1
|
Patro C, Singer A, Monfiletto A, Peitsch K, Bologna WJ. Effects of Noise Exposure on Peripheral Auditory Function, Binaural Envelope Coding, and Speech Perception in Student Musicians With Normal Hearing. Ear Hear 2024:00003446-990000000-00367. [PMID: 39705606 DOI: 10.1097/aud.0000000000001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
OBJECTIVES Musicians face an increased risk of hearing loss due to prolonged and repetitive exposure to high-noise levels. Detecting early signs of hearing loss, which are subtle and often elusive to traditional clinical tests like pure-tone audiometry, is essential. The objective of this study was to investigate the impact of noise exposure on the electrophysiological and perceptual aspects of subclinical hearing damage in young musicians with normal audiometric thresholds. DESIGN The study included 33 musicians and 33 nonmusicians, all aged between 21 and 35 years, with normal audiometric thresholds. Participants underwent a comprehensive test battery, which encompassed standard and extended high-frequency (EHF) pure-tone audiometry (0.25 to 16 kHz), a Noise Exposure Structured Interview, auditory brainstem responses (ABRs) to clicks at various presentation rates and levels, thresholds for detecting interaural envelope time difference, and a spatial release from masking (SRM) paradigm in which the target speech was presented in the presence of either colocated or spatially separated time-reversed two-talker babble. RESULTS The results indicated the musician group reported greater lifetime noise exposure than the nonmusician group, but the Noise Exposure Structured Interview scores were neither correlated with the ABR results nor with the speech perception outcomes. The ABR analyses indicated diminished level-dependent growth and increased rate-dependent decline in wave I amplitudes among musicians compared with nonmusicians. The student musicians exhibited better binaural envelope processing skills than nonmusicians, emphasizing their perceptual advantages in auditory processing associated with musicianship. Speech perception results indicated no significant differences in SRM between student musicians and nonmusicians. However, in both groups, individuals with poorer EHF hearing exhibited reduced SRM compared with those with normal EHF hearing, underscoring the importance of assessing and addressing EHF hearing. CONCLUSIONS Student musicians exhibit peripheral neural deficits; however, no clear relation was found between these neural deficits and their perceptual skills. Notably, reduced EHF thresholds were clearly related to reduced SRM, which poses a challenge for speech perception in complex multi-talker environments, affecting both musicians and nonmusicians alike.
Collapse
Affiliation(s)
- Chhayakanta Patro
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Aviya Singer
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
- VA Boston Healthcare System, Audiology 523/126, Boston, Massachusetts, USA
| | - Angela Monfiletto
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Katherine Peitsch
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - William J Bologna
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| |
Collapse
|
2
|
Bidelman GM, Sisson A, Rizzi R, MacLean J, Baer K. Myogenic artifacts masquerade as neuroplasticity in the auditory frequency-following response. Front Neurosci 2024; 18:1422903. [PMID: 39040631 PMCID: PMC11260751 DOI: 10.3389/fnins.2024.1422903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
The frequency-following response (FFR) is an evoked potential that provides a neural index of complex sound encoding in the brain. FFRs have been widely used to characterize speech and music processing, experience-dependent neuroplasticity (e.g., learning and musicianship), and biomarkers for hearing and language-based disorders that distort receptive communication abilities. It is widely assumed that FFRs stem from a mixture of phase-locked neurogenic activity from the brainstem and cortical structures along the hearing neuraxis. In this study, we challenge this prevailing view by demonstrating that upwards of ~50% of the FFR can originate from an unexpected myogenic source: contamination from the postauricular muscle (PAM) vestigial startle reflex. We measured PAM, transient auditory brainstem responses (ABRs), and sustained frequency-following response (FFR) potentials reflecting myogenic (PAM) and neurogenic (ABR/FFR) responses in young, normal-hearing listeners with varying degrees of musical training. We first establish that PAM artifact is present in all ears, varies with electrode proximity to the muscle, and can be experimentally manipulated by directing listeners' eye gaze toward the ear of sound stimulation. We then show this muscular noise easily confounds auditory FFRs, spuriously amplifying responses 3-4-fold with tandem PAM contraction and even explaining putative FFR enhancements observed in highly skilled musicians. Our findings expose a new and unrecognized myogenic source to the FFR that drives its large inter-subject variability and cast doubt on whether changes in the response typically attributed to neuroplasticity/pathology are solely of brain origin.
Collapse
Affiliation(s)
- Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
| | - Alexandria Sisson
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
| | - Rose Rizzi
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Jessica MacLean
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Kaitlin Baer
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States
- Veterans Affairs Medical Center, Memphis, TN, United States
| |
Collapse
|
3
|
Bidelman G, Sisson A, Rizzi R, MacLean J, Baer K. Myogenic artifacts masquerade as neuroplasticity in the auditory frequency-following response (FFR). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.27.564446. [PMID: 37961324 PMCID: PMC10634913 DOI: 10.1101/2023.10.27.564446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The frequency-following response (FFR) is an evoked potential that provides a "neural fingerprint" of complex sound encoding in the brain. FFRs have been widely used to characterize speech and music processing, experience-dependent neuroplasticity (e.g., learning, musicianship), and biomarkers for hearing and language-based disorders that distort receptive communication abilities. It is widely assumed FFRs stem from a mixture of phase-locked neurogenic activity from brainstem and cortical structures along the hearing neuraxis. Here, we challenge this prevailing view by demonstrating upwards of ~50% of the FFR can originate from a non-neural source: contamination from the postauricular muscle (PAM) vestigial startle reflex. We first establish PAM artifact is present in all ears, varies with electrode proximity to the muscle, and can be experimentally manipulated by directing listeners' eye gaze toward the ear of sound stimulation. We then show this muscular noise easily confounds auditory FFRs, spuriously amplifying responses by 3-4x fold with tandem PAM contraction and even explaining putative FFR enhancements observed in highly skilled musicians. Our findings expose a new and unrecognized myogenic source to the FFR that drives its large inter-subject variability and cast doubt on whether changes in the response typically attributed to neuroplasticity/pathology are solely of brain origin.
Collapse
|
4
|
Main M, Skoe E. Heightened OAEs in young adult musicians: Influence of current noise exposure and training recency. Hear Res 2024; 442:108925. [PMID: 38141520 PMCID: PMC10843712 DOI: 10.1016/j.heares.2023.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
Otoacoustic emissions (OAEs) are a non-invasive metric of cochlear function. Studies of OAEs in musicians have yielded mixed results, ranging from evidence of diminished OAEs in musicians-suggesting noise-induced hearing loss-to no difference when compared to non-musicians, or even a trend for stronger OAEs in musicians. The goal of this study was to use a large sample of college students with normal hearing (n = 160) to compare OAE SNRs in musicians and non-musicians and to explore potential effects of training recency and noise exposure on OAEs in these cohorts. The musician cohort included both active musicians (who at the time of enrollment practiced at least weekly) and past musicians (who had at least 6 years of training). All participants completed a questionnaire about recent noise exposure (previous 12 months), and a subset of participants (71 musicians and 15 non-musicians) wore a personal noise dosimeter for one week to obtain a more nuanced and objective measure of exposure to assess how different exposure levels may affect OAEs before the emergence of a clinically significant hearing loss. OAEs were tested using both transient-evoked OAEs (TEOAEs) and distortion-product OAEs (DPOAEs). As predicted from the literature, musicians experienced significantly higher noise levels than non-musicians based on both subjective (self-reported) and objective measures. Yet we found stronger TEOAEs and DPOAEs in musicians compared to non-musicians in the ∼1-5 kHz range. Comparisons between past and active musicians suggest that enhanced cochlear function in young adult musicians does not require active, ongoing musical practice. Although there were no significant relations between OAEs and noise exposure as measured by dosimetry or questionnaire, active musicians had weaker DPOAEs than past musicians when the entire DPOAE frequency range was considered (up to ∼16 kHz), consistent with a subclinical noise-induced hearing loss that only becomes apparent when active musicians are contrasted with a cohort of individuals with comparable training but without the ongoing risks of noise exposure. Our findings suggest, therefore, that separate norms should be developed for musicians for earlier detection of incipient hearing loss. Potential explanations for enhanced cochlear function in musicians include pre-existing (inborn or demographic) differences, training-related enhancements of cochlear function (e.g., upregulation of prestin, stronger efferent feedback mechanisms), or a combination thereof. Further studies are needed to determine if OAE enhancements offer musicians protection against damage caused by noise exposure.
Collapse
Affiliation(s)
- Morgan Main
- Department of Speech, Language, and Hearing Sciences, United States; Department of Physiology and Neurobiology, United States; University of Connecticut, Storrs, CT 06269, United States; University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, United States; Department of Psychological Sciences, Cognitive Sciences Program, Connecticut Institute for Brain and Cognitive Sciences, United States; University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
5
|
Brown JA, Bidelman GM. Attention, Musicality, and Familiarity Shape Cortical Speech Tracking at the Musical Cocktail Party. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.562773. [PMID: 37961204 PMCID: PMC10634879 DOI: 10.1101/2023.10.28.562773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The "cocktail party problem" challenges our ability to understand speech in noisy environments, which often include background music. Here, we explored the role of background music in speech-in-noise listening. Participants listened to an audiobook in familiar and unfamiliar music while tracking keywords in either speech or song lyrics. We used EEG to measure neural tracking of the audiobook. When speech was masked by music, the modeled peak latency at 50 ms (P1TRF) was prolonged compared to unmasked. Additionally, P1TRF amplitude was larger in unfamiliar background music, suggesting improved speech tracking. We observed prolonged latencies at 100 ms (N1TRF) when speech was not the attended stimulus, though only in less musical listeners. Our results suggest early neural representations of speech are enhanced with both attention and concurrent unfamiliar music, indicating familiar music is more distracting. One's ability to perceptually filter "musical noise" at the cocktail party depends on objective musical abilities.
Collapse
Affiliation(s)
- Jane A. Brown
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN 38152, USA
| | - Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
| |
Collapse
|
6
|
Lee D, Lewis JD. Inter-Subject Variability in the Dependence of Medial-Olivocochlear Reflex Strength on Noise Bandwidth. Ear Hear 2023; 44:544-557. [PMID: 36477401 DOI: 10.1097/aud.0000000000001302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
OBJECTIVES The objective of the study was to quantify inter-subject variability in the dependence of the medial-olivocochlear reflex (MOCR) on noise bandwidth. Of specific interest was whether inter-subject variability in MOCR dependence on bandwidth explained variability in the MOCR response elicited by wideband noise. DESIGN Thirty-two young adults with normal hearing participated in the study. Click-evoked otoacoustic emissions were measured in the ipsilateral ear with and without noise presented in the contralateral ear. Presentation of contralateral noise served to activate the MOCR. The MOCR was activated using five different noise stimuli with bandwidths ranging from 1- to 5-octaves wide (center frequency of 2 kHz; bandwidth incremented in 1-octave steps). Noise spectral levels (19.6 dB SPL/Hz) were held constant across all bandwidths. MOCR metrics included the normalized-percent change in the otoacoustic emission (OAE), the MOCR-induced OAE magnitude shift, and the MOCR-induced OAE phase shift. Linear mixed-effect models were fit to model the dependence of MOCR-induced OAE magnitude and phase changes on noise bandwidth. The use of a mixed-effect modeling approach allowed for the estimation of subject-specific model parameters that capture on- and off-frequency contributions to the MOCR effects. Regression analysis was performed to evaluate the predictive capacity of subject-specific model parameters on the MOCR response elicited by wideband noise. RESULTS All OAE-based MOCR metrics increased as the noise bandwidth increased from 1- to 5-octaves wide. The dependence of MOCR-induced OAE magnitude and phase shifts on activator bandwidth was well approximated using a linear model with intercept and slope terms. On average, MOCR-induced magnitude and phase shifts increased at a rate of 0.3 dB/octave and 0.01 cycles/octave, respectively, as bandwidth extended beyond the predicted region of OAE generation. A statistically significant random effect of subject was found for both the intercept and slope parameter of each model. Subject-specific slope estimates were statistically significant predictors of a repeated measure of the wideband MOCR response. A higher slope was predictive of larger wideband MOCR effects. CONCLUSIONS MOCR-induced changes to the OAE are greatest when the MOCR is elicited using wideband noise. Variability in the process of spectral integration within the MOCR pathway appears to explain, in part, inter-subject variability in OAE-based estimates of the MOCR response elicited by wideband noise.
Collapse
Affiliation(s)
- Donguk Lee
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | | |
Collapse
|
7
|
Lewis JD, Goettl-Meyer M, Lee D. Medial Olivocochlear Reflex Strength in Ears With Low-to-Moderate Annual Noise Exposure. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:1428-1443. [PMID: 36940474 DOI: 10.1044/2022_jslhr-22-00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE Studies in lower mammals demonstrate enhancement of the medial olivocochlear reflex (MOCR) following noise exposure. A similar effect may occur in humans, and there is some evidence of an individual's acoustic history affecting the MOCR. The current work evaluates the relationship between an individual's annual noise exposure history and their MOCR strength. Given the potential role of the MOCR as a biological hearing protector, it is important to identify factors associated with MOCR strength. METHOD Data were collected from 98 normal-hearing young adults. Annual noise exposure history was estimated using the Noise Exposure Questionnaire. MOCR strength was assayed using click-evoked otoacoustic emissions (CEOAEs) measured with and without noise presented to the contralateral ear. MOCR metrics included the MOCR-induced otoacoustic emission (OAE) magnitude shift and phase shift. A CEOAE signal-to-noise ratio (SNR) of at least 12 dB was required for estimation of the MOCR metrics. Linear regression was applied to evaluate the relationship between MOCR metrics and annual noise exposure. RESULTS Annual noise exposure was not a statistically significant predictor of the MOCR-induced CEOAE magnitude shift. However, annual noise exposure was a statistically significant predictor of the MOCR-induced CEOAE phase shift-the MOCR-induced phase shift decreased with increasing noise exposure. Additionally, annual noise exposure was a statistically significant predictor of OAE level. CONCLUSIONS Findings contrast with recent work that suggests MOCR strength increases with annual noise exposure. Compared with previous work, data for this study were collected using more stringent SNR criteria, which is expected to increase the precision of the MOCR metrics. Additionally, data were collected for a larger subject population with a wider range of noise exposures. Whether findings generalize to other exposure durations and levels is unknown and requires future study.
Collapse
Affiliation(s)
- James D Lewis
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville
| | - Morgaine Goettl-Meyer
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora
| | - Donguk Lee
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville
| |
Collapse
|
8
|
M B, Swathi C, Shameer S. Estimation of efferent inhibition and speech in noise perception on vocal musicians and music sleepers: A comparative study. J Otol 2023; 18:91-96. [PMID: 37153705 PMCID: PMC10159755 DOI: 10.1016/j.joto.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
|
9
|
Acuña F, Jeria R, Pavez E, Aguilar-Vidal E. Efferent Control in Musicians: A Review. Audiol Res 2023; 13:76-85. [PMID: 36648928 PMCID: PMC9844302 DOI: 10.3390/audiolres13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
It is widely established that musicians possess a higher level in certain auditory perceptual abilities when compared to non-musicians. This improvement may be mediated, at least in part, by changes in the cochlear response induced by reflex activation of the olivocochlear efferent system. In this review, we describe and analyze the scientific evidence regarding possible differences in the efferent response in musicians and non-musicians. The main evidence observed is that musicians present a greater robustness of the efferent olivocochlear reflex when measured by suppression of otoacoustic emissions and compared to non-musicians. Analyzing the articles presented in this review, it is possible to point out that the differential role of the efferent effect in musicians is not yet established. There is not enough evidence to support the idea that the olivocochlear system favors comparative changes in the properties of musicians' auditory filters. New studies with psychoacoustic techniques, among others, are needed to measure the effect of the olivocochlear reflex on tuning, gain, compression, or temporal resolution in musicians and non-musicians.
Collapse
Affiliation(s)
- Francisca Acuña
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Rodrigo Jeria
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Elisabeth Pavez
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Enzo Aguilar-Vidal
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence:
| |
Collapse
|
10
|
Bramhall NF, Kampel SD, Reavis KM, Martin DK. Contralateral inhibition of distortion product otoacoustic emissions in young noise-exposed Veterans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3562. [PMID: 36586855 PMCID: PMC10857792 DOI: 10.1121/10.0016590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Although animal models show a clear link between noise exposure and damage to afferent cochlear synapses, the relationship between noise exposure and efferent function appears to be more complex. Animal studies indicate that high intensity noise exposure reduces efferent medial olivocochlear (MOC) reflex strength, whereas chronic moderate noise exposure is associated with a conditioning effect that enhances the MOC reflex. The MOC reflex is predicted to improve speech-in-noise perception and protects against noise-induced auditory damage by reducing cochlear gain. In humans, MOC reflex strength can be estimated by measuring contralateral inhibition of distortion product otoacoustic emissions (DPOAEs). The objective of this study was to determine the impact of military noise exposure on efferent auditory function by measuring DPOAE contralateral inhibition in young Veterans and non-Veterans with normal audiograms. Compared with non-Veteran controls, Veterans with high levels of reported noise exposure demonstrated a trend of reduced contralateral inhibition across a broad frequency range, suggesting efferent damage. Veterans with moderate noise exposure showed trends of reduced inhibition from 3 to 4 kHz but greater inhibition from 1 to 1.5 kHz, consistent with conditioning. These findings suggest that, in humans, the impact of noise exposure on the MOC reflex differs depending on the noise intensity and duration.
Collapse
Affiliation(s)
- Naomi F. Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR 97239, USA
| | - Sean D. Kampel
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR 97239, USA
| | - Kelly M. Reavis
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR 97239, USA
| | - Dawn Konrad Martin
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
11
|
Jedrzejczak WW, Milner R, Pilka E, Ganc M, Skarzynski H. Visual attention does not affect the reliability of otoacoustic emission or medial olivocochlear reflex. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2398. [PMID: 36319231 DOI: 10.1121/10.0014900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This study investigated whether visual attention affects the reliability (i.e., repeatability) of transiently evoked otoacoustic emission (TEOAE) magnitudes or of medial olivocochlear reflex (MOCR) estimates. TEOAEs were measured during three visual attentional conditions: control (subject were seated with eyes closed); passive (subjects looked at a pattern of squares on a computer screen); and active (subjects silently counted an occasionally inverted pattern). To estimate reliability, the whole recording session was repeated the next day. The results showed that visual attention does not significantly affect TEOAE or MOCR magnitudes-or their reliability. It is therefore possible to employ visual stimuli (e.g., watching a silent movie) during TEOAE experiments, a procedure sometimes used during testing to prevent subjects from falling asleep or to keep children still and quiet.
Collapse
Affiliation(s)
- W Wiktor Jedrzejczak
- World Hearing Center, Institute of Physiology and Pathology of Hearing, ulica Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| | - Rafal Milner
- World Hearing Center, Institute of Physiology and Pathology of Hearing, ulica Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| | - Edyta Pilka
- World Hearing Center, Institute of Physiology and Pathology of Hearing, ulica Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| | - Malgorzata Ganc
- World Hearing Center, Institute of Physiology and Pathology of Hearing, ulica Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| | - Henryk Skarzynski
- World Hearing Center, Institute of Physiology and Pathology of Hearing, ulica Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| |
Collapse
|
12
|
Suresh CH, Krishnan A. Frequency-Following Response to Steady-State Vowel in Quiet and Background Noise Among Marching Band Participants With Normal Hearing. Am J Audiol 2022; 31:719-736. [PMID: 35944059 DOI: 10.1044/2022_aja-21-00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Human studies enrolling individuals at high risk for cochlear synaptopathy (CS) have reported difficulties in speech perception in adverse listening conditions. The aim of this study is to determine if these individuals show a degradation in the neural encoding of speech in quiet and in the presence of background noise as reflected in neural phase-locking to both envelope periodicity and temporal fine structure (TFS). To our knowledge, there are no published reports that have specifically examined the neural encoding of both envelope periodicity and TFS of speech stimuli (in quiet and in adverse listening conditions) among a sample with loud-sound exposure history who are at risk for CS. METHOD Using scalp-recorded frequency-following response (FFR), the authors evaluated the neural encoding of envelope periodicity (FFRENV) and TFS (FFRTFS) for a steady-state vowel (English back vowel /u/) in quiet and in the presence of speech-shaped noise presented at +5- and 0 dB SNR. Participants were young individuals with normal hearing who participated in the marching band for at least 5 years (high-risk group) and non-marching band group with low-noise exposure history (low-risk group). RESULTS The results showed no group differences in the neural encoding of either the FFRENV or the first formant (F1) in the FFRTFS in quiet and in noise. Paradoxically, the high-risk group demonstrated enhanced representation of F2 harmonics across all stimulus conditions. CONCLUSIONS These results appear to be in line with a music experience-dependent enhancement of F2 harmonics. However, due to sound overexposure in the high-risk group, the role of homeostatic central compensation cannot be ruled out. A larger scale data set with different noise exposure background, longitudinal measurements with an array of behavioral and electrophysiological tests is needed to disentangle the nature of the complex interaction between the effects of central compensatory gain and experience-dependent enhancement.
Collapse
Affiliation(s)
- Chandan H Suresh
- Department of Communication Disorders, California State University, Los Angeles
| | | |
Collapse
|
13
|
Cheng FY, Xu C, Gold L, Smith S. Rapid Enhancement of Subcortical Neural Responses to Sine-Wave Speech. Front Neurosci 2022; 15:747303. [PMID: 34987356 PMCID: PMC8721138 DOI: 10.3389/fnins.2021.747303] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/02/2021] [Indexed: 01/15/2023] Open
Abstract
The efferent auditory nervous system may be a potent force in shaping how the brain responds to behaviorally significant sounds. Previous human experiments using the frequency following response (FFR) have shown efferent-induced modulation of subcortical auditory function online and over short- and long-term time scales; however, a contemporary understanding of FFR generation presents new questions about whether previous effects were constrained solely to the auditory subcortex. The present experiment used sine-wave speech (SWS), an acoustically-sparse stimulus in which dynamic pure tones represent speech formant contours, to evoke FFRSWS. Due to the higher stimulus frequencies used in SWS, this approach biased neural responses toward brainstem generators and allowed for three stimuli (/bɔ/, /bu/, and /bo/) to be used to evoke FFRSWSbefore and after listeners in a training group were made aware that they were hearing a degraded speech stimulus. All SWS stimuli were rapidly perceived as speech when presented with a SWS carrier phrase, and average token identification reached ceiling performance during a perceptual training phase. Compared to a control group which remained naïve throughout the experiment, training group FFRSWS amplitudes were enhanced post-training for each stimulus. Further, linear support vector machine classification of training group FFRSWS significantly improved post-training compared to the control group, indicating that training-induced neural enhancements were sufficient to bolster machine learning classification accuracy. These results suggest that the efferent auditory system may rapidly modulate auditory brainstem representation of sounds depending on their context and perception as non-speech or speech.
Collapse
Affiliation(s)
- Fan-Yin Cheng
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| | - Can Xu
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| | - Lisa Gold
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| | - Spencer Smith
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
14
|
Liu Y, Xu R, Gong Q. Human Auditory-Frequency Tuning Is Sensitive to Tonal Language Experience. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:4277-4288. [PMID: 33151817 DOI: 10.1044/2020_jslhr-20-00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Purpose The aim of this study is to investigate whether human auditory frequency tuning can be influenced by tonal language experience. Method Perceptual tuning measured via psychophysical tuning curves and cochlear tuning derived via stimulus-frequency otoacoustic emission suppression tuning curves in 14 native speakers of a tonal language (Mandarin) were compared to those of 14 native speakers of a nontonal language (English) at 1 and 4 kHz. Results Group comparisons of both psychophysical tuning curves (p = .046) and stimulus-frequency otoacoustic emission suppression tuning curves (p = .007) in the 4-kHz region indicated sharper frequency tuning in the Mandarin-speaking group relative to the English-speaking group. The auditory tuning was better at the higher (4 kHz) than the lower (1 kHz) probe frequencies (p < .001). Conclusions The sharper auditory tuning in the 4-kHz cochlear region is associated with long-term tonal language (i.e., Mandarin) experience. Experience-dependent plasticity of tonal language may occur before the sound signal reaches central neural stages, as peripheral as the cochlea.
Collapse
Affiliation(s)
- Yin Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Runyi Xu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, Shanghai University, China
| |
Collapse
|
15
|
Tarnowska E, Wicher A, Moore BCJ. No Influence of Musicianship on the Effect of Contralateral Stimulation on Frequency Selectivity. Trends Hear 2020; 24:2331216520939776. [PMID: 32840175 PMCID: PMC7450455 DOI: 10.1177/2331216520939776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The efferent system may control the gain of the cochlea and thereby
influence frequency selectivity. This effect can be assessed using
contralateral stimulation (CS) applied to the ear opposite to that
used to assess frequency selectivity. The effect of CS may be stronger
for musicians than for nonmusicians. To assess whether this was the
case, psychophysical tuning curves (PTCs) were compared for 12
musicians and 12 nonmusicians. The PTCs were measured with and without
a 60-dB sound pressure level (SPL) pink-noise CS, using signal
frequencies of 2 and 4 kHz. The sharpness of the PTCs was quantified
using the measure Q10, the signal frequency divided by the PTC
bandwidth measured 10 dB above the level at the tip. Q10 values were
lower in the presence of the CS, but this effect did not differ
significantly for musicians and nonmusicians. The main effect of group
(musicians vs. nonmusicians) on the Q10 values was not significant.
Overall, these results do not support the idea that musicianship
enhances contralateral efferent gain control as measured using the
effect of CS on PTCs.
Collapse
Affiliation(s)
- Emilia Tarnowska
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Andrzej Wicher
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
16
|
Bidelman GM, Yoo J. Musicians Show Improved Speech Segregation in Competitive, Multi-Talker Cocktail Party Scenarios. Front Psychol 2020; 11:1927. [PMID: 32973610 PMCID: PMC7461890 DOI: 10.3389/fpsyg.2020.01927] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/13/2020] [Indexed: 12/05/2022] Open
Abstract
Studies suggest that long-term music experience enhances the brain’s ability to segregate speech from noise. Musicians’ “speech-in-noise (SIN) benefit” is based largely on perception from simple figure-ground tasks rather than competitive, multi-talker scenarios that offer realistic spatial cues for segregation and engage binaural processing. We aimed to investigate whether musicians show perceptual advantages in cocktail party speech segregation in a competitive, multi-talker environment. We used the coordinate response measure (CRM) paradigm to measure speech recognition and localization performance in musicians vs. non-musicians in a simulated 3D cocktail party environment conducted in an anechoic chamber. Speech was delivered through a 16-channel speaker array distributed around the horizontal soundfield surrounding the listener. Participants recalled the color, number, and perceived location of target callsign sentences. We manipulated task difficulty by varying the number of additional maskers presented at other spatial locations in the horizontal soundfield (0–1–2–3–4–6–8 multi-talkers). Musicians obtained faster and better speech recognition amidst up to around eight simultaneous talkers and showed less noise-related decline in performance with increasing interferers than their non-musician peers. Correlations revealed associations between listeners’ years of musical training and CRM recognition and working memory. However, better working memory correlated with better speech streaming. Basic (QuickSIN) but not more complex (speech streaming) SIN processing was still predicted by music training after controlling for working memory. Our findings confirm a relationship between musicianship and naturalistic cocktail party speech streaming but also suggest that cognitive factors at least partially drive musicians’ SIN advantage.
Collapse
Affiliation(s)
- Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, United States.,School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Jessica Yoo
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States
| |
Collapse
|
17
|
Moore BCJ, Wan J, Varathanathan A, Naddell S, Baer T. No Effect of Musical Training on Frequency Selectivity Estimated Using Three Methods. Trends Hear 2019; 23:2331216519841980. [PMID: 31081487 DOI: 10.1177/2331216519841980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It is widely believed that the frequency selectivity of the auditory system is largely determined by processes occurring in the cochlea. If so, musical training would not be expected to influence frequency selectivity. Consistent with this, auditory filter shapes for low center frequencies do not differ for musicians and nonmusicians. However, it has been reported that psychophysical tuning curves (PTCs) at 4000 Hz were sharper for musicians than for nonmusicians. This study explored the origin of the discrepancy across studies. Frequency selectivity was estimated for musicians and nonmusicians using three methods: fast PTCs with a masker that swept in frequency, "traditional" PTCs obtained using several fixed masker center frequencies, and the notched-noise method. The signal frequency was 4000 Hz. The data were fitted assuming that each side of the auditory filter had the shape of a rounded-exponential function. The sharpness of the auditory filters, estimated as the Q10 values, did not differ significantly between musicians and nonmusicians for any of the methods, but detection efficiency tended to be higher for the musicians. This is consistent with the idea that musicianship influences auditory proficiency but does not influence the peripheral processes that determine the frequency selectivity of the auditory system.
Collapse
Affiliation(s)
| | - Jie Wan
- 1 Department of Psychology, University of Cambridge, UK.,2 Research School of Behavioural and Cognitive Neurosciences, University of Groningen, the Netherlands
| | | | | | - Thomas Baer
- 1 Department of Psychology, University of Cambridge, UK
| |
Collapse
|
18
|
Abstract
Musical training appears to enhance performance at both peripheral and central auditory sites. We compared behavioral and peripheral frequency tuning in normal-hearing musicians and nonmusicians, whose native language is Mandarin. The results indicate that, at higher probe frequencies, musical training sharpens behavioral tuning more saliently than peripheral tuning. The improved peripheral tuning for musician appears to result principally from efferent top-down control rather than local cochlear changes.
Collapse
|
19
|
Bajo VM, Nodal FR, Korn C, Constantinescu AO, Mann EO, Boyden ES, King AJ. Silencing cortical activity during sound-localization training impairs auditory perceptual learning. Nat Commun 2019; 10:3075. [PMID: 31300665 PMCID: PMC6625986 DOI: 10.1038/s41467-019-10770-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/28/2019] [Indexed: 11/09/2022] Open
Abstract
The brain has a remarkable capacity to adapt to changes in sensory inputs and to learn from experience. However, the neural circuits responsible for this flexible processing remain poorly understood. Using optogenetic silencing of ArchT-expressing neurons in adult ferrets, we show that within-trial activity in primary auditory cortex (A1) is required for training-dependent recovery in sound-localization accuracy following monaural deprivation. Because localization accuracy under normal-hearing conditions was unaffected, this highlights a specific role for cortical activity in learning. A1-dependent plasticity appears to leave a memory trace that can be retrieved, facilitating adaptation during a second period of monaural deprivation. However, in ferrets in which learning was initially disrupted by perturbing A1 activity, subsequent optogenetic suppression during training no longer affected localization accuracy when one ear was occluded. After the initial learning phase, the reweighting of spatial cues that primarily underpins this plasticity may therefore occur in A1 target neurons.
Collapse
Affiliation(s)
- Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| | - Fernando R Nodal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Clio Korn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.,UCSF School of Medicine, San Francisco, CA, 94143-0410, USA
| | - Alexandra O Constantinescu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.,Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Edward S Boyden
- Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
20
|
Tarnowska E, Wicher A, Moore BCJ. The effect of musicianship, contralateral noise, and ear of presentation on the detection of changes in temporal fine structure. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1. [PMID: 31370621 DOI: 10.1121/1.5114820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
Musicians are better than non-musicians at discriminating changes in the fundamental frequency (F0) of harmonic complex tones. Such discrimination may be based on place cues derived from low resolved harmonics, envelope cues derived from high harmonics, and temporal fine structure (TFS) cues derived from both low and high harmonics. The present study compared the ability of highly trained violinists and non-musicians to discriminate changes in complex sounds that differed primarily in their TFS. The task was to discriminate harmonic (H) and frequency-shifted inharmonic (I) tones that were bandpass filtered such that the components were largely or completely unresolved. The effect of contralateral noise and ear of presentation was also investigated. It was hypothesized that contralateral noise would activate the efferent system, helping to preserve the neural representation of envelope fluctuations in the H and I stimuli, thereby improving their discrimination. Violinists were significantly better than non-musicians at discriminating the H and I tones. However, contralateral noise and ear of presentation had no effect. It is concluded that, compared to non-musicians, violinists have a superior ability to discriminate complex sounds based on their TFS, and this ability is unaffected by contralateral stimulation or ear of presentation.
Collapse
Affiliation(s)
- Emilia Tarnowska
- Department of Psychoacoustics and Room Acoustics, Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań, Umultowska 85, 61-614 Poland
| | - Andrzej Wicher
- Department of Psychoacoustics and Room Acoustics, Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań, Umultowska 85, 61-614 Poland
| | - Brian C J Moore
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
21
|
Klopper M, Biagio–de Jager L, Vinck B. The correlation between hair and eye colour and contralateral suppression of otoacoustic emissions. Noise Health 2019; 21:155-163. [PMID: 32719302 PMCID: PMC7650858 DOI: 10.4103/nah.nah_36_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/11/2019] [Accepted: 01/23/2020] [Indexed: 11/08/2022] Open
Abstract
Genetics and environmental factors frequently influence individual's susceptibility to hearing loss. It is postulated that melanin in the inner ear is related to individual's susceptibility to noise induced hearing loss (NIHL). General pigmentation in turn, suspected to be related to the amount of pigmentation in the inner ear. The amount of melanin in the inner ear is said to modulate the endocochlear potential and provide an otoprotective effect. AIM The study aimed to determine the relationship between the contralateral suppression of otoacoustic emissions (CSOAE) in individuals with brown eyes and hair, and blue eyes and blond hair, and temporary emission shift (TES) after short-term noise exposure. SETTING AND DESIGN The research was conducted using a quantitative research design with a quasi-experimental repeated within the subject design to compare the CSOAE in subjects with different hair and eyes colour with TES after short-term noise exposure. Quantitative research was used to determine the relationship between the measurable variables to predict occurrence. MATERIAL AND METHOD The hearing sensitivity of young adults was determined by using pure tone audiometry followed by CSOAE's and distortion product otoacoustic emissions (DPOAE) before listening to music for one hour individually. Pure tone audiometry and DPOAE's were repeated after music exposure to determine the amount of TES and temporary threshold shift (TTS). STATISTICAL ANALYSIS USED One-way ANOVA was used during the analysis of the data obtained during this research study, in addition to, two-tailed Wilcoxon Sign Rank test and Friedman's test. In all analyses, a 95% level of significance (P<0.05) was used. RESULTS No statistically significant difference between efferent suppression was measured by CSOAE's between the participant groups. A larger TTS at 4000 Hz and TES at 2000 Hz was evident in the blue eyes and blond hair group after short-term music exposure. Conclusion: CSOAE's were unable to predict which group of individuals were more susceptible to NIHL after short-term noise exposure.
Collapse
Affiliation(s)
- Marike Klopper
- Department of Speech-Language Pathology and Audiology, University of Pretoria, Pretoria, South Africa
| | - Leigh Biagio–de Jager
- Department of Speech-Language Pathology and Audiology, University of Pretoria, Pretoria, South Africa
| | - Bart Vinck
- Department of Speech-Language Pathology and Audiology, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Yoo J, Bidelman GM. Linguistic, perceptual, and cognitive factors underlying musicians' benefits in noise-degraded speech perception. Hear Res 2019; 377:189-195. [PMID: 30978607 DOI: 10.1016/j.heares.2019.03.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
Previous studies have reported better speech-in-noise (SIN) recognition in musicians relative to nonmusicians while others have failed to observe this "musician SIN advantage." Here, we aimed to clarify equivocal findings and determine the most relevant perceptual and cognitive factors that do and do not account for musicians' benefits in SIN processing. We measured behavioral performance in musicians and nonmusicians on a battery of SIN recognition, auditory backward masking (a marker of attention), fluid intelligence (IQ), and working memory tasks. We found that musicians outperformed nonmusicians in SIN recognition but also demonstrated better performance in IQ, working memory, and attention. SIN advantages were restricted to more complex speech tasks featuring sentence-level recognition with speech-on-speech masking (i.e., QuickSIN) whereas no group differences were observed in non-speech simultaneous (noise-on-tone) masking. This suggests musicians' advantage is limited to cases where the noise interference is linguistic in nature. Correlations showed SIN scores were associated with working memory, reinforcing the importance of general cognition to degraded speech perception. Lastly, listeners' years of music training predicted auditory attention scores, working memory skills, general fluid intelligence, and SIN perception (i.e., QuickSIN scores), implying that extensive musical training enhances perceptual and cognitive skills. Overall, our results suggest (i) enhanced SIN recognition in musicians is due to improved parsing of competing linguistic signals rather than signal-in-noise extraction, per se, and (ii) cognitive factors (working memory, attention, IQ) at least partially drive musicians' SIN advantages.
Collapse
Affiliation(s)
- Jessica Yoo
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| | - Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| |
Collapse
|
23
|
Abstract
Our ability to make sense of the auditory world results from neural processing that begins in the ear, goes through multiple subcortical areas, and continues in the cortex. The specific contribution of the auditory cortex to this chain of processing is far from understood. Although many of the properties of neurons in the auditory cortex resemble those of subcortical neurons, they show somewhat more complex selectivity for sound features, which is likely to be important for the analysis of natural sounds, such as speech, in real-life listening conditions. Furthermore, recent work has shown that auditory cortical processing is highly context-dependent, integrates auditory inputs with other sensory and motor signals, depends on experience, and is shaped by cognitive demands, such as attention. Thus, in addition to being the locus for more complex sound selectivity, the auditory cortex is increasingly understood to be an integral part of the network of brain regions responsible for prediction, auditory perceptual decision-making, and learning. In this review, we focus on three key areas that are contributing to this understanding: the sound features that are preferentially represented by cortical neurons, the spatial organization of those preferences, and the cognitive roles of the auditory cortex.
Collapse
Affiliation(s)
- Andrew J King
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Sundeep Teki
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Ben D B Willmore
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
24
|
Lopez-Poveda EA. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front Neurol 2018; 9:197. [PMID: 29632514 PMCID: PMC5879449 DOI: 10.3389/fneur.2018.00197] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Olivocochlear efferents allow the central auditory system to adjust the functioning of the inner ear during active and passive listening. While many aspects of efferent anatomy, physiology and function are well established, others remain controversial. This article reviews the current knowledge on olivocochlear efferents, with emphasis on human medial efferents. The review covers (1) the anatomy and physiology of olivocochlear efferents in animals; (2) the methods used for investigating this auditory feedback system in humans, their limitations and best practices; (3) the characteristics of medial-olivocochlear efferents in humans, with a critical analysis of some discrepancies across human studies and between animal and human studies; (4) the possible roles of olivocochlear efferents in hearing, discussing the evidence in favor and against their role in facilitating the detection of signals in noise and in protecting the auditory system from excessive acoustic stimulation; and (5) the emerging association between abnormal olivocochlear efferent function and several health conditions. Finally, we summarize some open issues and introduce promising approaches for investigating the roles of efferents in human hearing using cochlear implants.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
25
|
Evidence of noise-induced subclinical hearing loss using auditory brainstem responses and objective measures of noise exposure in humans. Hear Res 2018; 361:80-91. [PMID: 29370962 DOI: 10.1016/j.heares.2018.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 01/19/2023]
Abstract
Exposure to loud sound places the auditory system at considerable risk, especially when the exposure is routine. The current study examined the impact of routine auditory overexposure in young human adults with clinically-normal audiometric thresholds by measuring the auditory brainstem response (ABR), an electrophysiological measure of peripheral and central auditory processing. Sound exposure was measured objectively with body-worn noise dosimeters over a week. Participants were divided into low-exposure and high-exposure groups, with the low-exposure group having an average daily noise exposure dose of ∼11% of the recommended exposure limit compared to the high-exposure group average of nearly 500%. Compared to the low-exposure group, the high-exposure group had delayed ABRs to suprathreshold click stimuli and this prolongation was evident at ABR waves I and III but strongest for V. When peripheral differences were corrected using the I-V interpeak latency, the high-exposure group showed greater taxation at faster stimulus presentation rates than the low-exposure group, suggestive of neural conduction inefficiencies within central auditory structures. Our findings are consistent with the hypothesis that auditory overexposure affects peripheral and central auditory structures even before changes are evident on standard audiometry. We discuss our findings within the context of the larger debate on the mechanisms and manifestations of subclinical hearing loss.
Collapse
|
26
|
Bhatt I. Increased medial olivocochlear reflex strength in normal-hearing, noise-exposed humans. PLoS One 2017; 12:e0184036. [PMID: 28886123 PMCID: PMC5590870 DOI: 10.1371/journal.pone.0184036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/16/2017] [Indexed: 11/23/2022] Open
Abstract
Research suggests that college-aged adults are vulnerable to tinnitus and hearing loss due to exposure to traumatic levels of noise on a regular basis. Recent human studies have associated exposure to high noise exposure background (NEB, i.e., routine noise exposure) with the reduced cochlear output and impaired speech processing ability in subjects with clinically normal hearing sensitivity. While the relationship between NEB and the functions of the auditory afferent neurons are studied in the literature, little is known about the effects of NEB on functioning of the auditory efferent system. The objective of the present study was to investigate the relationship between medial olivocochlear reflex (MOCR) strength and NEB in subjects with clinically normal hearing sensitivity. It was hypothesized that subjects with high NEB would exhibit reduced afferent input to the MOCR circuit which would subsequently lead to reduced strength of the MOCR. In normal-hearing listeners, the study examined (1) the association between NEB and baseline click-evoked otoacoustic emissions (CEOAEs) and (2) the association between NEB and MOCR strength. The MOCR was measured using CEOAEs evoked by 60 dB pSPL linear clicks in a contralateral acoustic stimulation (CAS)-off and CAS-on (a broadband noise at 60 dB SPL) condition. Participants with at least 6 dB signal-to-noise ratio (SNR) in the CAS-off and CAS-on conditions were included for analysis. A normalized CEOAE inhibition index was calculated to express MOCR strength in a percentage value. NEB was estimated using a validated questionnaire. The results showed that NEB was not associated with the baseline CEOAE amplitude (r = -0.112, p = 0.586). Contrary to the hypothesis, MOCR strength was positively correlated with NEB (r = 0.557, p = 0.003). NEB remained a significant predictor of MOCR strength (β = 2.98, t(19) = 3.474, p = 0.003) after the unstandardized coefficient was adjusted to control for effects of smoking, sound level tolerance (SLT) and tinnitus. These data provide evidence that MOCR strength is associated with NEB. The functional significance of increased MOCR strength is discussed.
Collapse
Affiliation(s)
- Ishan Bhatt
- Department of Communication Sciences & Disorders, Northern Arizona University, Flagstaff, AZ, United States of America
- * E-mail:
| |
Collapse
|