1
|
Celaya AM, Rodríguez-de la Rosa L, Bermúdez-Muñoz JM, Zubeldia JM, Romá-Mateo C, Avendaño C, Pallardó FV, Varela-Nieto I. IGF-1 Haploinsufficiency Causes Age-Related Chronic Cochlear Inflammation and Increases Noise-Induced Hearing Loss. Cells 2021; 10:cells10071686. [PMID: 34359856 PMCID: PMC8304185 DOI: 10.3390/cells10071686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) deficiency is an ultrarare syndromic human sensorineural deafness. Accordingly, IGF-1 is essential for the postnatal maturation of the cochlea and the correct wiring of hearing in mice. Less severe decreases in human IGF-1 levels have been associated with other hearing loss rare genetic syndromes, as well as with age-related hearing loss (ARHL). However, the underlying mechanisms linking IGF-1 haploinsufficiency with auditory pathology and ARHL have not been studied. Igf1-heterozygous mice express less Igf1 transcription and have 40% lower IGF-1 serum levels than wild-type mice. Along with ageing, IGF-1 levels decreased concomitantly with the increased expression of inflammatory cytokines, Tgfb1 and Il1b, but there was no associated hearing loss. However, noise exposure of these mice caused increased injury to sensory hair cells and irreversible hearing loss. Concomitantly, there was a significant alteration in the expression ratio of pro- and anti-inflammatory cytokines in Igf1+/- mice. Unbalanced inflammation led to the activation of the stress kinase JNK and the failure to activate AKT. Our data show that IGF-1 haploinsufficiency causes a chronic subclinical proinflammatory age-associated state and, consequently, greater susceptibility to stressors. This work provides the molecular bases to further understand hearing disorders linked to IGF-1 deficiency.
Collapse
Affiliation(s)
- Adelaida M. Celaya
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain;
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Jose M. Bermúdez-Muñoz
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
| | - José M. Zubeldia
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Allergy Service, Gregorio Marañon General University Hospital, 28009 Madrid, Spain
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
| | - Carlos Romá-Mateo
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Spain and FIHCUV-INCLIVA, 46010 Valencia, Spain
| | - Carlos Avendaño
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain;
- Department of Anatomy, Histology & Neuroscience, Medical School, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Federico V. Pallardó
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Spain and FIHCUV-INCLIVA, 46010 Valencia, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain;
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
2
|
Emerging Distortion Product Otoacoustic Emission Techniques to Identify Preclinical Warning Signs of Basal Cochlear Dysfunction Due to Ototoxicity. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hundreds of medications commonly prescribed for anticancer treatments and some infections are known to cause hearing damage, referred to as ototoxicity. Preventing or minimizing ototoxicity is critical in order to preserve quality of life for patients receiving treatment and to reduce the societal burden of hearing loss. Current clinical evaluations are restricted to a limited frequency range (≤8 kHz); however, this approach does not permit the earliest detection of ototoxicity, most likely to be observed at the highest frequencies (9–20 kHz). Distortion product otoacoustic emissions (DPOAEs) offer a noninvasive, objective approach to monitor cochlear health in those unable to respond via conventional methods. The current report analyzes different DPOAE paradigms used in patients undergoing chemotherapy treatments with various platinum derivatives. Individualized serial monitoring protocols were completed at the highest frequencies with measurable DPOAEs. This allowed the exploration of potential clinical translation opportunities for further quantification of the earliest signs of underlying cochlear damage, which may go undetected with conventional methods. Clinical practice has the potential to be enhanced by emerging DPOAE applications, including targeted monitoring protocols and high-frequency stimuli to assess cochlear function, especially at the highest frequencies, and advanced calibration techniques to ensure the stability of serial measurements.
Collapse
|
3
|
Manohar S, Ramchander PV, Salvi R, Seigel GM. Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure. Neuroscience 2018; 399:184-198. [PMID: 30593923 DOI: 10.1016/j.neuroscience.2018.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
The cochlear nucleus, located in the brainstem, receives its afferent auditory input exclusively from the auditory nerve fibers of the ipsilateral cochlea. Noise-induced neurodegenerative changes occurring in the auditory nerve stimulate a cascade of neuroplastic changes in the cochlear nucleus resulting in major changes in synaptic structure and function. To identify some of the key molecular mechanisms mediating this synaptic reorganization, we unilaterally exposed rats to a high-intensity noise that caused significant hearing loss and then measured the resulting changes in a synaptic plasticity gene array targeting neurogenesis and synaptic reorganization. We compared the gene expression patterns in the dorsal cochlear nucleus (DCN) and ventral cochlear nucleus (VCN) on the noise-exposed side versus the unexposed side using a PCR gene array at 2 d (early) and 28 d (late) post-exposure. We discovered a number of differentially expressed genes, particularly those related to synaptogenesis and regeneration. Significant gene expression changes occurred more frequently in the VCN than the DCN and more changes were seen at 28 d versus 2 d post-exposure. We confirmed the PCR findings by in situ hybridization for Brain-derived neurotrophic factor (Bdnf), Homer-1, as well as the glutamate NMDA receptor Grin1, all involved in neurogenesis and plasticity. These results suggest that Bdnf, Homer-1 and Grin1 play important roles in synaptic remodeling and homeostasis in the cochlear nucleus following severe noise-induced afferent degeneration.
Collapse
Affiliation(s)
- S Manohar
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - P V Ramchander
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - R Salvi
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - G M Seigel
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| |
Collapse
|
4
|
Manohar S, Dahar K, Adler HJ, Dalian D, Salvi R. Noise-induced hearing loss: Neuropathic pain via Ntrk1 signaling. Mol Cell Neurosci 2016; 75:101-12. [PMID: 27473923 DOI: 10.1016/j.mcn.2016.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 12/18/2022] Open
Abstract
Severe noise-induced damage to the inner ear leads to auditory nerve fiber degeneration thereby reducing the neural input to the cochlear nucleus (CN). Paradoxically, this leads to a significant increase in spontaneous activity in the CN which has been linked to tinnitus, hyperacusis and ear pain. The biological mechanisms that lead to an increased spontaneous activity are largely unknown, but could arise from changes in glutamatergic or GABAergic neurotransmission or neuroinflammation. To test this hypothesis, we unilaterally exposed rats for 2h to a 126dB SPL narrow band noise centered at 12kHz. Hearing loss measured by auditory brainstem responses exceeded 55dB from 6 to 32kHz. The mRNA from the exposed CN was harvested at 14 or 28days post-exposure and qRT-PCR analysis was performed on 168 genes involved in neural inflammation, neuropathic pain and glutamatergic or GABAergic neurotransmission. Expression levels of mRNA of Slc17a6 and Gabrg3, involved in excitation and inhibition respectively, were significantly increased at 28days post-exposure, suggesting a possible role in the CN spontaneous hyperactivity associated with tinnitus and hyperacusis. In the pain and inflammatory array, noise exposure upregulated mRNA expression levels of four pain/inflammatory genes, Tlr2, Oprd1, Kcnq3 and Ntrk1 and decreased mRNA expression levels of two more genes, Ccl12 and Il1β. Pain/inflammatory gene expression changes via Ntrk1 signaling may induce sterile inflammation, neuropathic pain, microglial activation and migration of nerve fibers from the trigeminal, cuneate and vestibular nuclei into the CN. These changes could contribute to somatic tinnitus, hyperacusis and otalgia.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States.
| | - Kimberly Dahar
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Henry J Adler
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Ding Dalian
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Richard Salvi
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
5
|
Fang L, Fu Y, Zhang TY. Salicylate-Induced Hearing Loss Trigger Structural Synaptic Modifications in the Ventral Cochlear Nucleus of Rats via Medial Olivocochlear (MOC) Feedback Circuit. Neurochem Res 2016; 41:1343-53. [PMID: 26886762 DOI: 10.1007/s11064-016-1836-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022]
Abstract
Lesion-induced cochlear damage can result in synaptic outgrowth in the ventral cochlear nucleus (VCN). Tinnitus may be associated with the synaptic outgrowth and hyperactivity in the VCN. However, it remains unclear how hearing loss triggers structural synaptic modifications in the VCN of rats subjected to salicylate-induced tinnitus. To address this issue, we evaluated tinnitus-like behavior in rats after salicylate treatment and compared the amplitude of the distortion product evoked otoacoustic emission (DPOAE) and auditory brainstem response (ABR) between control and treated rats. Moreover, we observed the changes in the synaptic ultrastructure and in the expression levels of growth-associated protein (GAP-43), brain-derived neurotrophic factor (BDNF), the microglial marker Iba-1 and glial fibrillary acidic protein (GFAP) in the VCN. After salicylate treatment (300 mg/kg/day for 4 and 8 days), analysis of the gap prepulse inhibition of the acoustic startle showed that the rats were experiencing tinnitus. The changes in the DPOAE and ABR amplitude indicated an improvement in cochlear sensitivity and a reduction in auditory input following salicylate treatment. The treated rats displayed more synaptic vesicles and longer postsynaptic density in the VCN than the control rats. We observed that the GAP-43 expression, predominantly from medial olivocochlear (MOC) neurons, was significantly up-regulated, and that BDNF- and Iba-1-immunoreactive cells were persistently decreased after salicylate administration. Furthermore, GFAP-immunoreactive astrocytes, which is associated with synaptic regrowth, was significantly increased in the treated groups. Our study revealed that reduced auditory nerve activity triggers synaptic outgrowth and hyperactivity in the VCN via a MOC neural feedback circuit. Structural synaptic modifications may be a reflexive process that compensates for the reduced auditory input after salicylate administration. However, massive increases in excitatory synapses in the VCN may represent a detrimental process that causes central hyperactivity, leading to tinnitus.
Collapse
Affiliation(s)
- Lian Fang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of WenZhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - YaoYao Fu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Tian-Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China.
| |
Collapse
|
6
|
|