1
|
Masri S, Mowery TM, Fair R, Sanes DH. Developmental hearing loss-induced perceptual deficits are rescued by genetic restoration of cortical inhibition. Proc Natl Acad Sci U S A 2024; 121:e2311570121. [PMID: 38830095 PMCID: PMC11181144 DOI: 10.1073/pnas.2311570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.
Collapse
Affiliation(s)
- Samer Masri
- Center for Neural Science, New York University, New York, NY10003
| | - Todd M. Mowery
- Department of Otolaryngology, Rutgers, New Brunswick, NJ08901
| | - Regan Fair
- Center for Neural Science, New York University, New York, NY10003
| | - Dan H. Sanes
- Center for Neural Science, New York University, New York, NY10003
- Department of Psychology, New York University, New York, NY10003
- Department of Biology, New York University, New York, NY10003
- Neuroscience Institute at New York University Langone School of Medicine, New York, NY10016
| |
Collapse
|
2
|
Breadmore HL, Halliday LF, Carroll JM. Variability in auditory processing performance is associated with reading difficulties rather than with history of otitis media. DYSLEXIA (CHICHESTER, ENGLAND) 2024; 30:e1760. [PMID: 38262626 DOI: 10.1002/dys.1760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/05/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
The nature and cause of auditory processing deficits in dyslexic individuals have been debated for decades. Auditory processing deficits were argued to be the first step in a causal chain of difficulties, leading to difficulties in speech perception and thereby phonological processing and literacy difficulties. More recently, it has been argued that auditory processing difficulties may not be causally related to language and literacy difficulties. This study compares two groups who have phonological processing impairments for different reasons: dyslexia and a history of otitis media (OM). We compared their discrimination thresholds and response variability to chronological age- and reading age-matched controls, across three auditory processing tasks: frequency discrimination, rise-time discrimination and speech perception. Dyslexic children showed raised frequency discrimination thresholds in comparison with age-matched controls but did not differ from reading age-matched controls or individuals with a history of OM. There were no group differences on speech perception or rise-time tasks. For the dyslexic children, there was an association between phonological awareness and frequency discrimination response variability, but no association with thresholds. These findings are not consistent with a 'causal chain' explanation but could be accounted for within a multiple deficits view of literacy difficulties.
Collapse
Affiliation(s)
| | - Lorna F Halliday
- Psychology and Language Sciences, University College London, London, UK
| | - Julia M Carroll
- Centre for Global Learning, Coventry University, Coventry, UK
| |
Collapse
|
3
|
Anbuhl KL, Diez Castro M, Lee NA, Lee VS, Sanes DH. Cingulate cortex facilitates auditory perception under challenging listening conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566668. [PMID: 38014324 PMCID: PMC10680599 DOI: 10.1101/2023.11.10.566668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We often exert greater cognitive resources (i.e., listening effort) to understand speech under challenging acoustic conditions. This mechanism can be overwhelmed in those with hearing loss, resulting in cognitive fatigue in adults, and potentially impeding language acquisition in children. However, the neural mechanisms that support listening effort are uncertain. Evidence from human studies suggest that the cingulate cortex is engaged under difficult listening conditions, and may exert top-down modulation of the auditory cortex (AC). Here, we asked whether the gerbil cingulate cortex (Cg) sends anatomical projections to the AC that facilitate perceptual performance. To model challenging listening conditions, we used a sound discrimination task in which stimulus parameters were presented in either 'Easy' or 'Hard' blocks (i.e., long or short stimulus duration, respectively). Gerbils achieved statistically identical psychometric performance in Easy and Hard blocks. Anatomical tracing experiments revealed a strong, descending projection from layer 2/3 of the Cg1 subregion of the cingulate cortex to superficial and deep layers of primary and dorsal AC. To determine whether Cg improves task performance under challenging conditions, we bilaterally infused muscimol to inactivate Cg1, and found that psychometric thresholds were degraded for only Hard blocks. To test whether the Cg-to-AC projection facilitates task performance, we chemogenetically inactivated these inputs and found that performance was only degraded during Hard blocks. Taken together, the results reveal a descending cortical pathway that facilitates perceptual performance during challenging listening conditions. Significance Statement Sensory perception often occurs under challenging conditions, such a noisy background or dim environment, yet stimulus sensitivity can remain unaffected. One hypothesis is that cognitive resources are recruited to the task, thereby facilitating perceptual performance. Here, we identify a top-down cortical circuit, from cingulate to auditory cortex in the gerbils, that supports auditory perceptual performance under challenging listening conditions. This pathway is a plausible circuit that supports effortful listening, and may be degraded by hearing loss.
Collapse
|
4
|
Mowery TM, Wackym PA, Nacipucha J, Dangcil E, Stadler RD, Tucker A, Carayannopoulos NL, Beshy MA, Hong SS, Yao JD. Superior semicircular canal dehiscence and subsequent closure induces reversible impaired decision-making. Front Neurol 2023; 14:1259030. [PMID: 37905188 PMCID: PMC10613502 DOI: 10.3389/fneur.2023.1259030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 11/02/2023] Open
Abstract
Background Vestibular loss and dysfunction has been associated with cognitive deficits, decreased spatial navigation, spatial memory, visuospatial ability, attention, executive function, and processing speed among others. Superior semicircular canal dehiscence (SSCD) is a vestibular-cochlear disorder in humans in which a pathological third mobile window of the otic capsule creates changes to the flow of sound pressure energy through the perilymph/endolymph. The primary symptoms include sound-induced dizziness/vertigo, inner ear conductive hearing loss, autophony, headaches, and visual problems; however, individuals also experience measurable deficits in basic decision-making, short-term memory, concentration, spatial cognition, and depression. These suggest central mechanisms of impairment are associated with vestibular disorders; therefore, we directly tested this hypothesis using both an auditory and visual decision-making task of varying difficulty levels in our model of SSCD. Methods Adult Mongolian gerbils (n = 33) were trained on one of four versions of a Go-NoGo stimulus presentation rate discrimination task that included standard ("easy") or more difficult ("hard") auditory and visual stimuli. After 10 days of training, preoperative ABR and c+VEMP testing was followed by a surgical fenestration of the left superior semicircular canal. Animals with persistent circling or head tilt were excluded to minimize effects from acute vestibular injury. Testing recommenced at postoperative day 5 and continued through postoperative day 15 at which point final ABR and c+VEMP testing was carried out. Results Behavioral data (d-primes) were compared between preoperative performance (training day 8-10) and postoperative days 6-8 and 13-15. Behavioral performance was measured during the peak of SSCD induced ABR and c + VEMP impairment and the return towards baseline as the dehiscence began to resurface by osteoneogenesis. There were significant differences in behavioral performance (d-prime) and its behavioral components (Hits, Misses, False Alarms, and Correct Rejections). These changes were highly correlated with persistent deficits in c + VEMPs at the end of training (postoperative day 15). The controls demonstrated additional learning post procedure that was absent in the SSCD group. Conclusion These results suggest that aberrant asymmetric vestibular output results in decision-making impairments in these discrimination tasks and could be associated with the other cognitive impairments resulting from vestibular dysfunction.
Collapse
Affiliation(s)
- Todd M. Mowery
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, New Brunswick, NJ, United States
| | - P. Ashley Wackym
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, New Brunswick, NJ, United States
| | - Jacqueline Nacipucha
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Evelynne Dangcil
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Ryan D. Stadler
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Aaron Tucker
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Nicolas L. Carayannopoulos
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mina A. Beshy
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Sean S. Hong
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Justin D. Yao
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, New Brunswick, NJ, United States
| |
Collapse
|
5
|
Ying R, Hamlette L, Nikoobakht L, Balaji R, Miko N, Caras ML. Organization of orbitofrontal-auditory pathways in the Mongolian gerbil. J Comp Neurol 2023; 531:1459-1481. [PMID: 37477903 PMCID: PMC10529810 DOI: 10.1002/cne.25525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Sound perception is highly malleable, rapidly adjusting to the acoustic environment and behavioral demands. This flexibility is the result of ongoing changes in auditory cortical activity driven by fluctuations in attention, arousal, or prior expectations. Recent work suggests that the orbitofrontal cortex (OFC) may mediate some of these rapid changes, but the anatomical connections between the OFC and the auditory system are not well characterized. Here, we used virally mediated fluorescent tracers to map the projection from OFC to the auditory midbrain, thalamus, and cortex in a classic animal model for auditory research, the Mongolian gerbil (Meriones unguiculatus). We observed no connectivity between the OFC and the auditory midbrain, and an extremely sparse connection between the dorsolateral OFC and higher order auditory thalamic regions. In contrast, we observed a robust connection between the ventral and medial subdivisions of the OFC and the auditory cortex, with a clear bias for secondary auditory cortical regions. OFC axon terminals were found in all auditory cortical lamina but were significantly more concentrated in the infragranular layers. Tissue-clearing and lightsheet microscopy further revealed that auditory cortical-projecting OFC neurons send extensive axon collaterals throughout the brain, targeting both sensory and non-sensory regions involved in learning, decision-making, and memory. These findings provide a more detailed map of orbitofrontal-auditory connections and shed light on the possible role of the OFC in supporting auditory cognition.
Collapse
Affiliation(s)
- Rose Ying
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742
- Department of Biology, University of Maryland, College Park, Maryland, 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, 20742
| | - Lashaka Hamlette
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Laudan Nikoobakht
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Rakshita Balaji
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Nicole Miko
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Melissa L. Caras
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742
- Department of Biology, University of Maryland, College Park, Maryland, 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
6
|
Gay JD, Dangcil E, Nacipucha J, Botrous JE, Suresh N, Tucker A, Carayannopoulos NL, Khan MR, Meng R, Yao JD, Wackym PA, Mowery TM. An Animal Model of Neonatal Intensive Care Unit Exposure to Light and Sound in the Preterm Infant. Integr Comp Biol 2023; 63:585-596. [PMID: 37164937 PMCID: PMC10503467 DOI: 10.1093/icb/icad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
According to the World Health Organization, ∼15 million children are born prematurely each year. Many of these infants end up spending days to weeks in a neonatal intensive care unit (NICU). Infants who are born prematurely are often exposed to noise and light levels that affect their auditory and visual development. Children often have long-term impairments in cognition, visuospatial processing, hearing, and language. We have developed a rodent model of NICU exposure to light and sound using the Mongolian gerbil (Meriones unguiculatus), which has a low-frequency human-like audiogram and is altricial. To simulate preterm infancy, the eyes and ears were opened prematurely, and animals were exposed to the NICU-like sensory environment throughout the gerbil's cortical critical period of auditory development. After the animals matured into adults, auditory perceptual testing was carried out followed by auditory brainstem response recordings and then histology to assess the white matter morphology of various brain regions. Compared to normal hearing control animals, NICU sensory-exposed animals had significant impairments in learning at later stages of training, increased auditory thresholds reflecting hearing loss, and smaller cerebellar white matter volumes. These have all been reported in longitudinal studies of preterm infants. These preliminary results suggest that this animal model could provide researchers with an ethical way to explore the effects of the sensory environment in the NICU on the preterm infant's brain development.
Collapse
Affiliation(s)
- Jennifer D Gay
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
- Rutgers Brain Health Institute, New Brunswick, NJ, USA
| | - Evelynne Dangcil
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Jacqueline Nacipucha
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Jonathon E Botrous
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Nikhil Suresh
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Aaron Tucker
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Nicolas L Carayannopoulos
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Muhammad R Khan
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Raphael Meng
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Justin D Yao
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
- Rutgers Brain Health Institute, New Brunswick, NJ, USA
| | - P Ashley Wackym
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
- Rutgers Brain Health Institute, New Brunswick, NJ, USA
| | - Todd M Mowery
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
- Rutgers Brain Health Institute, New Brunswick, NJ, USA
| |
Collapse
|
7
|
Masri S, Fair R, Mowery TM, Sanes DH. Developmental hearing loss-induced perceptual deficits are rescued by cortical expression of GABA B receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523440. [PMID: 36711464 PMCID: PMC9882079 DOI: 10.1101/2023.01.10.523440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Even transient periods of developmental hearing loss during the developmental critical period have been linked to long-lasting deficits in auditory perception, including temporal and spectral processing, which correlate with speech perception and educational attainment. In gerbils, hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. We developed viral vectors to express both endogenous GABAA or GABAB receptor subunits in auditory cortex and tested their capacity to restore perception of temporal and spectral auditory cues following critical period hearing loss in the Mongolian gerbil. HL significantly impaired perception of both temporal and spectral auditory cues. While both vectors similarly increased IPSCs in auditory cortex, only overexpression of GABAB receptors improved perceptual thresholds after HL to be similar to those of animals without developmental hearing loss. These findings identify the GABAB receptor as an important regulator of sensory perception in cortex and point to potential therapeutic targets for developmental sensory disorders.
Collapse
Affiliation(s)
- Samer Masri
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
| | - Regan Fair
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
| | - Todd M. Mowery
- Brain Health Institute & Department of Otolaryngology, Rutgers University
| | - Dan H. Sanes
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
- Department of Psychology, New York University
- Department of Biology, New York University
- Neuroscience Institute, New York University Langone Medical Center
| |
Collapse
|
8
|
Anbuhl KL, Yao JD, Hotz RA, Mowery TM, Sanes DH. Auditory processing remains sensitive to environmental experience during adolescence in a rodent model. Nat Commun 2022; 13:2872. [PMID: 35610222 PMCID: PMC9130260 DOI: 10.1038/s41467-022-30455-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
Elevated neural plasticity during development contributes to dramatic improvements in perceptual, motor, and cognitive skills. However, malleable neural circuits are vulnerable to environmental influences that may disrupt behavioral maturation. While these risks are well-established prior to sexual maturity (i.e., critical periods), the degree of neural vulnerability during adolescence remains uncertain. Here, we induce transient hearing loss (HL) spanning adolescence in gerbils, and ask whether behavioral and neural maturation are disrupted. We find that adolescent HL causes a significant perceptual deficit that can be attributed to degraded auditory cortex processing, as assessed with wireless single neuron recordings and within-session population-level analyses. Finally, auditory cortex brain slices from adolescent HL animals reveal synaptic deficits that are distinct from those typically observed after critical period deprivation. Taken together, these results show that diminished adolescent sensory experience can cause long-lasting behavioral deficits that originate, in part, from a dysfunctional cortical circuit.
Collapse
Affiliation(s)
- Kelsey L Anbuhl
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
| | - Justin D Yao
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Robert A Hotz
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Todd M Mowery
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
- Department of Otolaryngology, Rutgers University, New Brunswick, NJ, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
- Department of Psychology, New York University, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Neuroscience Institute at NYU Langone School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Manno FAM, An Z, Kumar R, Wu EX, He J, Feng Y, Lau C. Structural Alterations in a Rat Model of Short-Term Conductive Hearing Loss Are Associated With Reduced Resting State Functional Connectivity. Front Syst Neurosci 2021; 15:655172. [PMID: 34456689 PMCID: PMC8397539 DOI: 10.3389/fnsys.2021.655172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Conductive hearing loss (CHL) results in attenuation of air conducted sound reaching the inner ear. How a change in air conducted sound alters the auditory system resulting in cortical alterations is not well understood. Here, we have assessed structural and functional magnetic resonance imaging (MRI) in an adult (P60) rat model of short-term conductive hearing loss (1 week). Diffusion tensor imaging (DTI) revealed fractional anisotropy (FA) and axial diffusivity alterations after hearing loss that circumscribed the auditory cortex (AC). Tractography found the lateral lemniscus tract leading to the bilateral inferior colliculus (IC) was reduced. For baseline comparison, DTI and tractography alterations were not found for the somatosensory cortex. To determine functional connectivity changes due to hearing loss, seed-based analysis (SBA) and independent component analysis (ICA) were performed. Short term conductive hearing loss altered functional connectivity in the AC and IC, but not the somatosensory cortex. The results present an exploratory neuroimaging assessment of structural alterations coupled to a change in functional connectivity after conductive hearing loss. The results and implications for humans consist of structural-functional brain alterations following short term hearing loss in adults.
Collapse
Affiliation(s)
| | - Ziqi An
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Rachit Kumar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR China
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, SAR China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
10
|
Yao JD, Sanes DH. Temporal Encoding is Required for Categorization, But Not Discrimination. Cereb Cortex 2021; 31:2886-2897. [PMID: 33429423 DOI: 10.1093/cercor/bhaa396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 11/14/2022] Open
Abstract
Core auditory cortex (AC) neurons encode slow fluctuations of acoustic stimuli with temporally patterned activity. However, whether temporal encoding is necessary to explain auditory perceptual skills remains uncertain. Here, we recorded from gerbil AC neurons while they discriminated between a 4-Hz amplitude modulation (AM) broadband noise and AM rates >4 Hz. We found a proportion of neurons possessed neural thresholds based on spike pattern or spike count that were better than the recorded session's behavioral threshold, suggesting that spike count could provide sufficient information for this perceptual task. A population decoder that relied on temporal information outperformed a decoder that relied on spike count alone, but the spike count decoder still remained sufficient to explain average behavioral performance. This leaves open the possibility that more demanding perceptual judgments require temporal information. Thus, we asked whether accurate classification of different AM rates between 4 and 12 Hz required the information contained in AC temporal discharge patterns. Indeed, accurate classification of these AM stimuli depended on the inclusion of temporal information rather than spike count alone. Overall, our results compare two different representations of time-varying acoustic features that can be accessed by downstream circuits required for perceptual judgments.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY 10003, USA.,Department of Psychology, New York University, New York, NY 10003, USA.,Department of Biology, New York University, New York, NY 10003, USA.,Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| |
Collapse
|
11
|
Conductive hearing loss during development does not appreciably alter the sharpness of cochlear tuning. Sci Rep 2021; 11:3955. [PMID: 33597563 PMCID: PMC7890061 DOI: 10.1038/s41598-021-83115-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 02/02/2023] Open
Abstract
An increasing number of studies show that listeners often have difficulty hearing in situations with background noise, despite normal tuning curves in quiet. One potential source of this difficulty could be sensorineural changes in the auditory periphery (the ear). Signal in noise detection deficits also arise in animals raised with developmental conductive hearing loss (CHL), a manipulation that induces acoustic attenuation to model how sound deprivation changes the central auditory system. This model attributes perceptual deficits to central changes by assuming that CHL does not affect sensorineural elements in the periphery that could raise masked thresholds. However, because of efferent feedback, altering the auditory system could affect cochlear elements. Indeed, recent studies show that adult-onset CHL can cause cochlear synapse loss, potentially calling into question the assumption of an intact periphery in early-onset CHL. To resolve this issue, we tested the long-term peripheral effects of CHL via developmental bilateral malleus displacement. Using forward masking tuning curves, we compared peripheral tuning in animals raised with CHL vs age-matched controls. Using compound action potential measurements from the round window, we assessed inner hair cell synapse integrity. Results indicate that developmental CHL can cause minor synaptopathy. However, developmental CHL does not appreciably alter peripheral frequency tuning.
Collapse
|
12
|
Glennon E, Svirsky MA, Froemke RC. Auditory cortical plasticity in cochlear implant users. Curr Opin Neurobiol 2019; 60:108-114. [PMID: 31864104 DOI: 10.1016/j.conb.2019.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/26/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
Cochlear implants are one of the most successful neuroprosthetic devices that have been developed to date. Profoundly deaf patients can achieve speech perception after complete loss of sensory input. Despite the improvements many patients experience, there is still a large degree of outcome variability. It has been proposed that central plasticity may be a major factor in the different levels of benefit that patients experience. However, the neural mechanisms of how plasticity impacts cochlear implant learning and the degree of plasticity's influence remain unknown. Here, we review the human and animal research on three of the main ways that central plasticity affects cochlear implant outcomes.
Collapse
Affiliation(s)
- Erin Glennon
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Neuroscience Institute, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Mario A Svirsky
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Neuroscience Institute, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Neuroscience Institute, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA; Howard Hughes Medical Institute Faculty Scholar, USA.
| |
Collapse
|
13
|
Halliday LF, Rosen S, Tuomainen O, Calcus A. Impaired frequency selectivity and sensitivity to temporal fine structure, but not envelope cues, in children with mild-to-moderate sensorineural hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4299. [PMID: 31893709 DOI: 10.1121/1.5134059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Psychophysical thresholds were measured for 8-16 year-old children with mild-to-moderate sensorineural hearing loss (MMHL; N = 46) on a battery of auditory processing tasks that included measures designed to be dependent upon frequency selectivity and sensitivity to temporal fine structure (TFS) or envelope cues. Children with MMHL who wore hearing aids were tested in both unaided and aided conditions, and all were compared to a group of normally hearing (NH) age-matched controls. Children with MMHL performed more poorly than NH controls on tasks considered to be dependent upon frequency selectivity, sensitivity to TFS, and speech discrimination (/bɑ/-/dɑ/), but not on tasks measuring sensitivity to envelope cues. Auditory processing deficits remained regardless of age, were observed in both unaided and aided conditions, and could not be attributed to differences in nonverbal IQ or attention between groups. However, better auditory processing in children with MMHL was predicted by better audiometric thresholds and, for aided tasks only, higher levels of maternal education. These results suggest that, as for adults with MMHL, children with MMHL may show deficits in frequency selectivity and sensitivity to TFS, but sensitivity to the envelope may remain intact.
Collapse
Affiliation(s)
- Lorna F Halliday
- Speech, Hearing, and Phonetic Sciences, University College London, Chandler House, 2 Wakefield Street, London WC1N 1PF, United Kingdom
| | - Stuart Rosen
- Speech, Hearing, and Phonetic Sciences, University College London, Chandler House, 2 Wakefield Street, London WC1N 1PF, United Kingdom
| | - Outi Tuomainen
- Speech, Hearing, and Phonetic Sciences, University College London, Chandler House, 2 Wakefield Street, London WC1N 1PF, United Kingdom
| | - Axelle Calcus
- Speech, Hearing, and Phonetic Sciences, University College London, Chandler House, 2 Wakefield Street, London WC1N 1PF, United Kingdom
| |
Collapse
|
14
|
Preserving Inhibition during Developmental Hearing Loss Rescues Auditory Learning and Perception. J Neurosci 2019; 39:8347-8361. [PMID: 31451577 DOI: 10.1523/jneurosci.0749-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Transient periods of childhood hearing loss can induce deficits in aural communication that persist long after auditory thresholds have returned to normal, reflecting long-lasting impairments to the auditory CNS. Here, we asked whether these behavioral deficits could be reversed by treating one of the central impairments: reduction of inhibitory strength. Male and female gerbils received bilateral earplugs to induce a mild, reversible hearing loss during the critical period of auditory cortex development. After earplug removal and the return of normal auditory thresholds, we trained and tested animals on an amplitude modulation detection task. Transient developmental hearing loss induced both learning and perceptual deficits, which were entirely corrected by treatment with a selective GABA reuptake inhibitor (SGRI). To explore the mechanistic basis for these behavioral findings, we recorded the amplitudes of GABAA and GABAB receptor-mediated IPSPs in auditory cortical and thalamic brain slices. In hearing loss-reared animals, cortical IPSP amplitudes were significantly reduced within a few days of hearing loss onset, and this reduction persisted into adulthood. SGRI treatment during the critical period prevented the hearing loss-induced reduction of IPSP amplitudes; but when administered after the critical period, it only restored GABAB receptor-mediated IPSP amplitudes. These effects were driven, in part, by the ability of SGRI to upregulate α1 subunit-dependent GABAA responses. Similarly, SGRI prevented the hearing loss-induced reduction of GABAA and GABAB IPSPs in the ventral nucleus of the medial geniculate body. Thus, by maintaining, or subsequently rescuing, GABAergic transmission in the central auditory thalamocortical pathway, some perceptual and cognitive deficits induced by developmental hearing loss can be prevented.SIGNIFICANCE STATEMENT Even a temporary period of childhood hearing loss can induce communication deficits that persist long after auditory thresholds return to normal. These deficits may arise from long-lasting central impairments, including the loss of synaptic inhibition. Here, we asked whether hearing loss-induced behavioral deficits could be reversed by reinstating normal inhibitory strength. Gerbils reared with transient hearing loss displayed both learning and perceptual deficits. However, when animals were treated with a selective GABA reuptake inhibitor during or after hearing loss, behavioral deficits were entirely corrected. This behavioral recovery was correlated with the return of normal thalamic and cortical inhibitory function. Thus, some perceptual and cognitive deficits induced by developmental hearing loss were prevented with a treatment that rescues a central synaptic property.
Collapse
|
15
|
Behavioral patterns of laboratory Mongolian gerbils by sex and housing condition: a case study with an emphasis on sleeping patterns. J Vet Behav 2019. [DOI: 10.1016/j.jveb.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Lauer AM, Dent ML, Sun W, Xu-Friedman MA. Effects of Non-traumatic Noise and Conductive Hearing Loss on Auditory System Function. Neuroscience 2019; 407:182-191. [PMID: 30685543 DOI: 10.1016/j.neuroscience.2019.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/25/2023]
Abstract
The effects of traumatic noise-exposure and deafening on auditory system function have received a great deal of attention. However, lower levels of noise as well as temporary conductive hearing loss also have consequences on auditory physiology and hearing. Here we review how abnormal acoustic experience at early ages affects the ascending and descending auditory pathways, as well as hearing behavior.
Collapse
Affiliation(s)
- Amanda M Lauer
- Dept of Otolaryngology-HNS, Center for Hearing and Balance, Johns Hopkins University School of Medicine, United States
| | - Micheal L Dent
- Dept. Psychology, University at Buffalo, SUNY, United States
| | - Wei Sun
- Dept. Communicative Disorders and Sciences, University at Buffalo, SUNY, United States
| | | |
Collapse
|
17
|
Yao JD, Sanes DH. Developmental deprivation-induced perceptual and cortical processing deficits in awake-behaving animals. eLife 2018; 7:33891. [PMID: 29873632 PMCID: PMC6005681 DOI: 10.7554/elife.33891] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/04/2018] [Indexed: 01/02/2023] Open
Abstract
Sensory deprivation during development induces lifelong changes to central nervous system function that are associated with perceptual impairments. However, the relationship between neural and behavioral deficits is uncertain due to a lack of simultaneous measurements during task performance. Therefore, we telemetrically recorded from auditory cortex neurons in gerbils reared with developmental conductive hearing loss as they performed an auditory task in which rapid fluctuations in amplitude are detected. These data were compared to a measure of auditory brainstem temporal processing from each animal. We found that developmental HL diminished behavioral performance, but did not alter brainstem temporal processing. However, the simultaneous assessment of neural and behavioral processing revealed that perceptual deficits were associated with a degraded cortical population code that could be explained by greater trial-to-trial response variability. Our findings suggest that the perceptual limitations that attend early hearing loss are best explained by an encoding deficit in auditory cortex.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, United States
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, United States.,Department of Psychology, New York University, New York, United States.,Department of Biology, New York University, New York, United States.,Neuroscience Institute, NYU Langone Medical Center, New York, United States
| |
Collapse
|
18
|
Mowery TM, Penikis KB, Young SK, Ferrer CE, Kotak VC, Sanes DH. The Sensory Striatum Is Permanently Impaired by Transient Developmental Deprivation. Cell Rep 2018. [PMID: 28636935 DOI: 10.1016/j.celrep.2017.05.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Corticostriatal circuits play a fundamental role in regulating many behaviors, and their dysfunction is associated with many neurological disorders. In contrast, sensory disorders, like hearing loss (HL), are commonly linked with processing deficits at or below the level of the auditory cortex (ACx). However, HL can be accompanied by non-sensory deficits, such as learning delays, suggesting the involvement of regions downstream of ACx. Here, we show that transient developmental HL differentially affected the ACx and its downstream target, the sensory striatum. Following HL, both juvenile ACx layer 5 and striatal neurons displayed an excitatory-inhibitory imbalance and lower firing rates. After hearing was restored, adult ACx neurons recovered balanced excitatory-inhibitory synaptic gain and control-like firing rates, but striatal neuron synapses and firing properties did not recover. Thus, a brief period of abnormal cortical activity may induce cellular impairments that persist into adulthood and contribute to neurological disorders that are striatal in origin.
Collapse
Affiliation(s)
- Todd M Mowery
- Center for Neural Science, New York University, Washington Place, New York, NY 10003, USA.
| | - Kristina B Penikis
- Center for Neural Science, New York University, Washington Place, New York, NY 10003, USA
| | - Stephen K Young
- Center for Neural Science, New York University, Washington Place, New York, NY 10003, USA
| | - Christopher E Ferrer
- Center for Neural Science, New York University, Washington Place, New York, NY 10003, USA
| | - Vibhakar C Kotak
- Center for Neural Science, New York University, Washington Place, New York, NY 10003, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, Washington Place, New York, NY 10003, USA; Department of Psychology, New York University, Washington Place, New York, NY 10003, USA; Department of Biology, New York University, Washington Place, New York, NY 10003, USA; Neuroscience Institute at NYU Langone School of Medicine, New York University, Washington Place, New York, NY 10003, USA
| |
Collapse
|
19
|
Abstract
Over the last 30 years a wide range of manipulations of auditory input and experience have been shown to result in plasticity in auditory cortical and subcortical structures. The time course of plasticity ranges from very rapid stimulus-specific adaptation to longer-term changes associated with, for example, partial hearing loss or perceptual learning. Evidence for plasticity as a consequence of these and a range of other manipulations of auditory input and/or its significance is reviewed, with an emphasis on plasticity in adults and in the auditory cortex. The nature of the changes in auditory cortex associated with attention, memory and perceptual learning depend critically on task structure, reward contingencies, and learning strategy. Most forms of auditory system plasticity are adaptive, in that they serve to optimize auditory performance, prompting attempts to harness this plasticity for therapeutic purposes. However, plasticity associated with cochlear trauma and partial hearing loss appears to be maladaptive, and has been linked to tinnitus. Three important forms of human learning-related auditory system plasticity are those associated with language development, musical training, and improvement in performance with a cochlear implant. Almost all forms of plasticity involve changes in synaptic excitatory - inhibitory balance within existing patterns of connectivity. An attractive model applicable to a number of forms of learning-related plasticity is dynamic multiplexing by individual neurons, such that learning involving a particular stimulus attribute reflects a particular subset of the diverse inputs to a given neuron being gated by top-down influences. The plasticity evidence indicates that auditory cortex is a component of complex distributed networks that integrate the representation of auditory stimuli with attention, decision and reward processes.
Collapse
Affiliation(s)
- Dexter R F Irvine
- Bionics Institute, East Melbourne, Victoria 3002, Australia; School of Psychological Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|
20
|
Brief Stimulus Exposure Fully Remediates Temporal Processing Deficits Induced by Early Hearing Loss. J Neurosci 2017; 37:7759-7771. [PMID: 28706081 DOI: 10.1523/jneurosci.0916-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/24/2017] [Accepted: 07/08/2017] [Indexed: 12/30/2022] Open
Abstract
In childhood, partial hearing loss can produce prolonged deficits in speech perception and temporal processing. However, early therapeutic interventions targeting temporal processing may improve later speech-related outcomes. Gap detection is a measure of auditory temporal resolution that relies on the auditory cortex (ACx), and early auditory deprivation alters intrinsic and synaptic properties in the ACx. Thus, early deprivation should induce deficits in gap detection, which should be reflected in ACx gap sensitivity. We tested whether earplugging-induced, early transient auditory deprivation in male and female Mongolian gerbils caused correlated deficits in behavioral and cortical gap detection, and whether these could be rescued by a novel therapeutic approach: brief exposure to gaps in background noise. Two weeks after earplug removal, animals that had been earplugged from hearing onset throughout auditory critical periods displayed impaired behavioral gap detection thresholds (GDTs), but this deficit was fully reversed by three 1 h sessions of exposure to gaps in noise. In parallel, after earplugging, cortical GDTs increased because fewer cells were sensitive to short gaps, and gap exposure normalized this pattern. Furthermore, in deprived animals, both first-spike latency and first-spike latency jitter increased, while spontaneous and evoked firing rates decreased, suggesting that deprivation causes a wider range of perceptual problems than measured here. These cortical changes all returned to control levels after gap exposure. Thus, brief stimulus exposure, perhaps in a salient context such as the unfamiliar placement into a testing apparatus, rescued impaired gap detection and may have potential as a remediation tool for general auditory processing deficits.SIGNIFICANCE STATEMENT Hearing loss in early childhood leads to impairments in auditory perception and language processing that can last well beyond the restoration of hearing sensitivity. Perceptual deficits can be improved by training, or by acoustic enrichment in animal models, but both approaches involve extended time and effort. Here, we used a novel remediation technique, brief periods of auditory stimulus exposure, to fully remediate cortical and perceptual deficits in gap detection induced by early transient hearing loss. This technique also improved multiple cortical response properties. Rescue by this efficient exposure regime may have potential as a therapeutic tool to remediate general auditory processing deficits in children with perceptual challenges arising from early hearing loss.
Collapse
|