependent, such that B6 mice widely diverge from both CBA and BALB. For all three strains, however, acute EP reduction is greater in young mice. Above 110 dB SPL, all mice exhibited rapid and severe EP reduction that is likely related to tearing of the reticular lamina. By contrast, EP-versus-noise duration examined at 104 dB suggested that different processes contribute to EP reduction in young and older mice. The average EP falls to a constant level after ∼7.5 min in older mice, but progressively decreases with further exposure in young mice. Confocal microscopy of organ of Corti surface preparations stained for phalloidin and zonula occludens-1 (ZO-1) indicated this corresponds to rapid loss of outer hair cells (OHCs) and formation of both holes and tears in the reticular lamina of young mice. In addition, when animals exposed at 119 dB were allowed to recover for 1 mo, only young B6 mice showed collapse of the EP to ≤5 mV. Confocal analysis suggested novel persistent loss of tight junctions in the lateral organ of Corti. This may allow paracellular leakage that permanently reduces the EP. From our other findings, we propose that noise-related lateral wall pathology in young CBA and BALB mice promotes hair cell loss and opening of the reticular lamina. The heightened vulnerability of young adult animals to noise exposure may in part reflect special sensitivity of the organ of Corti to acute lateral wall dysfunction at younger ages. This feature appears genetically modifiable.
Collapse
MESH Headings
- Age Factors
- Animals
- Auditory Threshold
- Computer Simulation
- Disease Models, Animal
- Evoked Potentials, Auditory
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/pathology
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Models, Biological
- Noise
- Species Specificity
- Spiral Lamina/metabolism
- Spiral Lamina/pathology
- Spiral Lamina/physiopathology
- Tight Junctions/metabolism
- Tight Junctions/pathology
- Time Factors
- Zonula Occludens-1 Protein/metabolism
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Washington University School of Medicine, Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis MO, USA.
| | - Tejbeer Kaur
- Washington University School of Medicine, Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis MO, USA
| | - Mark E Warchol
- Washington University School of Medicine, Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis MO, USA
| | - Robert H Withnell
- Department of Speech and Hearing Sciences, Indiana University, Bloomington IN, USA
| |
Collapse
|
10
|
Cytoskeletal Stability in the Auditory Organ In Vivo: RhoA Is Dispensable for Wound Healing but Essential for Hair Cell Development. eNeuro 2017; 4:eN-NWR-0149-17. [PMID: 28929130 PMCID: PMC5602105 DOI: 10.1523/eneuro.0149-17.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 01/03/2023] Open
Abstract
Wound healing in the inner ear sensory epithelia is performed by the apical domains of supporting cells (SCs). Junctional F-actin belts of SCs are thin during development but become exceptionally thick during maturation. The functional significance of the thick belts is not fully understood. We have studied the role of F-actin belts during wound healing in the developing and adult cochlea of mice in vivo. We show that the thick belts serve as intracellular scaffolds that preserve the positions of surviving cells in the cochlear sensory epithelium. Junctions associated with the thick F-actin belts did not readily disassemble during wound healing. To compensate for this, basolateral membranes of SCs participated in the closure of surface breach. Because not only neighboring but also distant SCs contributed to wound healing by basolateral protrusions, this event appears to be triggered by contact-independent diffusible signals. In the search for regulators of wound healing, we inactivated RhoA in SCs, which, however, did not limit wound healing. RhoA inactivation in developing outer hair cells (OHCs) caused myosin II delocalization from the perijunctional domain and apical cell-surface enlargement. These abnormalities led to the extrusion of OHCs from the epithelium. These results demonstrate the importance of stability of the apical domain, both in wound repair by SCs and in development of OHCs, and that only this latter function is regulated by RhoA. Because the correct cytoarchitecture of the cochlear sensory epithelium is required for normal hearing, the stability of cell apices should be maintained in regenerative and protective interventions.
Collapse
|
11
|
Wang GP, Basu I, Beyer LA, Wong HT, Swiderski DL, Gong SS, Raphael Y. Severe streptomycin ototoxicity in the mouse utricle leads to a flat epithelium but the peripheral neural degeneration is delayed. Hear Res 2017; 355:33-41. [PMID: 28931463 DOI: 10.1016/j.heares.2017.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/21/2017] [Accepted: 09/08/2017] [Indexed: 01/15/2023]
Abstract
The damaged vestibular sensory epithelium of mammals has a limited capacity for spontaneous hair cell regeneration, which largely depends on the transdifferentiation of surviving supporting cells. Little is known about the response of vestibular supporting cells to a severe insult. In the present study, we evaluated the impact of a severe ototoxic insult on the histology of utricular supporting cells and the changes in innervation that ensued. We infused a high dose of streptomycin into the mouse posterior semicircular canal to induce a severe lesion in the utricle. Both scanning electron microscopy and light microscopy of plastic sections showed replacement of the normal cytoarchitecture of the epithelial layer with a flat layer of cells in most of the samples. Immunofluorescence staining showed numerous cells in the severely damaged epithelial layer that were negative for hair cell and supporting cell markers. Nerve fibers under the flat epithelium had high density at the 1 month time point but very low density by 3 months. Similarly, the number of vestibular ganglion neurons was unchanged at 1 month after the lesion, but was significantly lower at 3 months. We therefore determined that the mouse utricular epithelium turns into a flat epithelium after a severe lesion, but the degeneration of neural components is slow, suggesting that treatments to restore balance by hair cell regeneration, stem cell therapy or vestibular prosthesis implantation will likely benefit from the short term preservation of the neural substrate.
Collapse
Affiliation(s)
- Guo-Peng Wang
- Department of Otolaryngology - Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ishani Basu
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiu Tung Wong
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shu-Sheng Gong
- Department of Otolaryngology - Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
In focus in HCB. Histochem Cell Biol 2017. [PMID: 28643083 DOI: 10.1007/s00418-017-1592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Ladrech S, Eybalin M, Puel JL, Lenoir M. Epithelial-mesenchymal transition, and collective and individual cell migration regulate epithelial changes in the amikacin-damaged organ of Corti. Histochem Cell Biol 2017; 148:129-142. [PMID: 28365859 DOI: 10.1007/s00418-017-1548-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2017] [Indexed: 12/23/2022]
Abstract
Characterizing the microenvironment of a damaged organ of Corti and identifying the basic mechanisms involved in subsequent epithelial reorganization are critical for improving the outcome of clinical therapies. In this context, we studied the expression of a variety of cell markers related to cell shape, cell adhesion and cell plasticity in the rat organ of Corti poisoned with amikacin. Our results indicate that, after severe outer hair cell losses, the cytoarchitectural reorganization of the organ of Corti implicates epithelial-mesenchymal transition mechanisms and involves both collective and individual cell migratory processes. The results also suggest that both root cells and infiltrated fibroblasts participate in the homeostasis of the damaged epithelium, and that the flat epithelium that may emerge offers biological opportunities for late regenerative therapies.
Collapse
Affiliation(s)
- Sabine Ladrech
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, 80 rue Augustin Fliche, 34091, Montpellier Cedex 5, France.,University of Montpellier, Montpellier, France
| | - Michel Eybalin
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, 80 rue Augustin Fliche, 34091, Montpellier Cedex 5, France.,University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, 80 rue Augustin Fliche, 34091, Montpellier Cedex 5, France.,University of Montpellier, Montpellier, France
| | - Marc Lenoir
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, 80 rue Augustin Fliche, 34091, Montpellier Cedex 5, France. .,University of Montpellier, Montpellier, France.
| |
Collapse
|
14
|
Shangkuan WC, Lin HC, Shih CP, Cheng CA, Fan HC, Chung CH, Lin FH, Tsao CH, Chien WC. Increased long-term risk of hearing loss in patients with traumatic brain injury: A nationwide population-based study. Laryngoscope 2017; 127:2627-2635. [PMID: 28322446 DOI: 10.1002/lary.26567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES/HYPOTHESIS We investigated incidences of hearing loss among patients with traumatic brain injury (TBI) to evaluate whether they had a higher risk of hearing loss than the general population. STUDY DESIGN Cohort study. METHODS Inpatient data from the Taiwan National Health Insurance Research Database from January 1, 2000 to December 31, 2010 were recorded. Patients with TBI and a retrospective comparison cohort were analyzed. Each subject was individually traced from their index date to identify subjects who subsequently received a diagnosis of hearing loss. Cox regression analyses were applied to determine the risk of TBI-related hearing loss. RESULTS Follow-up data from the TBI and comparison cohorts were collected over 10 years for 553,286 and 1,106,572 patients, respectively. Multivariate analyses demonstrated that TBI significantly increased the risk of hearing loss (adjusted hazard ratio = 2.125, 95% confidence interval = 2.045-2.546, P = .027). In our subgroup analyses by type of injury, patients with TBI due to traffic injury had the highest associated risk of hearing loss compared with the risk of non-TBI traffic injury patients, followed by patients with crushing/cutting/piercing injuries and falls. CONCLUSIONS Our study shows that TBI led to a higher risk of long-term hearing loss. Traffic injuries were the most common injury related to hearing loss. Prevention, rather than treatment, may be the best policy for preventing hearing loss. LEVEL OF EVIDENCE 2b. Laryngoscope, 127:2627-2635, 2017.
Collapse
Affiliation(s)
| | - Hung-Che Lin
- National Defense Medical Center, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Ping Shih
- National Defense Medical Center, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-An Cheng
- National Defense Medical Center, Taipei, Taiwan.,Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hueng-Chuen Fan
- National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung City, Taiwan
| | - Chi-Hsiang Chung
- National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Huang Lin
- National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Huei Tsao
- National Defense Medical Center, Taipei, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
15
|
Zhou Y, Hu Z. Epigenetic DNA Demethylation Causes Inner Ear Stem Cell Differentiation into Hair Cell-Like Cells. Front Cell Neurosci 2016; 10:185. [PMID: 27536218 PMCID: PMC4971107 DOI: 10.3389/fncel.2016.00185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
The DNA methyltransferase (DNMT) inhibitor 5-azacytidine (5-aza) causes genomic demethylation to regulate gene expression. However, it remains unclear whether 5-aza affects gene expression and cell fate determination of stem cells. In this study, 5-aza was applied to mouse utricle sensory epithelia-derived progenitor cells (MUCs) to investigate whether 5-aza stimulated MUCs to become sensory hair cells. After treatment, MUCs increased expression of hair cell genes and proteins. The DNA methylation level (indicated by percentage of 5-methylcytosine) showed a 28.57% decrease after treatment, which causes significantly repressed DNMT1 protein expression and DNMT activity. Additionally, FM1-43 permeation assays indicated that the permeability of 5-aza-treated MUCs was similar to that of sensory hair cells, which may result from mechanotransduction channels. This study not only demonstrates a possible epigenetic approach to induce tissue specific stem/progenitor cells to become sensory hair cell-like cells, but also provides a cell model to epigenetically modulate stem cell fate determination.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Zhengqing Hu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
16
|
Tang PC, Smith KM, Watson GM. Repair of traumatized mammalian hair cells via sea anemone repair proteins. ACTA ACUST UNITED AC 2016; 219:2265-70. [PMID: 27489215 DOI: 10.1242/jeb.135459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Mammalian hair cells possess only a limited ability to repair damage after trauma. In contrast, sea anemones show a marked capability to repair damaged hair bundles by means of secreted repair proteins (RPs). Previously, it was found that recovery of traumatized hair cells in blind cavefish was enhanced by anemone-derived RPs; therefore, the ability of anemone RPs to assist recovery of damaged hair cells in mammals was tested here. After a 1 h incubation in RP-enriched culture media, uptake of FM1-43 by experimentally traumatized murine cochlear hair cells was restored to levels comparable to those exhibited by healthy controls. In addition, RP-treated explants had significantly more normally structured hair bundles than time-matched traumatized control explants. Collectively, these results indicate that anemone-derived RPs assist in restoring normal function and structure of experimentally traumatized hair cells of the mouse cochlea.
Collapse
Affiliation(s)
- Pei-Ciao Tang
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Karen Müller Smith
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Glen M Watson
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| |
Collapse
|
17
|
Żak M, van der Linden CA, Bezdjian A, Hendriksen FG, Klis SFL, Grolman W. Scar formation in mice deafened with kanamycin and furosemide. Microsc Res Tech 2016; 79:766-72. [PMID: 27311812 DOI: 10.1002/jemt.22695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/11/2016] [Accepted: 05/26/2016] [Indexed: 11/10/2022]
Abstract
In mammals, hair cell loss is irreversible and leads to hearing loss. To develop and test the functioning of different strategies aiming at hair cell regeneration, animal models of sensorineural hearing loss are essential. Although cochleae of these animals should lack hair cells, supporting cells should be preserved forming an environment for the regenerated hair cells. In this study, we investigated how ototoxic treatment with kanamycin and furosemide changes the structure of cochlear sensory epithelium in mice. The study also compared different tissue preparation protocols for scanning electron microscopy (SEM). Cochleae were collected from deafened and nondeafened mice and further processed for plastic mid modiolar sections and SEM. For comparing SEM protocols, cochleae from nondeafened mice were processed using three protocols: osmium-thiocarbohydrazide-osmium (OTO), tannic acid-arginine-osmium, and the conventional method with gold-coating. The OTO method demonstrated optimal cochlear tissue preservation. Histological investigation of cochleae of deafened mice revealed that the supporting cells enlarged and ultimately replaced the lost hair cells forming types 1 and 2 phalangeal scars in a base towards apex gradient. The type 3 epithelial scar, flattened epithelium, has not been seen in analysed cochleae. The study concluded that mice deafened with kanamycin and furosemide formed scars containing supporting cells, which renders this mouse model suitable for testing various hair cell regeneration approaches. Microsc. Res. Tech. 79:766-772, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Magdalena Żak
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cynthia A van der Linden
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aren Bezdjian
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ferry G Hendriksen
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sjaak F L Klis
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Koo JW, Quintanilla-Dieck L, Jiang M, Liu J, Urdang ZD, Allensworth JJ, Cross CP, Li H, Steyger PS. Endotoxemia-mediated inflammation potentiates aminoglycoside-induced ototoxicity. Sci Transl Med 2016. [PMID: 26223301 DOI: 10.1126/scitranslmed.aac5546] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ototoxic aminoglycoside antibiotics are essential to treat severe bacterial infections, particularly in neonatal intensive care units. Using a bacterial lipopolysaccharide (LPS) experimental model of sepsis, we tested whether LPS-mediated inflammation potentiates cochlear uptake of aminoglycosides and permanent hearing loss in mice. Using confocal microscopy and enzyme-linked immunosorbent assays, we found that low-dose LPS (endotoxemia) greatly increased cochlear concentrations of aminoglycosides and resulted in vasodilation of cochlear capillaries without inducing paracellular flux across the blood-labyrinth barrier (BLB) or elevating serum concentrations of the drug. Additionally, endotoxemia increased expression of both serum and cochlear inflammatory markers. These LPS-induced changes, classically mediated by Toll-like receptor 4 (TLR4), were attenuated in TLR4-hyporesponsive mice. Multiday dosing with aminoglycosides during chronic endotoxemia induced greater hearing threshold shifts and sensory cell loss compared to mice without endotoxemia. Thus, endotoxemia-mediated inflammation enhanced aminoglycoside trafficking across the BLB and potentiated aminoglycoside-induced ototoxicity. These data indicate that patients with severe infections are at greater risk of aminoglycoside-induced hearing loss than previously recognized.
Collapse
Affiliation(s)
- Ja-Won Koo
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA. Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Kumiro, Bundang-gu, Seongnam 463-707, Republic of Korea
| | - Lourdes Quintanilla-Dieck
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Meiyan Jiang
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jianping Liu
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA. Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Zachary D Urdang
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jordan J Allensworth
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Campbell P Cross
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Hongzhe Li
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Peter S Steyger
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
19
|
Abbas L, Rivolta MN. Aminoglycoside ototoxicity and hair cell ablation in the adult gerbil: A simple model to study hair cell loss and regeneration. Hear Res 2015; 325:12-26. [PMID: 25783988 PMCID: PMC4441107 DOI: 10.1016/j.heares.2015.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 11/19/2022]
Abstract
The Mongolian gerbil, Meriones unguiculatus, has been widely employed as a model for studies of the inner ear. In spite of its established use for auditory research, no robust protocols to induce ototoxic hair cell damage have been developed for this species. In this paper, we demonstrate the development of an aminoglycoside-induced model of hair cell loss, using kanamycin potentiated by the loop diuretic furosemide. Interestingly, we show that the gerbil is relatively insensitive to gentamicin compared to kanamycin, and that bumetanide is ineffective in potentiating the ototoxicity of the drug. We also examine the pathology of the spiral ganglion after chronic, long-term hair cell damage. Remarkably, there is little or no neuronal loss following the ototoxic insult, even at 8 months post-damage. This is similar to the situation often seen in the human, where functioning neurons can persist even decades after hair cell loss, contrasting with the rapid, secondary degeneration found in rats, mice and other small mammals. We propose that the combination of these factors makes the gerbil a good model for ototoxic damage by induced hair cell loss.
Collapse
Affiliation(s)
- Leila Abbas
- Centre for Stem Cell Biology and Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology and Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
20
|
DNA damage signaling regulates age-dependent proliferative capacity of quiescent inner ear supporting cells. Aging (Albany NY) 2015; 6:496-510. [PMID: 25063730 PMCID: PMC4100811 DOI: 10.18632/aging.100668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Supporting cells (SCs) of the cochlear (auditory) and vestibular (balance) organs hold promise as a platform for therapeutic regeneration of the sensory hair cells. Prior data have shown proliferative restrictions of adult SCs forced to re-enter the cell cycle. By comparing juvenile and adult SCs in explant cultures, we have here studied how proliferative restrictions are linked with DNA damage signaling. Cyclin D1 overexpression, used to stimulate cell cycle re-entry, triggered higher proliferative activity of juvenile SCs. Phosphorylated form of histone H2AX (γH2AX) and p53 binding protein 1 (53BP1) were induced in a foci-like pattern in SCs of both ages as an indication of DNA double-strand break formation and activated DNA damage response. Compared to juvenile SCs, γH2AX and the repair protein Rad51 were resolved with slower kinetics in adult SCs, accompanied by increased apoptosis. Consistent with the in vitro data, in a Rb mutant mouse model in vivo, cell cycle re-entry of SCs was associated with γH2AX foci induction. In contrast to cell cycle reactivation, pharmacological stimulation of SC-to-hair-cell transdifferentiation in vitro did not trigger γH2AX. Thus, DNA damage and its prolonged resolution are critical barriers in the efforts to stimulate proliferation of the adult inner ear SCs.
Collapse
|
21
|
Spontaneous regeneration of cochlear supporting cells after neonatal ablation ensures hearing in the adult mouse. Proc Natl Acad Sci U S A 2014; 111:16919-24. [PMID: 25385613 DOI: 10.1073/pnas.1408064111] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Supporting cells in the cochlea play critical roles in the development, maintenance, and function of sensory hair cells and auditory neurons. Although the loss of hair cells or auditory neurons results in sensorineural hearing loss, the consequence of supporting cell loss on auditory function is largely unknown. In this study, we specifically ablated inner border cells (IBCs) and inner phalangeal cells (IPhCs), the two types of supporting cells surrounding inner hair cells (IHCs) in mice in vivo. We demonstrate that the organ of Corti has the intrinsic capacity to replenish IBCs/IPhCs effectively during early postnatal development. Repopulation depends on the presence of hair cells and cells within the greater epithelial ridge and is independent of cell proliferation. This plastic response in the neonatal cochlea preserves neuronal survival, afferent innervation, and hearing sensitivity in adult mice. In contrast, the capacity for IBC/IPhC regeneration is lost in the mature organ of Corti, and consequently IHC survival and hearing sensitivity are impaired significantly, demonstrating that there is a critical period for the regeneration of cochlear supporting cells. Our findings indicate that the quiescent neonatal organ of Corti can replenish specific supporting cells completely after loss in vivo to guarantee mature hearing function.
Collapse
|
22
|
Anttonen T, Belevich I, Kirjavainen A, Laos M, Brakebusch C, Jokitalo E, Pirvola U. How to bury the dead: elimination of apoptotic hair cells from the hearing organ of the mouse. J Assoc Res Otolaryngol 2014; 15:975-92. [PMID: 25074370 DOI: 10.1007/s10162-014-0480-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/01/2014] [Indexed: 12/20/2022] Open
Abstract
Hair cell death is a major cause of hearing impairment. Preservation of surface barrier upon hair cell loss is critical to prevent leakage of potassium-rich endolymph into the organ of Corti and to prevent expansion of cellular damage. Understanding of wound healing in this cytoarchitecturally complex organ requires ultrastructural 3D visualization. Powered by the serial block-face scanning electron microscopy, we penetrate into the cell biological mechanisms in the acute response of outer hair cells and glial-like Deiters' cells to ototoxic trauma in vivo. We show that Deiters' cells function as phagocytes. Upon trauma, their phalangeal processes swell and the resulting close cellular contacts allow engulfment of apoptotic cell debris. Apical domains of dying hair cells are eliminated from the inner ear sensory epithelia, an event thought to depend on supporting cells' actomyosin contractile activity. We show that in the case of apoptotic outer hair cells of the organ of Corti, elimination of their apices is preceded by strong cell body shrinkage, emphasizing the role of the dying cell itself in the cleavage. Our data reveal that the resealing of epithelial surface by junctional extensions of Deiters' cells is dynamically reinforced by newly polymerized F-actin belts. By analyzing Cdc42-inactivated Deiters' cells with defects in actin dynamics and surface closure, we show that compromised barrier integrity shifts hair cell death from apoptosis to necrosis and leads to expanded hair cell and nerve fiber damage. Our results have implications concerning therapeutic protective and regenerative interventions, because both interventions should maintain barrier integrity.
Collapse
Affiliation(s)
- Tommi Anttonen
- Department of Biosciences, University of Helsinki, P.O. Box 56 (Viikinkaari 1), 00014, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
Mechanisms of radiation-induced sensorineural hearing loss and radioprotection. Hear Res 2014; 312:60-8. [DOI: 10.1016/j.heares.2014.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/12/2014] [Accepted: 03/07/2014] [Indexed: 12/20/2022]
|
24
|
Martone T, Giordano P, Dagna F, Carulli D, Albera R, Rossi F. Nestin expression and reactive phenomena in the mouse cochlea after kanamycin ototoxicity. Eur J Neurosci 2014; 39:1729-41. [PMID: 24689961 DOI: 10.1111/ejn.12576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/28/2014] [Indexed: 11/28/2022]
Abstract
Following injury to the adult mammalian cochlea, hair cells cannot be spontaneously replaced. Nonetheless, the postnatal cochlea contains progenitor cells, distinguished by the expression of nestin, which are able to proliferate and form neurospheres in vitro. Such resident progenitors might be endowed with reparative potential. However, to date little is known about their behaviour in situ following hair cell injury. Using adult mice and ex vivo cochlear cultures, we sought to determine whether: (i) resident cochlear progenitors respond to kanamycin ototoxicity and compensate for it; and (ii) the reparative potential of cochlear progenitors can be stimulated by the addition of growth factors. Morphological changes of cochlear tissue, expression of nestin mRNA and protein and cell proliferation were investigated in these models. Our observations show that ototoxic injury has modest effects on nestin expression and cell proliferation. On the other hand, the addition of growth factors to the injured cochlear explants induced the appearance of nestin-positive cells in the supporting cell area of the organ of Corti. The vast majority of nestin-expressing cells, however, were not proliferating. Growth factors also had a robust stimulatory effect on axonal sprouting and the proliferative response, which was more pronounced in injured cochleae. On the whole, our findings indicate that nestin expression after kanamycin ototoxicity is related to tissue reactivity rather than activation of resident progenitors attempting to replace the lost receptors. In addition, administration of growth factors significantly enhances tissue remodelling, suggesting that cochlear repair may be promoted by the exogenous application of regeneration-promoting substances.
Collapse
Affiliation(s)
- Tiziana Martone
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), Turin, Italy; Neuroscience Institute Cavalieri-Ottolenghi (NICO), University of Turin, Orbassano, Turin, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Coupling the cell cycle to development and regeneration of the inner ear. Semin Cell Dev Biol 2013; 24:507-13. [PMID: 23665151 DOI: 10.1016/j.semcdb.2013.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/23/2013] [Indexed: 12/19/2022]
Abstract
Cell cycle exit and acquirement of a postmitotic state is essential for the proper development of organs. In the present review, we examine the role of the cell cycle control in the sensory epithelia of the mammalian inner ear. We describe the roles of the core cell cycle regulators in the proliferation of prosensory cells and in the initiation and maintenance of terminal mitosis of the sensory epithelia. We also discuss how other intracellular signalling may influence the cell cycle. Finally, we address the question of whether manipulations of the cell cycle may have the potential to create replacement cells for the damaged inner sensory epithelia.
Collapse
|