1
|
Kania D, Romaniszyn-Kania P, Tuszy A, Bugdol M, Ledwoń D, Czak M, Turner B, Bibrowicz K, Szurmik T, Pollak A, Mitas AW. Evaluation of physiological response and synchronisation errors during synchronous and pseudosynchronous stimulation trials. Sci Rep 2024; 14:8814. [PMID: 38627479 PMCID: PMC11021516 DOI: 10.1038/s41598-024-59477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Rhythm perception and synchronisation is musical ability with neural basis defined as the ability to perceive rhythm in music and synchronise body movements with it. The study aimed to check the errors of synchronisation and physiological response as a reaction of the subjects to metrorhythmic stimuli of synchronous and pseudosynchronous stimulation (synchronisation with an externally controlled rhythm, but in reality controlled or produced tone by tapping) Nineteen subjects without diagnosed motor disorders participated in the study. Two tests were performed, where the electromyography signal and reaction time were recorded using the NORAXON system. In addition, physiological signals such as electrodermal activity and blood volume pulse were measured using the Empatica E4. Study 1 consisted of adapting the finger tapping test in pseudosynchrony with a given metrorhythmic stimulus with a selection of preferred, choices of decreasing and increasing tempo. Study 2 consisted of metrorhythmic synchronisation during the heel stomping test. Numerous correlations and statistically significant parameters were found between the response of the subjects with respect to their musical education, musical and sports activities. Most of the differentiating characteristics shown evidence of some group division in the undertaking of musical activities. The use of detailed analyses of synchronisation errors can contribute to the development of methods to improve the rehabilitation process of subjects with motor dysfunction, and this will contribute to the development of an expert system that considers personalised musical preferences.
Collapse
Affiliation(s)
- Damian Kania
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72A, 40-065, Katowice, Poland
| | - Patrycja Romaniszyn-Kania
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland.
| | - Aleksandra Tuszy
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| | - Monika Bugdol
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| | - Daniel Ledwoń
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| | - Miroslaw Czak
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| | - Bruce Turner
- dBs Music, HE Music Faculty, 17 St Thomas St, Redcliffe, Bristol, BS1 6JS, UK
| | - Karol Bibrowicz
- Science and Research Center of Body Posture, College of Education and Therapy in Poznań, 61-473, Poznań, Poland
| | - Tomasz Szurmik
- Faculty of Arts and Educational Science, University of Silesia, ul. Bielska 62, 43-400, Cieszyn, Poland
| | - Anita Pollak
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
- Institute of Psychology, University of Silesia, ul. Grazynskiego 53, 40-126, Katowice, Poland
| | - Andrzej W Mitas
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| |
Collapse
|
2
|
Price CN, Bidelman GM. Musical experience partially counteracts temporal speech processing deficits in putative mild cognitive impairment. Ann N Y Acad Sci 2022; 1516:114-122. [PMID: 35762658 PMCID: PMC9588638 DOI: 10.1111/nyas.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mild cognitive impairment (MCI) commonly results in more rapid cognitive and behavioral declines than typical aging. Individuals with MCI can exhibit impaired receptive speech abilities that may reflect neurophysiological changes in auditory-sensory processing prior to usual cognitive deficits. Benefits from current interventions targeting communication difficulties in MCI are limited. Yet, neuroplasticity associated with musical experience has been implicated in improving neural representations of speech and offsetting age-related declines in perception. Here, we asked whether these experience-dependent effects of musical experience might extend to aberrant aging and offer some degree of cognitive protection against MCI. During a vowel categorization task, we recorded single-channel electroencephalograms (EEGs) in older adults with putative MCI to evaluate speech encoding across subcortical and cortical levels of the auditory system. Critically, listeners varied in their duration of formal musical experience (0-21 years). Musical experience sharpened temporal precision in auditory cortical responses, suggesting that musical experience produces more efficient processing of acoustic features by counteracting age-related neural delays. Additionally, robustness of brainstem responses predicted the severity of cognitive decline, suggesting that early speech representations are sensitive to preclinical stages of cognitive impairment. Our results extend prior studies by demonstrating positive benefits of musical experience in older adults with emergent cognitive impairments.
Collapse
Affiliation(s)
- Caitlin N. Price
- Department of Audiology & Speech Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
3
|
Couth S, Mazlan N, Moore DR, Munro KJ, Dawes P. Hearing Difficulties and Tinnitus in Construction, Agricultural, Music, and Finance Industries: Contributions of Demographic, Health, and Lifestyle Factors. Trends Hear 2020; 23:2331216519885571. [PMID: 31747526 PMCID: PMC6868580 DOI: 10.1177/2331216519885571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
High levels of occupational noise exposure increase the risk of hearing difficulties and tinnitus. However, differences in demographic, health, and lifestyle factors could also contribute to high levels of hearing difficulties and tinnitus in some industries. Data from a subsample (n = 22,936) of the U.K. Biobank were analyzed to determine to what extent differences in levels of hearing difficulties and tinnitus in high-risk industries (construction, agricultural, and music) compared with low-risk industries (finance) could be attributable to demographic, health, and lifestyle factors, rather than occupational noise exposure. Hearing difficulties were identified using a digits-in-noise speech recognition test. Tinnitus was identified based on self-report. Logistic regression analyses showed that occupational noise exposure partially accounted for higher levels of hearing difficulties in the agricultural industry compared with finance, and occupational noise exposure, older age, low socioeconomic status, and non-White ethnic background partially accounted for higher levels of hearing difficulties in the construction industry. However, the factors assessed in the model did not fully account for the increased likelihood of hearing difficulties in high-risk industries, suggesting that there are additional unknown factors which impact on hearing or that there was insufficient measurement of factors included in the model. The levels of tinnitus were greatest for music and construction industries compared with finance, and these differences were accounted for by occupational and music noise exposure, as well as older age. These findings emphasize the need to promote hearing conservation in occupational and music settings, with a particular focus on high-risk demographic subgroups.
Collapse
Affiliation(s)
- Samuel Couth
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK
| | - Naadia Mazlan
- Faculty of Engineering, School of Civil Engineering, Universiti Teknologi Malaysia, Malaysia
| | - David R Moore
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK.,Communication Sciences Research Center, Cincinnati Children's Hospital Medical Centre, OH, USA
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK.,Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, UK
| | - Piers Dawes
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK
| |
Collapse
|
4
|
Noise-Induced Changes of the Auditory Brainstem Response to Speech-a Measure of Neural Desynchronisation? J Assoc Res Otolaryngol 2020; 21:183-197. [PMID: 32285225 PMCID: PMC7271295 DOI: 10.1007/s10162-020-00750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/12/2020] [Indexed: 11/05/2022] Open
Abstract
It is commonly assumed that difficulty in listening to speech in noise is at least partly due to deficits in neural temporal processing. Given that noise reduces the temporal fidelity of the auditory brainstem response (ABR) to speech, it has been suggested that the speech ABR may serve as an index of such neural deficits. However, the temporal fidelity of ABRs, to both speech and non-speech sounds, is also known to be influenced by the cochlear origin of the response, as responses from higher-frequency cochlear regions are faster and more synchronous than responses from lower-frequency regions. Thus, if noise caused a reweighting of response contributions from higher- to lower-frequency cochlear regions, the temporal fidelity of the aggregate response should be reduced even in the absence of any changes in neural processing. This ‘place mechanism’ has been demonstrated for non-speech ABRs. The aim of this study was to test whether it also applies to speech ABRs. We used the so-called ‘derived-band’ method to isolate response contributions from frequency-limited cochlear regions. Broadband and derived-band speech ABRs were measured both in quiet and in noise. Whilst the noise caused significant changes to the temporal properties of the broadband response, its effects on the derived-band responses were mostly restricted to the response amplitudes. Importantly, the amplitudes of the higher-frequency derived-band responses were much more strongly affected than those of the lower-frequency responses, suggesting that the noise indeed caused a reweighting effect. Our results indicate that, as for non-speech ABRs, the cochlear place mechanism can represent a potentially substantial confound to speech-ABR-in-noise measurements.
Collapse
|
5
|
Bidelman GM, Price CN, Shen D, Arnott SR, Alain C. Afferent-efferent connectivity between auditory brainstem and cortex accounts for poorer speech-in-noise comprehension in older adults. Hear Res 2019; 382:107795. [PMID: 31479953 DOI: 10.1016/j.heares.2019.107795] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022]
Abstract
Speech-in-noise (SIN) comprehension deficits in older adults have been linked to changes in both subcortical and cortical auditory evoked responses. However, older adults' difficulty understanding SIN may also be related to an imbalance in signal transmission (i.e., functional connectivity) between brainstem and auditory cortices. By modeling high-density scalp recordings of speech-evoked responses with sources in brainstem (BS) and bilateral primary auditory cortices (PAC), we show that beyond attenuating neural activity, hearing loss in older adults compromises the transmission of speech information between subcortical and early cortical hubs of the speech network. We found that the strength of afferent BS→PAC neural signaling (but not the reverse efferent flow; PAC→BS) varied with mild declines in hearing acuity and this "bottom-up" functional connectivity robustly predicted older adults' performance in a SIN identification task. Connectivity was also a better predictor of SIN processing than unitary subcortical or cortical responses alone. Our neuroimaging findings suggest that in older adults (i) mild hearing loss differentially reduces neural output at several stages of auditory processing (PAC > BS), (ii) subcortical-cortical connectivity is more sensitive to peripheral hearing loss than top-down (cortical-subcortical) control, and (iii) reduced functional connectivity in afferent auditory pathways plays a significant role in SIN comprehension problems.
Collapse
Affiliation(s)
- Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| | - Caitlin N Price
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| | - Dawei Shen
- Rotman Research Institute-Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada
| | - Stephen R Arnott
- Rotman Research Institute-Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada
| | - Claude Alain
- Rotman Research Institute-Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada; University of Toronto, Department of Psychology, Toronto, Ontario, Canada; University of Toronto, Institute of Medical Sciences, Toronto, Ontario, Canada
| |
Collapse
|
6
|
D'Onofrio KL, Gifford RH, Ricketts TA. Musician and Nonmusician Hearing Aid Setting Preferences for Music and Speech Stimuli. Am J Audiol 2019; 28:333-347. [PMID: 31091118 DOI: 10.1044/2019_aja-18-0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose The purpose of this study was to evaluate potential group differences between musicians and nonmusicians in their self-adjusted (SA) gain and compression settings for both music and speech stimuli. Speech recognition, sound quality, and strength of preference for the SA settings and the original prescriptive (National Acoustic Laboratories-Nonlinear 2 [NAL-NL2]) settings were also compared. Method Participants included 12 musician ( M = 60 years) and 12 nonmusician ( M = 55 years) adult hearing aid users with mild-moderate hearing loss, on average. Self-adjustments were made to hearing aid gain and compression settings for 2 music stimuli and a speech stimulus. Speech recognition in quiet and noise, sound quality for 6 dimensions (clarity, pleasantness, naturalness, fullness, brightness, and overall impression), and strength of preference ratings using paired comparisons were then assessed at both the NAL-NL2 settings and the participants' SA settings. Results On average, self-adjustments made by both groups were quite small (< 5 dB for gain and < 0.5 for compression ratio). Furthermore, SA changes to gain and compression ratio were not significantly different for musicians versus nonmusicians or for music versus speech. Finally, speech perception performance and sound quality ratings did not differ for the SA settings versus the NAL-NL2 settings, with the exception of the naturalness sound quality dimension. Conclusions These data suggest that a gain-frequency response specific to musicians and/or music inputs may not be necessary. Thus, current, validated prescriptive methods continue to be well supported as an appropriate starting place for listeners with mild-moderate hearing loss using open hearing aid fittings.
Collapse
Affiliation(s)
| | - René H. Gifford
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| | - Todd A. Ricketts
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
7
|
Bianchi F, Carney LH, Dau T, Santurette S. Effects of Musical Training and Hearing Loss on Fundamental Frequency Discrimination and Temporal Fine Structure Processing: Psychophysics and Modeling. J Assoc Res Otolaryngol 2019; 20:263-277. [PMID: 30693416 PMCID: PMC6513935 DOI: 10.1007/s10162-018-00710-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/19/2018] [Indexed: 11/01/2022] Open
Abstract
Several studies have shown that musical training leads to improved fundamental frequency (F0) discrimination for young listeners with normal hearing (NH). It is unclear whether a comparable effect of musical training occurs for listeners whose sensory encoding of F0 is degraded. To address this question, the effect of musical training was investigated for three groups of listeners (young NH, older NH, and older listeners with hearing impairment, HI). In a first experiment, F0 discrimination was investigated using complex tones that differed in harmonic content and phase configuration (sine, positive, or negative Schroeder). Musical training was associated with significantly better F0 discrimination of complex tones containing low-numbered harmonics for all groups of listeners. Part of this effect was caused by the fact that musicians were more robust than non-musicians to harmonic roving. Despite the benefit relative to their non-musicians counterparts, the older musicians, with or without HI, performed worse than the young musicians. In a second experiment, binaural sensitivity to temporal fine structure (TFS) cues was assessed for the same listeners by estimating the highest frequency at which an interaural phase difference was perceived. Performance was better for musicians for all groups of listeners and the use of TFS cues was degraded for the two older groups of listeners. These findings suggest that musical training is associated with an enhancement of both TFS cues encoding and F0 discrimination in young and older listeners with or without HI, although the musicians' benefit decreased with increasing hearing loss. Additionally, models of the auditory periphery and midbrain were used to examine the effect of HI on F0 encoding. The model predictions reflected the worsening in F0 discrimination with increasing HI and accounted for up to 80 % of the variance in the data.
Collapse
Affiliation(s)
- Federica Bianchi
- Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, Building 352, 2800, Lyngby, Denmark.
- Current Affiliation: Oticon Medical, Kongebakken 9, Smørum, Denmark.
| | - Laurel H Carney
- Departments of Biomedical Engineering and Neuroscience, University of Rochester, Rochester, NY, USA
| | - Torsten Dau
- Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, Building 352, 2800, Lyngby, Denmark
| | - Sébastien Santurette
- Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, Building 352, 2800, Lyngby, Denmark
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Rigshospitalet, 2100, Copenhagen, Denmark
| |
Collapse
|
8
|
Donai JJ, Jennings MB. Gaps-in-noise detection and gender identification from noise-vocoded vowel segments: Comparing performance of active musicians to non-musicians. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:EL128. [PMID: 27250197 DOI: 10.1121/1.4947070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study evaluated performance on a gender identification and temporal resolution task among active musicians and age-matched non-musicians. Brief duration (i.e., 50 and 100 ms) vowel segments produced by four adult male and four adult female speakers were spectro-temporally degraded using various parameters and presented to both groups for gender identification. Gap detection thresholds were measured using the gaps-in-noise (GIN) test. Contrary to the stated hypothesis, a significant difference in gender identification was not observed between the musician and non-musician listeners. A significant difference, however, was observed on the temporal resolution task, with the musician group achieving approximately 2 ms shorter gap detection thresholds on the GIN test compared to the non-musician counterparts. These results provide evidence supporting the potential benefits of musical training on temporal processing abilities, which have implications for the processing of speech in degraded listening environments and the enhanced processing of the fine-grained temporal aspects of the speech signal. The results also support the GIN test as an instrument sensitive to temporal processing differences among active musicians and non-musicians.
Collapse
Affiliation(s)
- Jeremy J Donai
- Department of Communication Sciences and Disorders, West Virginia University, Morgantown, West Virginia 26506, USA ,
| | - Mariah B Jennings
- Department of Communication Sciences and Disorders, West Virginia University, Morgantown, West Virginia 26506, USA ,
| |
Collapse
|
9
|
Lehmann A, Skoe E. Robust Encoding in the Human Auditory Brainstem: Use It or Lose It? Front Neurosci 2015; 9:451. [PMID: 26648840 PMCID: PMC4664693 DOI: 10.3389/fnins.2015.00451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/13/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- Alexandre Lehmann
- Department of Otolaryngology Head and Neck Surgery, McGill University Montreal, QC, Canada ; International Laboratory for Brain, Music and Sound Research, Center for Research on Brain, Language and Music Montreal, QC, Canada
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, Cognitive Science Program Affiliate, University of Connecticut Storrs, CT, USA
| |
Collapse
|
10
|
Gordon RL, Fehd HM, McCandliss BD. Does Music Training Enhance Literacy Skills? A Meta-Analysis. Front Psychol 2015; 6:1777. [PMID: 26648880 PMCID: PMC4664655 DOI: 10.3389/fpsyg.2015.01777] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/05/2015] [Indexed: 11/24/2022] Open
Abstract
Children's engagement in music practice is associated with enhancements in literacy-related language skills, as demonstrated by multiple reports of correlation across these two domains. Training studies have tested whether engaging in music training directly transfers benefit to children's literacy skill development. Results of such studies, however, are mixed. Interpretation of these mixed results is made more complex by the fact that a wide range of literacy-related outcome measures are used across these studies. Here, we address these challenges via a meta-analytic approach. A comprehensive literature review of peer-reviewed music training studies was built around key criteria needed to test the direct transfer hypothesis, including: (a) inclusion of music training vs. control groups; (b) inclusion of pre- vs. post-comparison measures, and (c) indication that reading instruction was held constant across groups. Thirteen studies were identified (n = 901). Two classes of outcome measures emerged with sufficient overlap to support meta-analysis: phonological awareness and reading fluency. Hours of training, age, and type of control intervention were examined as potential moderators. Results supported the hypothesis that music training leads to gains in phonological awareness skills. The effect isolated by contrasting gains in music training vs. gains in control was small relative to the large variance in these skills (d = 0.2). Interestingly, analyses revealed that transfer effects for rhyming skills tended to grow stronger with increased hours of training. In contrast, no significant aggregate transfer effect emerged for reading fluency measures, despite some studies reporting large training effects. The potential influence of other study design factors were considered, including intervention design, IQ, and SES. Results are discussed in the context of emerging findings that music training may enhance literacy development via changes in brain mechanisms that support both music and language cognition.
Collapse
Affiliation(s)
- Reyna L Gordon
- Music Cognition Lab, Program for Music, Mind and Society, Department of Otolaryngology, Vanderbilt University Medical Center Nashville, TN, USA ; Vanderbilt Kennedy Center, Vanderbilt University Medical Center Nashville, TN, USA
| | - Hilda M Fehd
- Institute for Software Integrated Systems, School of Engineering, Vanderbilt University Nashville, TN, USA
| | - Bruce D McCandliss
- Department of Psychology, Graduate School of Education, Stanford University Stanford, CA, USA
| |
Collapse
|
11
|
From Notes to Vowels: Neural Correlations between Musical Training and Speech Processing. J Neurosci 2015; 35:8379-81. [PMID: 26041906 DOI: 10.1523/jneurosci.1102-15.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Musical training orchestrates coordinated neuroplasticity in auditory brainstem and cortex to counteract age-related declines in categorical vowel perception. J Neurosci 2015; 35:1240-9. [PMID: 25609638 DOI: 10.1523/jneurosci.3292-14.2015] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Musicianship in early life is associated with pervasive changes in brain function and enhanced speech-language skills. Whether these neuroplastic benefits extend to older individuals more susceptible to cognitive decline, and for whom plasticity is weaker, has yet to be established. Here, we show that musical training offsets declines in auditory brain processing that accompanying normal aging in humans, preserving robust speech recognition late into life. We recorded both brainstem and cortical neuroelectric responses in older adults with and without modest musical training as they classified speech sounds along an acoustic-phonetic continuum. Results reveal higher temporal precision in speech-evoked responses at multiple levels of the auditory system in older musicians who were also better at differentiating phonetic categories. Older musicians also showed a closer correspondence between neural activity and perceptual performance. This suggests that musicianship strengthens brain-behavior coupling in the aging auditory system. Last, "neurometric" functions derived from unsupervised classification of neural activity established that early cortical responses could accurately predict listeners' psychometric speech identification and, more critically, that neurometric profiles were organized more categorically in older musicians. We propose that musicianship offsets age-related declines in speech listening by refining the hierarchical interplay between subcortical/cortical auditory brain representations, allowing more behaviorally relevant information carried within the neural code, and supplying more faithful templates to the brain mechanisms subserving phonetic computations. Our findings imply that robust neuroplasticity conferred by musical training is not restricted by age and may serve as an effective means to bolster speech listening skills that decline across the lifespan.
Collapse
|
13
|
Skoe E, Kraus N. Auditory reserve and the legacy of auditory experience. Brain Sci 2014; 4:575-93. [PMID: 25405381 PMCID: PMC4279143 DOI: 10.3390/brainsci4040575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 12/04/2022] Open
Abstract
Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.
Collapse
Affiliation(s)
- Erika Skoe
- Department of Speech, Language, and Hearing Sciences, Department of Psychology Affiliate, Cognitive Science Program Affiliate, University of Connecticut, 850 Bolton Street, Storrs, CT 06105, USA.
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Institute for Neuroscience, Department of Neurobiology and Physiology, Department of Otolaryngology, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA.
| |
Collapse
|
14
|
Canlon B. Progress in hearing research 2014. Hear Res 2014; 311:1-2. [PMID: 25151010 DOI: 10.1016/j.heares.2014.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/18/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Barbara Canlon
- Karolinska Institutet, Department of Physiology and Pharmacology, von Eulers vag 8, 171 77 Stockholm, Sweden.
| |
Collapse
|
15
|
Strait DL, Kraus N. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning. Hear Res 2014; 308:109-21. [PMID: 23988583 PMCID: PMC3947192 DOI: 10.1016/j.heares.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/08/2013] [Accepted: 08/11/2013] [Indexed: 01/19/2023]
Abstract
Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function.
Collapse
Affiliation(s)
- Dana L Strait
- Auditory Neuroscience Laboratory, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Institute for Neuroscience, Northwestern University, Chicago, IL 60611, USA
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Institute for Neuroscience, Northwestern University, Chicago, IL 60611, USA; Department of Communication Sciences, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology & Physiology, Northwestern University, Evanston, IL 60208, USA; Department of Otolaryngology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
16
|
The layering of auditory experiences in driving experience-dependent subcortical plasticity. Hear Res 2014; 311:36-48. [PMID: 24445149 DOI: 10.1016/j.heares.2014.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/26/2013] [Accepted: 01/07/2014] [Indexed: 01/23/2023]
Abstract
In this review article, we focus on recent studies of experiential influences on brainstem function. Using these studies as scaffolding, we then lay the initial groundwork for the Layering Hypothesis, which explicates how experiences combine to shape subcortical auditory function. Our hypothesis builds on the idea that the subcortical auditory system reflects the collective auditory experiences of an individual, including interactions with sound that occurred in the distant past. Our goal for this article is to begin to shift the field away from examining the effect of single experiences to examining how different auditory experiences layer or superimpose on each other. This article is part of a Special Issue entitled <Annual Reviews 2014>.
Collapse
|
17
|
Moore DR, Hunter LL. Auditory processing disorder (APD) in children: A marker of neurodevelopmental syndrome. HEARING BALANCE AND COMMUNICATION 2013. [DOI: 10.3109/21695717.2013.821756] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Strait DL, Parbery-Clark A, O'Connell S, Kraus N. Biological impact of preschool music classes on processing speech in noise. Dev Cogn Neurosci 2013; 6:51-60. [PMID: 23872199 DOI: 10.1016/j.dcn.2013.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/25/2022] Open
Abstract
Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood.
Collapse
Affiliation(s)
- Dana L Strait
- Institute for Neuroscience, Northwestern University, Chicago, IL 60611, USA; Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|