1
|
Raj-Koziak D, Gos E, Kutyba J, Ganc M, Jedrzejczak WW, Skarzynski PH, Skarzynski H. Effectiveness of transcutaneous vagus nerve stimulation for the treatment of tinnitus: an interventional prospective controlled study. Int J Audiol 2024; 63:250-259. [PMID: 36799648 DOI: 10.1080/14992027.2023.2177894] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVES The aim of this interventional non-randomised prospective controlled study was to assess the effectiveness of transcutaneous vagus nerve stimulation (tVNS) in human subjects with tinnitus. DESIGN The ParasymTM tVNS device was paired with an auditory stimulation. Treatment and observations were conducted over 12 weeks. Audiological evaluation was performed. Responses from a set of questionnaires and quantitative electroencephalography (qEEG) before and after treatment were collected. Voice measurements were done to assess possible side-effects of tVNS. STUDY SAMPLE The study involved 29 adults who had chronic tinnitus (15 patients who underwent tVNS paired with sounds and a control group of 14 patients who did not). RESULTS In general, subjective and objective measurements of tinnitus showed no improvement in the study group compared to the controls, although certain parameters as gauged by the questionnaires did statistically improve. The loudness and frequency of tinnitus remained the same in both groups. For the qEEG, activity in the theta band increased significantly in the study group compared to the control group. CONCLUSIONS The tVNS was not effective in reducing tinnitus symptoms in our study group. However, changes in the theta band suggest there might be cortical effects that might, with sustained treatment, lead to improvements.
Collapse
Affiliation(s)
- Danuta Raj-Koziak
- Tinnitus Department, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Elżbieta Gos
- Department of Teleaudiology and Screening, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Justyna Kutyba
- Department of Teleaudiology and Screening, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Małgorzata Ganc
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - W Wiktor Jedrzejczak
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Piotr H Skarzynski
- Department of Teleaudiology and Screening, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
- Heart Failure and Cardiac Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
- Institute of Sensory Organs, Warsaw, Poland
| | - Henryk Skarzynski
- Department of Otorhinolaryngosurgery, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| |
Collapse
|
2
|
Hall DA, Pierzycki RH, Thomas H, Greenberg D, Sereda M, Hoare DJ. Systematic Evaluation of the T30 Neurostimulator Treatment for Tinnitus: A Double-Blind Randomised Placebo-Controlled Trial with Open-Label Extension. Brain Sci 2022; 12:brainsci12030317. [PMID: 35326273 PMCID: PMC8946033 DOI: 10.3390/brainsci12030317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Tinnitus is often triggered by cochlear damage and has been linked with aberrant patterns of neuronal activity. Acoustic Coordinated Reset (CR®) Neuromodulation is a sound therapy hypothesised to reduce tinnitus symptoms by desynchronising pathological brain activity using a portable acoustic device (the T30 neurostimulator). We report results of a pivotal trial to test the efficacy of this intervention. This two-centre, double-blind randomised controlled trial with long-term open-label extension, was undertaken between February 2012 and February 2014 in the UK. Participants were 100 adults with tinnitus as a primary complaint, recruited through hearing clinics and media advertisements. Intervention was the device programmed either with the proprietary sound sequence or placebo algorithm, fit by one of five trained audiologists. Minimisation software provided group allocation (1:1 randomisation), with groups matched for age, gender, hearing loss and tinnitus severity. Allocation was masked from participants and assessors during the trial. The primary measure of efficacy was change in tinnitus symptom severity between groups, measured using the Tinnitus Handicap Questionnaire at 12 weeks. Secondary outcomes were other measures of tinnitus symptom severity, health-related quality of life, and perceptual characteristics (pitch, loudness, bandwidth) at 12 weeks, and Tinnitus Handicap Questionnaire at 36 weeks (open-label extension). A statistician blinded to the allocation conducted an intention-to-treat analysis that employed linear regressions on minimisation variables, trial centre and intervention group, with multiple imputations for missing data. The study was registered on clinicaltrials.gov (NCT01541969). We screened 391 individuals and assigned interventions to 100 eligible participants. The primary outcome was not statistically significant between groups (mean group = −0.45, 95% CI −5.25 to 4.35; p = 0.85), nor were any of the secondary outcomes. Four adverse events occurred during the trial. Analysis of tinnitus symptom severity data collected across the 24-week open-label extension showed no statistically significant within-group changes after 12, 24, or 36 weeks treatment with the proprietary sound sequence. While individual participants may benefit from sound therapy, Acoustic CR® Neuromodulation did not lead to group-mean reductions on tinnitus symptom severity or other measures compared to placebo, or over time.
Collapse
Affiliation(s)
- Deborah Ann Hall
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 the Ropewalk, Nottingham NG1 5DU, UK; (D.A.H.); (R.H.P.); (H.T.); (M.S.)
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- School of Social Sciences, Heriot-Watt University Malaysia, No. 1, Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Malaysia
| | - Robert Henryk Pierzycki
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 the Ropewalk, Nottingham NG1 5DU, UK; (D.A.H.); (R.H.P.); (H.T.); (M.S.)
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Holly Thomas
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 the Ropewalk, Nottingham NG1 5DU, UK; (D.A.H.); (R.H.P.); (H.T.); (M.S.)
- Department of Ear, Nose and Throat (ENT), Nottingham University Hospitals (NHS) Trust, Queen’s Medical Centre Campus, Derby Road, Nottingham NG7 2UH, UK
| | - David Greenberg
- Ear Institute, University College London (UCL), 332 Gray’s Inn Road, London WC1X 8EE, UK;
| | - Magdalena Sereda
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 the Ropewalk, Nottingham NG1 5DU, UK; (D.A.H.); (R.H.P.); (H.T.); (M.S.)
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Derek James Hoare
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 the Ropewalk, Nottingham NG1 5DU, UK; (D.A.H.); (R.H.P.); (H.T.); (M.S.)
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence: ; Tel.: +44-115-823-2630
| |
Collapse
|
3
|
Li Z, Wang X, Shen W, Yang S, Zhao DY, Hu J, Wang D, Liu J, Xin H, Zhang Y, Li P, Zhang B, Cai H, Liang Y, Li X. Objective Recognition of Tinnitus Location Using Electroencephalography Connectivity Features. Front Neurosci 2022; 15:784721. [PMID: 35058742 PMCID: PMC8764239 DOI: 10.3389/fnins.2021.784721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose: Tinnitus is a common but obscure auditory disease to be studied. This study will determine whether the connectivity features in electroencephalography (EEG) signals can be used as the biomarkers for an efficient and fast diagnosis method for chronic tinnitus. Methods: In this study, the resting-state EEG signals of tinnitus patients with different tinnitus locations were recorded. Four connectivity features [including the Phase-locking value (PLV), Phase lag index (PLI), Pearson correlation coefficient (PCC), and Transfer entropy (TE)] and two time-frequency domain features in the EEG signals were extracted, and four machine learning algorithms, included two support vector machine models (SVM), a multi-layer perception network (MLP) and a convolutional neural network (CNN), were used based on the selected features to classify different possible tinnitus sources. Results: Classification accuracy was highest when the SVM algorithm or the MLP algorithm was applied to the PCC feature sets, achieving final average classification accuracies of 99.42 or 99.1%, respectively. And based on the PLV feature, the classification result was also particularly good. And MLP ran the fastest, with an average computing time of only 4.2 s, which was more suitable than other methods when a real-time diagnosis was required. Conclusion: Connectivity features of the resting-state EEG signals could characterize the differentiation of tinnitus location. The connectivity features (PCC and PLV) were more suitable as the biomarkers for the objective diagnosing of tinnitus. And the results were helpful for clinicians in the initial diagnosis of tinnitus.
Collapse
Affiliation(s)
| | - Xinzui Wang
- Jihua Laboratory, Foshan, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Weidong Shen
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, Institute of Otolaryngology, Beijing, China
| | - Shiming Yang
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, Institute of Otolaryngology, Beijing, China
| | | | - Jimin Hu
- Jiangsu Testing and Inspection Institute for Medical Devices, Nanjing, China
| | - Dawei Wang
- Jiangsu Testing and Inspection Institute for Medical Devices, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Simoes JP, Daoud E, Shabbir M, Amanat S, Assouly K, Biswas R, Casolani C, Dode A, Enzler F, Jacquemin L, Joergensen M, Kok T, Liyanage N, Lourenco M, Makani P, Mehdi M, Ramadhani AL, Riha C, Santacruz JL, Schiller A, Schoisswohl S, Trpchevska N, Genitsaridi E. Multidisciplinary Tinnitus Research: Challenges and Future Directions From the Perspective of Early Stage Researchers. Front Aging Neurosci 2021; 13:647285. [PMID: 34177549 PMCID: PMC8225955 DOI: 10.3389/fnagi.2021.647285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Tinnitus can be a burdensome condition on both individual and societal levels. Many aspects of this condition remain elusive, including its underlying mechanisms, ultimately hindering the development of a cure. Interdisciplinary approaches are required to overcome long-established research challenges. This review summarizes current knowledge in various tinnitus-relevant research fields including tinnitus generating mechanisms, heterogeneity, epidemiology, assessment, and treatment development, in an effort to highlight the main challenges and provide suggestions for future research to overcome them. Four common themes across different areas were identified as future research direction: (1) Further establishment of multicenter and multidisciplinary collaborations; (2) Systematic reviews and syntheses of existing knowledge; (3) Standardization of research methods including tinnitus assessment, data acquisition, and data analysis protocols; (4) The design of studies with large sample sizes and the creation of large tinnitus-specific databases that would allow in-depth exploration of tinnitus heterogeneity.
Collapse
Affiliation(s)
- Jorge Piano Simoes
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Elza Daoud
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Maryam Shabbir
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sana Amanat
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research Pfizer/University of Granada/Junta de Andalucía, PTS, Granada, Spain
| | - Kelly Assouly
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Clinical and Experimental Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
- Cochlear Technology Centre, Mechelen, Belgium
| | - Roshni Biswas
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Chiara Casolani
- Hearing Systems, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Oticon A/S, Smoerum, Denmark
- Interacoustics Research Unit, Lyngby, Denmark
| | - Albi Dode
- Institute of Databases and Information Systems, Ulm University, Ulm, Germany
| | - Falco Enzler
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Laure Jacquemin
- Department of Otorhinolaryngology Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, Antwerp University, Wilrijk, Belgium
| | - Mie Joergensen
- Hearing Systems, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- WS Audiology, Lynge, Denmark
| | - Tori Kok
- Ear Institute, University College London, London, United Kingdom
| | - Nuwan Liyanage
- University of Zurich, Zurich, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Matheus Lourenco
- Experimental Health Psychology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Health Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Punitkumar Makani
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, Groningen, Netherlands
| | - Muntazir Mehdi
- Institute of Distributed Systems, Ulm University, Ulm, Germany
| | - Anissa L. Ramadhani
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Constanze Riha
- Chair of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Jose Lopez Santacruz
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, Groningen, Netherlands
| | - Axel Schiller
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Natalia Trpchevska
- Department of Physiology and Pharmacology, Experimental Audiology Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Eleni Genitsaridi
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Nottingham Biomedical Research Centre, National Institute for Health Research, Nottingham, United Kingdom
| |
Collapse
|
5
|
Neurophysiological correlates of residual inhibition in tinnitus: Hints for trait-like EEG power spectra. Clin Neurophysiol 2021; 132:1694-1707. [PMID: 34038848 DOI: 10.1016/j.clinph.2021.03.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate oscillatory brain activity changes following acoustic stimulation in tinnitus and whether these changes are associated with behavioral measures of tinnitus loudness. Moreover, differences in ongoing brain activity between individuals with and without residual inhibition (RI) are examined (responders vs. non-responders). METHODS Three different types of noise stimuli were administered for acoustic stimulation in 45 tinnitus patients. Subjects resting state brain activity was recorded before and after stimulation via EEG alongside with subjective measurements of tinnitus loudness. RESULTS Delta, theta and gamma band power increased, whereas alpha and beta power decreased from pre to post stimulation. Acoustic stimulation responders exhibited reduced gamma and a trend for enhanced alpha activity with the latter localized in the right inferior temporal gyrus. Post stimulation, individuals experiencing RI showed higher theta, alpha and beta power with a peak power difference in the alpha band localized in the right superior temporal gyrus. Neither correlations with behavioral tinnitus measures nor stimulus-specific changes in EEG activity were present. CONCLUSIONS Our observations might be indicative of trait-specific forms of oscillatory signatures in different subsets of the tinnitus population related to acoustic tinnitus suppression. SIGNIFICANCE Results and insights are not only useful to understand basic neural mechanisms behind RI but are also valuable for general neural models of tinnitus.
Collapse
|
6
|
Riha C, Güntensperger D, Oschwald J, Kleinjung T, Meyer M. Application of Latent Growth Curve modeling to predict individual trajectories during neurofeedback treatment for tinnitus. PROGRESS IN BRAIN RESEARCH 2021; 263:109-136. [PMID: 34243885 DOI: 10.1016/bs.pbr.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tinnitus is a heterogeneous phenomenon indexed by various EEG oscillatory profiles. Applying neurofeedback (NFB) with the aim of changing these oscillatory patterns not only provides help for those who suffer from the phantom percept, but a promising foundation from which to probe influential factors. The reliable attribution of influential factors that potentially predict oscillatory changes during the course of NFB training may lead to the identification of subgroups of individuals that are more or less responsive to NFB training. The present study investigated oscillatory trajectories of delta (3-4Hz) and individual alpha (8.5-12Hz) during 15 NFB training sessions, based on a Latent Growth Curve framework. First, we found the desired enhancement of alpha, while delta was stable throughout the NFB training. Individual differences in tinnitus-specific variables and general-, as well as health-related quality of life predictors were largely unrelated to oscillatory change prior to and across the training. Only the predictors age and sex at baseline were clearly related to slow-wave delta, particularly so for older female individuals who showed higher delta power values from the start. Second, we confirmed a hierarchical cross-frequency association between the two frequency bands; however, in opposing directions to those anticipated in tinnitus. The establishment of individually tailored NFB protocols would boost this therapy's effectiveness in the treatment of tinnitus. In our analysis, we propose a conceptual groundwork toward this goal of developing more targeted treatment.
Collapse
Affiliation(s)
- Constanze Riha
- Chair of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland; Research Priority Program "ESIT-European School of Interdisciplinary Tinnitus Research", Zurich, Switzerland
| | - Dominik Güntensperger
- Chair of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Jessica Oschwald
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Tobias Kleinjung
- Department of Otorhinolaryngology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Meyer
- Chair of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
A portable neurofeedback device for treating chronic subjective tinnitus: Feasibility and results of a pilot study. PROGRESS IN BRAIN RESEARCH 2020; 260:167-185. [PMID: 33637216 DOI: 10.1016/bs.pbr.2020.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Several clinical studies have shown that neurofeedback (NFB) has the potential to significantly improve the quality of life of patients complaining of chronic subjective tinnitus. Yet the clinical applicability of such a therapeutic approach in the everyday practice has not been tested so far. OBJECTIVE This study aims at investigating the feasibility and efficacy of a semi-automated NFB intervention by means of a portable device that eventually could be used by the patients at home on an everyday basis. The duration of setup procedures is minimized through the use of a dry electrodes electroencephalography (EEG) headset and an automated user-interface. METHODS We conducted a pilot clinical study (non-controlled, single arm, NCT03773926). According to a predetermined power calculation, a homogeneous population of 33 subjects with strict inclusion criteria was enrolled. After inclusion, all patients underwent 10 NFB sessions lasting 50min each, over a period of 5 weeks and a 3-month follow-up period. According to previous studies, the NFB training aimed at increasing the alpha-band power (8-12Hz) in the EEG power spectrum on the averaged signal of leads FC1, FC2, F3 and F4. Tinnitus handicap inventory (THI) was used as a primary outcome measure. Secondary outcome measures were the visual analog scales (VAS) and the change of the alpha-band power within sessions and across training. Time points of assessment were before intervention (T1), after intervention (T2) and at the 3-month follow-up (T3). RESULTS Patient exhibited a clinically significant decrease of the THI score, with a 23% decrease (N=28) on average between T1 and T2 and a 31% decrease (N=25) between T1 and T3. A significant increase of the alpha-band power within sessions was observed. No significant increase of the alpha-band power across sessions was observed. For the 19 subjects where sufficient data were exploitable, a significant correlation was found between the evolution of the alpha-band training across sessions and the evolution of the THI between T1 and T2. The sessions were well tolerated and no adverse effect was reported. CONCLUSION This study suggests that neurofeedback has potential to suit everyday clinical practice with the goal to significantly reduce tinnitus intrusiveness. The merits and limitations of this NFB procedure are discussed, especially with respect to the choice of EEG electrodes to ensure a good signal quality.
Collapse
|
8
|
Souza DDS, Almeida AA, Andrade SMDS, Machado DGDS, Leitão M, Sanchez TG, Rosa MRDD. Transcranial direct current stimulation improves tinnitus perception and modulates cortical electrical activity in patients with tinnitus: A randomized clinical trial. Neurophysiol Clin 2020; 50:289-300. [PMID: 32863109 DOI: 10.1016/j.neucli.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES This study aims to determine whether transcranial direct current stimulation (tDCS): a) is effective in the treatment of tinnitus by decreasing its annoyance and severity; b) modulates the cortical electrical activity of such individuals. METHODS A double-blind, placebo-controlled clinical trial was conducted with 24 patients with tinnitus, randomized into two groups: Group 1 (n = 12) received anodal tDCS over the left temporoparietal area (LTA) and cathodal tDCS over the right dorsolateral prefrontal cortex (DLPFC) and Group 2 (n = 12) received placebo intervention. Tinnitus perception using a visual analog scale (VAS) and the Tinnitus Handicap Inventory (THI) questionnaire, in addition to electroencephalogram (EEG) was measured with eyes opened and closed at baseline and after the intervention. For the treatment, patients were subjected to five consecutive sessions of tDCS with the anodal electrode over the LTA and cathodal electrode over the right DLPFC (7 × 5 cm, 2 mA for 20 min). tDCS was turned off after 30 s in the sham group. RESULTS Active tDCS significantly improved tinnitus annoyance and severity. It was associated with decreased beta and theta EEG frequency bands with eyes opened and decreased alpha frequency with eyes closed. sLORETA identified changes in frequency bands in the frontal, temporoparietal, and limbic regions. Finally, there were negative correlations between baseline EEG frequency bands and tDCS-induced change in tinnitus annoyance and severity. CONCLUSIONS These results demonstrate that tDCS modulates the EEG activity and alleviates tinnitus perception. This effect may be related to baseline EEG activity.
Collapse
Affiliation(s)
- Dayse da Silva Souza
- Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraiba, João Pessoa, Brazil.
| | - Alexandre Alex Almeida
- Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraiba, João Pessoa, Brazil
| | | | | | - Márcio Leitão
- Department of Classical and Vernacular Letters, Federal University of Paraíba, Brazil
| | - Tanit Ganz Sanchez
- University of São Paulo School of Medicine, São Paulo, Brazil; Ganz Sanches Institute of Integrated Otorhinolaryngology, São Paulo, Brazil
| | - Marine Raquel Diniz da Rosa
- Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
9
|
Abstract
OBJECTIVES Tinnitus is the perception of sound in the absence of an external physical sound source, for some people it can severely reduce the quality of life. Acoustic residual inhibition (ARI) is a suppression of tinnitus following the cessation of a sound. The present study investigated the effect of ARI on brain activity measured using EEG. DESIGN Thirty adult participants (mean age of 58 years) experiencing chronic tinnitus (minimum 2 years) participated. Participants were presented broad band noise at 10 dB above minimum masking level (1 min followed by 4 min of silence, 4 times) counterbalanced with a control treatment of broad band noise at threshold (1 min followed by 4 min of silence, 4 times) while 64-channel EEG was simultaneously recorded. Tinnitus loudness was measured using a 9-point tinnitus loudness rating scale. RESULTS The ARI stimulation resulted in a self-reported reduction in tinnitus loudness in 17 of the 30 participants. Tinnitus rating reduced following stimulation but gradually returned to near baseline during 4 min of silence post sound exposure; successive sound exposures resulted in lower loudness ratings. No significant reductions in loudness rating were found with the control stimulation. The EEG showed increases in power spectral density, particularly in the alpha and gamma bands, during ARI compared to the control periods. CONCLUSIONS These results contribute to the understanding of ARI and tinnitus. We recommend that there be a closer examination of the relationship between onset and offset of sound in both tinnitus and nontinnitus control participants to ascertain if EEG changes seen with ARI relate to tinnitus suppression or general postsound activity.
Collapse
|
10
|
Ibarra-Zarate D, Alonso-Valerdi LM. Acoustic therapies for tinnitus: The basis and the electroencephalographic evaluation. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Li PZ, Huang L, Wang CD, Li C, Lai JH. Brain network analysis for auditory disease: A twofold study. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Hall DA, Ray J, Watson J, Sharman A, Hutchison J, Harris P, Daniel M, Millar B, Large CH. A balanced randomised placebo controlled blinded phase IIa multi-centre study to investigate the efficacy and safety of AUT00063 versus placebo in subjective tinnitus: The QUIET-1 trial. Hear Res 2019; 377:153-166. [DOI: 10.1016/j.heares.2019.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 03/01/2019] [Accepted: 03/19/2019] [Indexed: 11/30/2022]
|
13
|
Brotherton H, Turtle C, Plack CJ, Munro KJ, Schaette R. Earplug-induced changes in acoustic reflex thresholds suggest that increased subcortical neural gain may be necessary but not sufficient for the occurrence of tinnitus. Neuroscience 2019; 407:192-199. [DOI: 10.1016/j.neuroscience.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
|
14
|
Pienkowski M. Rationale and Efficacy of Sound Therapies for Tinnitus and Hyperacusis. Neuroscience 2019; 407:120-134. [DOI: 10.1016/j.neuroscience.2018.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022]
|
15
|
Tzounopoulos T, Balaban C, Zitelli L, Palmer C. Towards a Mechanistic-Driven Precision Medicine Approach for Tinnitus. J Assoc Res Otolaryngol 2019; 20:115-131. [PMID: 30825037 PMCID: PMC6453992 DOI: 10.1007/s10162-018-00709-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
In this position review, we propose to establish a path for replacing the empirical classification of tinnitus with a taxonomy from precision medicine. The goal of a classification system is to understand the inherent heterogeneity of individuals experiencing and suffering from tinnitus and to identify what differentiates potential subgroups. Identification of different patient subgroups with distinct audiological, psychophysical, and neurophysiological characteristics will facilitate the management of patients with tinnitus as well as the design and execution of drug development and clinical trials, which, for the most part, have not yielded conclusive results. An alternative outcome of a precision medicine approach in tinnitus would be that additional mechanistic phenotyping might not lead to the identification of distinct drivers in each individual, but instead, it might reveal that each individual may display a quantitative blend of causal factors. Therefore, a precision medicine approach towards identifying these causal factors might not lead to subtyping these patients but may instead highlight causal pathways that can be manipulated for therapeutic gain. These two outcomes are not mutually exclusive, and no matter what the final outcome is, a mechanistic-driven precision medicine approach is a win-win approach for advancing tinnitus research and treatment. Although there are several controversies and inconsistencies in the tinnitus field, which will not be discussed here, we will give a few examples, as to how the field can move forward by exploring the major neurophysiological tinnitus models, mostly by taking advantage of the common features supported by all of the models. Our position stems from the central concept that, as a field, we can and must do more to bring studies of mechanisms into the realm of neuroscience.
Collapse
Affiliation(s)
- Thanos Tzounopoulos
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Carey Balaban
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Lori Zitelli
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Catherine Palmer
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
16
|
|
17
|
Haider HF, Bojić T, Ribeiro SF, Paço J, Hall DA, Szczepek AJ. Pathophysiology of Subjective Tinnitus: Triggers and Maintenance. Front Neurosci 2018; 12:866. [PMID: 30538616 PMCID: PMC6277522 DOI: 10.3389/fnins.2018.00866] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/06/2018] [Indexed: 01/07/2023] Open
Abstract
Tinnitus is the conscious perception of a sound without a corresponding external acoustic stimulus, usually described as a phantom perception. One of the major challenges for tinnitus research is to understand the pathophysiological mechanisms triggering and maintaining the symptoms, especially for subjective chronic tinnitus. Our objective was to synthesize the published literature in order to provide a comprehensive update on theoretical and experimental advances and to identify further research and clinical directions. We performed literature searches in three electronic databases, complemented by scanning reference lists from relevant reviews in our included records, citation searching of the included articles using Web of Science, and manual searching of the last 6 months of principal otology journals. One-hundred and thirty-two records were included in the review and the information related to peripheral and central mechanisms of tinnitus pathophysiology was collected in order to update on theories and models. A narrative synthesis examined the main themes arising from this information. Tinnitus pathophysiology is complex and multifactorial, involving the auditory and non-auditory systems. Recent theories assume the necessary involvement of extra-auditory brain regions for tinnitus to reach consciousness. Tinnitus engages multiple active dynamic and overlapping networks. We conclude that advancing knowledge concerning the origin and maintenance of specific tinnitus subtypes origin and maintenance mechanisms is of paramount importance for identifying adequate treatment.
Collapse
Affiliation(s)
- Haúla Faruk Haider
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - Tijana Bojić
- Laboratory of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Sara F Ribeiro
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - João Paço
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - Deborah A Hall
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom.,University of Nottingham Malaysia, Semeniyh, Malaysia
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
18
|
Pattyn T, Vanneste S, De Ridder D, Van Rompaey V, Veltman DJ, Van de Heyning P, Sabbe B, Van Den Eede F. Differential electrophysiological correlates of panic disorder in non-pulsatile tinnitus. J Psychosom Res 2018; 109:57-62. [PMID: 29773153 DOI: 10.1016/j.jpsychores.2018.03.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/25/2022]
Abstract
AIMS The prevalence of panic disorder (PD) reportedly is up to fivefold higher in people with tinnitus than it is in the general population. The brain networks in the two conditions overlap but the pathophysiological link remains unclear. In this study the electrophysiological brain activity is investigated in adults with non-pulsatile tinnitus with and without concurrent PD. METHODS Resting-state EEGs of 16 participants with non-pulsatile tinnitus and PD were compared with those of 16 peers with non-pulsatile tinnitus without PD and as many healthy controls. The sLORETA technique was used to identify group-specific electrophysiological frequencies in the brain and to approximate the brain regions where differences occurred. The influence of distress was investigated and functional connectivity charted using the Region-of-Interest (ROI) approach (amygdala, anterior cingulate cortex (ACC), insula, precuneus). RESULTS The comorbid group showed significantly diminished theta activity (p < 0.05) in the precuneus (BA7) compared to the tinnitus group without PD as well as in another region of the precuneus (BA31) as compared to the controls. Higher levels of distress influenced results in the tinnitus group without PD, while in those with PD a diminished connectivity was observed between the dorsal ACC and the other three ROIs as contrasted to the controls. CONCLUSIONS Adults with non-pulsatile tinnitus and concurrent PD show differential brain activity patterns to tinnitus only sufferers and healthy controls. Higher levels of distress may modulate brain activity in the absence of PD. Screening for distress is recommended in both clinical and research settings.
Collapse
Affiliation(s)
- T Pattyn
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium; University Department of Psychiatry, Campus Antwerp University Hospital, Antwerp, Belgium.
| | - S Vanneste
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Dallas, Richardson, TX, United States.
| | - D De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - V Van Rompaey
- Department of Translational Neuroscience, University of Antwerp, Antwerp, Belgium; Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium.
| | - D J Veltman
- Amsterdam Public Health research institute, Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands.
| | - P Van de Heyning
- Department of Translational Neuroscience, University of Antwerp, Antwerp, Belgium; Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium.
| | - Bcg Sabbe
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium; University Department of Psychiatry, Campus Psychiatric Hospital Duffel, Duffel, Belgium.
| | - F Van Den Eede
- University Department of Psychiatry, Campus Antwerp University Hospital, Antwerp, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
19
|
Lau P, Wollbrink A, Wunderlich R, Engell A, Löhe A, Junghöfer M, Pantev C. Targeting Heterogeneous Findings in Neuronal Oscillations in Tinnitus: Analyzing MEG Novices and Mental Health Comorbidities. Front Psychol 2018; 9:235. [PMID: 29551983 PMCID: PMC5841018 DOI: 10.3389/fpsyg.2018.00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Tinnitus is a prevalent phenomenon and bothersome for people affected by it. Its occurrence and maintenance have a clear neuroscientific tie and one aspect are differences in the neuronal oscillatory pattern, especially in auditory cortical areas. As studies in this field come to different results, the aim of this study was to analyze a large number of participants to achieve more stable results. Furthermore, we expanded our analysis to two variables of potential influence, namely being a novice to neuroscientific measurements and the exclusion of psychological comorbidities. Oscillatory brain activity of 88 subjects (46 with a chronic tinnitus percept, 42 without) measured in resting state by MEG was investigated. In the analysis based on the whole group, in sensor space increased activity in the delta frequency band was found in tinnitus patients. Analyzing the subgroup of novices, a significant difference in the theta band emerged additionally to the delta band difference (sensor space). Localizing the origin of the activity, we found a difference in theta and gamma band for the auditory regions for the whole group and the same significant difference in the subgroup of novices. However, no differences in oscillatory activity were observed between tinnitus and control groups once subjects with mental health comorbidity were excluded. Against the background of previous studies, the study at hand underlines the fragility of the results in the field of neuronal cortical oscillations in tinnitus. It supports the body of research arguing for low frequency oscillations and gamma band activity as markers associated with tinnitus.
Collapse
Affiliation(s)
- Pia Lau
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Andreas Wollbrink
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Robert Wunderlich
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Alva Engell
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Alwina Löhe
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| | - Christo Pantev
- Institute for Biomagnetism and Biosignalanalysis, University Hospital of Münster, Münster, Germany
| |
Collapse
|
20
|
Performance of the Tinnitus Functional Index as a diagnostic instrument in a UK clinical population. Hear Res 2018; 358:74-85. [DOI: 10.1016/j.heares.2017.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022]
|
21
|
Pairing sound with vagus nerve stimulation modulates cortical synchrony and phase coherence in tinnitus: An exploratory retrospective study. Sci Rep 2017; 7:17345. [PMID: 29230011 PMCID: PMC5725594 DOI: 10.1038/s41598-017-17750-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/30/2017] [Indexed: 12/24/2022] Open
Abstract
Recent research has shown that vagus nerve stimulation (VNS) paired with tones or with rehabilitative training can help patients to achieve reductions in tinnitus perception or to expedite motor rehabilitation after suffering an ischemic stroke. The rationale behind this treatment is that VNS paired with experience can drive neural plasticity in a controlled and therapeutic direction. Since previous studies observed that gamma activity in the auditory cortex is correlated with tinnitus loudness, we assessed resting-state source-localized EEG before and after one to three months of VNS-tone pairing in chronic tinnitus patients. VNS-tone pairing reduced gamma band activity in left auditory cortex. VNS-tone pairing also reduced the phase coherence between the auditory cortex and areas associated with tinnitus distress, including the cingulate cortex. These results support the hypothesis that VNS-tone pairing can direct therapeutic neural plasticity. Targeted plasticity therapy might also be adapted to treat other conditions characterized by hypersynchronous neural activity.
Collapse
|
22
|
Güntensperger D, Thüring C, Meyer M, Neff P, Kleinjung T. Neurofeedback for Tinnitus Treatment - Review and Current Concepts. Front Aging Neurosci 2017; 9:386. [PMID: 29249959 PMCID: PMC5717031 DOI: 10.3389/fnagi.2017.00386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022] Open
Abstract
An effective treatment to completely alleviate chronic tinnitus symptoms has not yet been discovered. However, recent developments suggest that neurofeedback (NFB), a method already popular in the treatment of other psychological and neurological disorders, may provide a suitable alternative. NFB is a non-invasive method generally based on electrophysiological recordings and visualizing of certain aspects of brain activity as positive or negative feedback that enables patients to voluntarily control their brain activity and thus triggers them to unlearn typical neural activity patterns related to tinnitus. The purpose of this review is to summarize and discuss previous findings of neurofeedback treatment studies in the field of chronic tinnitus. In doing so, also an overview about the underlying theories of tinnitus emergence is presented and results of resting-state EEG and MEG studies summarized and critically discussed. To date, neurofeedback as well as electrophysiological tinnitus studies lack general guidelines that are crucial to produce more comparable and consistent results. Even though neurofeedback has already shown promising results for chronic tinnitus treatment, further research is needed in order to develop more sophisticated protocols that are able to tackle the individual needs of tinnitus patients more specifically.
Collapse
Affiliation(s)
- Dominik Güntensperger
- Neuroplasticity and Learning in the Healthy Aging Brain (HAB LAB), Department of Psychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program 'Dynamics of Healthy Aging', University of Zurich, Zurich, Switzerland
| | - Christian Thüring
- Department of Otorhinolaryngology, University Hospital of Zurich, Zurich, Switzerland
| | - Martin Meyer
- Neuroplasticity and Learning in the Healthy Aging Brain (HAB LAB), Department of Psychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program 'Dynamics of Healthy Aging', University of Zurich, Zurich, Switzerland
| | - Patrick Neff
- Neuroplasticity and Learning in the Healthy Aging Brain (HAB LAB), Department of Psychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program 'Dynamics of Healthy Aging', University of Zurich, Zurich, Switzerland
| | - Tobias Kleinjung
- Department of Otorhinolaryngology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Alonso-Valerdi LM, Ibarra-Zarate DI, Tavira-Sánchez FJ, Ramírez-Mendoza RA, Recuero M. Electroencephalographic evaluation of acoustic therapies for the treatment of chronic and refractory tinnitus. BMC EAR, NOSE, AND THROAT DISORDERS 2017; 17:9. [PMID: 29209149 PMCID: PMC5704517 DOI: 10.1186/s12901-017-0042-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/15/2017] [Indexed: 11/10/2022]
Abstract
Background To date, a large number of acoustic therapies have been applied to treat tinnitus. The effect that produces those auditory stimuli is, however, not well understood yet. Furthermore, the conventional clinical protocol is based on a trial-error procedure, and there is not a formal and adequate treatment follow-up. At present, the only way to evaluate acoustic therapies is by means of subjective methods such as analog visual scale and ad-hoc questionnaires. Methods This protocol seeks to establish an objective methodology to treat tinnitus with acoustic therapies based on electroencephalographic (EEG) activity evaluation. On the hypothesis that acoustic therapies should produce perceptual and cognitive changes at a cortical level, it is proposed to examine neural electrical activity of patients suffering from refractory and chronic tinnitus in four different stages: at the beginning of the experiment, at one week of treatment, at five weeks of treatment, and at eight weeks of treatment. Four of the most efficient acoustic therapies found at the moment are considered: retraining, auditory discrimination, enriched acoustic environment, and binaural. Discussion EEG has become a standard brain imaging tool to quantify and qualify neural oscillations, which are basically spatial, temporal, and spectral patterns associated with particular perceptual, cognitive, motor and emotional processes. Neural oscillations have been traditionally studied on the basis of event-related experiments, where time-locked and phase-locked responses (i.e., event-related potentials) along with time-locked but not necessary phase-locked responses (i.e., event-related (de) synchronization) have been essentially estimated. Both potentials and levels of synchronization related to auditory stimuli are herein proposed to assess the effect of acoustic therapies. Trial registration Registration Number: ISRCTN14553550. ISRCTN Registry: BioMed Central. Date of Registration: October 31st, 2017.
Collapse
Affiliation(s)
- Luz María Alonso-Valerdi
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico
| | - David I Ibarra-Zarate
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico.,Massachusetts Institute of Technology, Cambridge, MA USA
| | - Francisco J Tavira-Sánchez
- Grupo de Investigación en Instrumentación y Acústica Aplicada (I2A2), Universidad Politécnica de Madrid, Carretera de Valencia km 7, 28031 Madrid, Spain
| | - Ricardo A Ramírez-Mendoza
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico
| | - Manuel Recuero
- Grupo de Investigación en Instrumentación y Acústica Aplicada (I2A2), Universidad Politécnica de Madrid, Carretera de Valencia km 7, 28031 Madrid, Spain
| |
Collapse
|
24
|
Ahn MH, Hong SK, Min BK. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus. Hear Res 2017; 356:63-73. [PMID: 29097049 DOI: 10.1016/j.heares.2017.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Tinnitus is a psychoacoustic phantom perception of currently unknown neuropathology. Despite a growing number of post-stimulus tinnitus studies, uncertainty still exists regarding the neural signature of tinnitus in the resting-state brain. In the present study, we used high-gamma cross-frequency coupling and a Granger causality analysis to evaluate resting-state electroencephalographic (EEG) data in healthy participants and patients with tinnitus. Patients with tinnitus lacked robust frontal delta-phase/central high-gamma-amplitude coupling that was otherwise clearly observed in healthy participants. Since low-frequency phase and high-frequency amplitude coupling reflects inter-regional communication during cognitive processing, and given the absence of frontal modulation in patients with tinnitus, we hypothesized that tinnitus might be related to impaired prefrontal top-down inhibitory control. A Granger causality analysis consistently showed abnormally pronounced functional connectivity of low-frequency activity in patients with tinnitus, possibly reflecting a deficiency in large-scale communication during the resting state. Moreover, different causal neurodynamics were characterized across two subgroups of patients with tinnitus; the T1 group (with higher P300 amplitudes) showed abnormal frontal-to-auditory cortical information flow, whereas the T2 group (with lower P300 amplitudes) exhibited abnormal auditory-to-frontal cortical information control. This dissociation in resting-state low-frequency causal connectivity is consistent with recent post-stimulus observations. Taken together, our findings suggest that maladaptive neuroplasticity or abnormal reorganization occurs in the auditory default mode network of patients with tinnitus. Additionally, our data highlight the utility of resting-state EEG for the quantitative diagnosis of tinnitus symptoms and the further characterization of tinnitus subtypes.
Collapse
Affiliation(s)
- Min-Hee Ahn
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, South Korea
| | - Sung Kwang Hong
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, South Korea; Department of Otolaryngology, Hallym University College of Medicine, Anyang 14068, South Korea
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
25
|
Schlee W, Hall DA, Edvall NK, Langguth B, Canlon B, Cederroth CR. Visualization of Global Disease Burden for the Optimization of Patient Management and Treatment. Front Med (Lausanne) 2017; 4:86. [PMID: 28674694 PMCID: PMC5475418 DOI: 10.3389/fmed.2017.00086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background The assessment and treatment of complex disorders is challenged by the multiple domains and instruments used to evaluate clinical outcome. With the large number of assessment tools typically used in complex disorders comes the challenge of obtaining an integrative view of disease status to further evaluate treatment outcome both at the individual level and at the group level. Radar plots appear as an attractive visual tool to display multivariate data on a two-dimensional graphical illustration. Here, we describe the use of radar plots for the visualization of disease characteristics applied in the context of tinnitus, a complex and heterogeneous condition, the treatment of which has shown mixed success. Methods Data from two different cohorts, the Swedish Tinnitus Outreach Project (STOP) and the Tinnitus Research Initiative (TRI) database, were used. STOP is a population-based cohort where cross-sectional data from 1,223 non-tinnitus and 933 tinnitus subjects were analyzed. By contrast, the TRI contained data from 571 patients who underwent various treatments and whose Clinical Global Impression (CGI) score was accessible to infer treatment outcome. In the latter, 34,560 permutations were tested to evaluate whether a particular ordering of the instruments could reflect better the treatment outcome measured with the CGI. Results Radar plots confirmed that tinnitus subtypes such as occasional and chronic tinnitus from the STOP cohort could be strikingly different, and helped appreciate a gender bias in tinnitus severity. Radar plots with greater surface areas were consistent with greater burden, and enabled a rapid appreciation of the global distress associated with tinnitus in patients categorized according to tinnitus severity. Permutations in the arrangement of instruments allowed to identify a configuration with minimal variance and maximized surface difference between CGI groups from the TRI database, thus affording a means of optimally evaluating the outcomes in individual patients. Conclusion We anticipate such a tool to become a starting point for more sophisticated measures in clinical outcomes, applicable not only in the context of tinnitus but also in other complex diseases where the integration of multiple variables is needed for a comprehensive evaluation of treatment response.
Collapse
Affiliation(s)
- Winfried Schlee
- Department for Psychiatry and Psychotherapy, University Hospital Regensburg, Regensburg, Germany
| | - Deborah A Hall
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Niklas K Edvall
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Berthold Langguth
- Department for Psychiatry and Psychotherapy, University Hospital Regensburg, Regensburg, Germany
| | - Barbara Canlon
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christopher R Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
EEG oscillatory power dissociates between distress- and depression-related psychopathology in subjective tinnitus. Brain Res 2017; 1663:194-204. [DOI: 10.1016/j.brainres.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 02/20/2017] [Accepted: 03/04/2017] [Indexed: 12/12/2022]
|
27
|
Mielczarek M, Michalska J, Polatyńska K, Olszewski J. An Increase in Alpha Band Frequency in Resting State EEG after Electrical Stimulation of the Ear in Tinnitus Patients-A Pilot Study. Front Neurosci 2016; 10:453. [PMID: 27766069 PMCID: PMC5052278 DOI: 10.3389/fnins.2016.00453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/21/2016] [Indexed: 11/22/2022] Open
Abstract
In our clinic invasive transtympanal promontory positive DC stimulations were first used, with a success rate of 42%. However, non-invasive hydrotransmissive negative DC stimulations are now favored, with improvement being obtained in 37.8% directly after the treatment, and 51.3% in a follow up 1 month after treatment. The further improvement after 1 month may be due to neuroplastic changes at central level as a result of altered peripheral input. The aim of the study was to determine how/whether a single electrical stimulation of the ear influences cortical activity, and whether changes observed in tinnitus after electrical stimulation are associated with any changes in cortical activity recorded in EEG. The study included 12 tinnitus patients (F–6, M-6) divided into two groups. Group I comprised six patients with unilateral tinnitus - unilateral, ipsilateral ES was performed. Group II comprised six patients with bilateral tinnitus—bilateral ES was performed. ES was performed using a custom-made apparatus. The active, silver probe—was immersed inside the external ear canal filled with saline. The passive electrode was placed on the forehead. The stimulating frequency was 250 Hz, the intensity ranged from 0.14 to 1.08 mA. The voltage was kept constant at 3 V. The duration of stimulation was 4 min. The EEG recording (Deymed QEST 32) was performed before and after ES. The patients assessed the intensity of tinnitus on the VAS 1-10. Results: In both groups an improvement in VAS was observed—in group I—in five ears (83.3%), in group II—in seven ears (58.3%). In Group I, a significant increase in the upper and lower limit frequency of alpha band was observed in the central temporal and frontal regions following ES. These changes, however, were not correlated with improvement in tinnitus. No significant changes were observed in the beta and theta bands and in group II. Preliminary results of our research reveal a change in cortical activity after electrical stimulations of the ear. However, it remains unclear if it is primary or secondary to peripheral auditory excitation. No similar studies had been found in the literature.
Collapse
Affiliation(s)
- Marzena Mielczarek
- Department of Otolaryngology, Laryngological Oncology, Audiology, and Phoniatrics, Medical University of Lodz Lodz, Poland
| | - Joanna Michalska
- Department of Otolaryngology, Laryngological Oncology, Audiology, and Phoniatrics, Medical University of Lodz Lodz, Poland
| | - Katarzyna Polatyńska
- Department of Neurology, Polish Mother's Memorial Hospital Research Institute Lodz, Poland
| | - Jurek Olszewski
- Department of Otolaryngology, Laryngological Oncology, Audiology, and Phoniatrics, Medical University of Lodz Lodz, Poland
| |
Collapse
|
28
|
Response to letter: Whole scalp EEG power change is not a prerequisite for further EEG processing. Hear Res 2016; 339:217-8. [DOI: 10.1016/j.heares.2016.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 11/18/2022]
|
29
|
De Ridder D, Congedo M, Song JJ, Vanneste S. Whole scalp EEG power change is not a prerequisite for further EEG processing. Hear Res 2016; 339:215-6. [DOI: 10.1016/j.heares.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/09/2016] [Indexed: 01/21/2023]
|
30
|
Lopez-Escamez JA, Bibas T, Cima RFF, Van de Heyning P, Knipper M, Mazurek B, Szczepek AJ, Cederroth CR. Genetics of Tinnitus: An Emerging Area for Molecular Diagnosis and Drug Development. Front Neurosci 2016; 10:377. [PMID: 27594824 PMCID: PMC4990555 DOI: 10.3389/fnins.2016.00377] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
Subjective tinnitus is the perception of sound in the absence of external or bodily-generated sounds. Chronic tinnitus is a highly prevalent condition affecting over 70 million people in Europe. A wide variety of comorbidities, including hearing loss, psychiatric disorders, neurodegenerative disorders, and temporomandibular joint (TMJ) dysfunction, have been suggested to contribute to the onset or progression of tinnitus; however, the precise molecular mechanisms of tinnitus are not well understood and the contribution of genetic and epigenetic factors remains unknown. Human genetic studies could enable the identification of novel molecular therapeutic targets, possibly leading to the development of novel pharmaceutical therapeutics. In this article, we briefly discuss the available evidence for a role of genetics in tinnitus and consider potential hurdles in designing genetic studies for tinnitus. Since multiple diseases have tinnitus as a symptom and the supporting genetic evidence is sparse, we propose various strategies to investigate the genetic underpinnings of tinnitus, first by showing evidence of heritability using concordance studies in twins, and second by improving patient selection according to phenotype and/or etiology in order to control potential biases and optimize genetic data output. The increased knowledge resulting from this endeavor could ultimately improve the drug development process and lead to the preventive or curative treatment of tinnitus.
Collapse
Affiliation(s)
- Jose A Lopez-Escamez
- Otology and Neurotology Group, Department of Genomic Medicine, Pfizer - Universidad de Granada - Junta de Andalucía Centro de Genómica e Investigación Oncológica, PTSGranada, Spain; Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospital Universitario GranadaGranada, Spain
| | - Thanos Bibas
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion HospitalAthens, Greece; Ear Institute, UCLLondon, UK
| | - Rilana F F Cima
- Department of Clinical Psychological Science, Maastricht University Maastricht, Netherlands
| | - Paul Van de Heyning
- University Department ENT and Head and Neck Surgery, Antwerp University Hospital, University of Antwerp Antwerp, Belgium
| | - Marlies Knipper
- Hearing Research Centre Tübingen, Molecular Physiology of Hearing Tübingen, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité-Universitätsmedizin Berlin Berlin, Germany
| | | | - Christopher R Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
31
|
Abstract
Tinnitus is a phantom auditory sensation that reduces quality of life for millions of people worldwide, and for which there is no medical cure. Most cases of tinnitus are associated with hearing loss caused by ageing or noise exposure. Exposure to loud recreational sound is common among the young, and this group are at increasing risk of developing tinnitus. Head or neck injuries can also trigger the development of tinnitus, as altered somatosensory input can affect auditory pathways and lead to tinnitus or modulate its intensity. Emotional and attentional state could be involved in the development and maintenance of tinnitus via top-down mechanisms. Thus, military personnel in combat are particularly at risk owing to combined risk factors (hearing loss, somatosensory system disturbances and emotional stress). Animal model studies have identified tinnitus-associated neural changes that commence at the cochlear nucleus and extend to the auditory cortex and other brain regions. Maladaptive neural plasticity seems to underlie these changes: it results in increased spontaneous firing rates and synchrony among neurons in central auditory structures, possibly generating the phantom percept. This Review highlights the links between animal and human studies, and discusses several therapeutic approaches that have been developed to target the neuroplastic changes underlying tinnitus.
Collapse
|