1
|
Cassinotti LR, Ji L, Yuk MC, Desai AS, Cass ND, Amir ZA, Corfas G. Hidden hearing loss in a Charcot-Marie-Tooth type 1A mouse model. JCI Insight 2024; 9:e180315. [PMID: 39178128 PMCID: PMC11466197 DOI: 10.1172/jci.insight.180315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/15/2024] [Indexed: 08/25/2024] Open
Abstract
Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds and has become a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the effect of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans. CMT1A mice exhibited the functional hallmarks of HHL together with disorganization of AN heminodes near the IHCs with minor loss of AN fibers. These results support the hypothesis that mild disruptions of AN myelination can cause HHL and that heminodal defects contribute to the alterations in the sound-evoked cochlear compound action potentials seen in this mouse model. Furthermore, these findings suggest that patients with CMT1A or other mild peripheral neuropathies are likely to suffer from HHL. Furthermore, these results suggest that studies of hearing in patients with CMT1A might help develop robust clinical tests for HHL, which are currently lacking.
Collapse
|
2
|
Kurioka T, Mizutari K. Gap detection ability declines with central auditory neurodegeneration following age-related cochlear synaptopathy. Eur J Neurosci 2024; 60:5861-5875. [PMID: 39237477 DOI: 10.1111/ejn.16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Age-related hearing impairment (ARHI) is commonly associated with decreased auditory temporal resolution caused by auditory neurodegeneration. Age-related deterioration in gap detection ability, resulting in poor temporal auditory processing, is often attributed to pathophysiological changes in both the peripheral and central auditory systems. This study aimed to investigate whether the gap detection ability declines in the early stages of ageing and to determine its usefulness in detecting peripheral and central auditory degeneration. The study used 1-month-old (1 M), 6-month-old (6 M) and 12-month-old (12 M) mice to examine changes in gap detection ability and associated auditory pathophysiology. Although hearing thresholds did not significantly differ between the groups, the amplitude of auditory brainstem response (ABR) wave I decreased significantly in an age-dependent manner, consistent with age-related cochlear synaptopathy. The relative ABR amplitude ratio of waves 2 and 5 to wave 1 was significantly increased in 12 M mice, indicating that the central auditory system had increased in relative neuroactivity. A significant increase in gap detection thresholds was observed in 12 M mice compared to 1 M mice. Although cochlear synaptopathy and central hyperactivity were positively correlated with gap detection thresholds, central hyperactivity strongly influenced gap detection ability. In the cochlear nucleus and auditory cortex, the inhibitory synaptic expression of GAD65 and the expression of parvalbumin were significantly decreased in 12 M mice, consistent with central hyperactivity. Evaluating gap detection performance may allow the identification of decreased auditory temporal resolution in the early stages of ARHI, which is strongly associated with auditory neurodegeneration.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Kunio Mizutari
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| |
Collapse
|
3
|
Perez P, Tsai TH, Hawks J, Barbone HM, Pinkl J, Thirumala P, Bao J. Hearing Loss in the Unoperated Ear After High-Speed Drilling in Otologic and Skull Base Surgery. Otol Neurotol 2024; 45:993-997. [PMID: 39207294 DOI: 10.1097/mao.0000000000004316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To evaluate if permanent hearing loss occurred in the unoperated ear of patients undergoing otologic and skull base surgery with high-speed otologic drilling. STUDY DESIGN We retrospectively studied 250 patients (mean age 57.8 yr; 120 males, and 130 females) undergoing otologic or skull base surgery with high-speed drilling between 2013 and 2019. SETTING The University of Pittsburgh Medical Center. PATIENTS We evaluated preoperative and postoperative audiograms for patients undergoing surgery for cochlear implantation (95 patients, 38.0%), cholesteatoma or chronic ear disease (88 patients, 35.2%), repair of lateral skull base encephalocele (26 patients, 10.4%), resection of vestibular schwannoma or meningioma of the cerebellopontine angle (23 patients, 9.2%), lateral temporal bone resection (8 patients, 3.2%), microvascular decompression (7 patients, 2.8%), or other operations involving a high-speed otologic drill (3 patients, 1.2%). MAIN OUTCOME MEASURES Hearing threshold shift, measured as the difference between postoperative threshold and preoperative threshold for each frequency. The association of age, gender, tested frequency, and surgery type with hearing threshold shift was investigated with analysis of covariance. RESULTS A total of 102 patients (40.8%) had a 10-dB or greater worsening of their hearing in at least one frequency on their postoperative audiogram in the contralateral, unoperated ear. One hundred six subjects (42.4%) had no change in hearing of 10 dB or greater at any frequency. Among patients with longitudinal postoperative audiograms, accelerated age-related hearing loss was observed in low frequencies. CONCLUSIONS A significant number of patients demonstrated poorer hearing thresholds in the contralateral, unoperated ear after otologic and skull base surgery.
Collapse
Affiliation(s)
- Philip Perez
- Department of Otolaryngology, Head & Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tsung-Heng Tsai
- Department of Mathematical Sciences, Kent State University, Kent, Ohio
| | - John Hawks
- Gateway Biotechnology Inc., St. Louis, Missouri
| | | | - Joey Pinkl
- Gateway Biotechnology Inc., St. Louis, Missouri
| | - Partha Thirumala
- Departments of Neurological Surgery and Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
4
|
Schmidt FH, Dörmann A, Ehrt K, Grossmann W, Mlynski R, Zhang L. The curvature quantification of wave I in auditory brainstem responses detects cochlear synaptopathy in human beings. Eur Arch Otorhinolaryngol 2024; 281:4735-4746. [PMID: 38703194 DOI: 10.1007/s00405-024-08699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE Patients with age-related hearing loss complain often about reduced speech perception in adverse listening environment. Studies on animals have suggested that cochlear synaptopathy may be one of the primary mechanisms responsible for this phenomenon. A decreased wave I amplitude in supra-threshold auditory brainstem response (ABR) can diagnose this pathology non-invasively. However, the interpretation of the wave I amplitude in humans remains controversial. Recent studies in mice have established a robust and reliable mathematic algorithm, i.e., curve curvature quantification, for detecting cochlear synaptopathy. This study aimed to determine whether the curve curvature has sufficient test-retest reliability to detect cochlear synaptopathy in aging humans. METHODS Healthy participants were recruited into this prospective study. All subjects underwent an audiogram examination with standard and extended high frequencies ranging from 0.125 to 16 kHz and an ABR with a stimulus of 80 dB nHL click. The peak amplitude, peak latency, curvature at the peak, and the area under the curve of wave I were calculated and analyzed. RESULTS A total of 80 individuals with normal hearing, aged 18 to 61 years, participated in this study, with a mean age of 26.4 years. Pearson correlation analysis showed a significant negative correlation between curvature and age, as well as between curvature and extended high frequency (EHF) threshold (10-16 kHz). Additionally, the same correlation was observed between age and area as well as age and EHF threshold. The model comparison demonstrated that the curvature at the peak of wave I is the best metric to correlate with EHF threshold. CONCLUSION The curvature at the peak of wave I is the most sensitive metric for detecting cochlear synaptopathy in humans and may be applied in routine diagnostics to detect early degenerations of the auditory nerve.
Collapse
Affiliation(s)
- Florian Herrmann Schmidt
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Alexander Dörmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Karsten Ehrt
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Wilma Grossmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany
| | - Lichun Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner, Rostock University Medical Center, Doberaner Strasse 137-139, 18057, Rostock, Germany.
| |
Collapse
|
5
|
Kamerer AM, Harris SE, Wichman CS, Rasetshwane DM, Neely ST. The relationship and interdependence of auditory thresholds, proposed behavioural measures of hidden hearing loss, and physiological measures of auditory function. Int J Audiol 2024:1-14. [PMID: 39180321 DOI: 10.1080/14992027.2024.2391986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVES Standard diagnostic measures focus on threshold elevation but hearing concerns may occur independently of threshold elevation - referred to as "hidden hearing loss" (HHL). A deeper understanding of HHL requires measurements that locate dysfunction along the auditory pathway. This study aimed to describe the relationship and interdependence between certain behavioural and physiological measures of auditory function that are thought to be indicative of HHL. DESIGN Data were collected on a battery of behavioural and physiological measures of hearing. Threshold-dependent variance was removed from each measure prior to generating a multiple regression model of the behavioural measures using the physiological measures. STUDY SAMPLE 224 adults in the United States with audiometric thresholds ≤65 dB HL. RESULTS Thresholds accounted for between 21 and 60% of the variance in our behavioural measures and 5-51% in our physiological measures of hearing. There was no evidence that the behavioural measures of hearing could be predicted by the selected physiological measures. CONCLUSIONS Several proposed behavioural measures for HHL: thresholds-in-noise, frequency-modulation detection, and speech recognition in difficult listening conditions, are influenced by hearing sensitivity and are not predicted by outer hair cell or auditory nerve physiology. Therefore, these measures may not be able to assess threshold-independent hearing disorders.
Collapse
Affiliation(s)
| | - Sara E Harris
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | | | | |
Collapse
|
6
|
Cassinotti LR, Ji L, Yuk MC, Desai AS, Cass ND, Amir ZA, Corfas G. Hidden hearing loss in a Charcot-Marie-Tooth type 1A mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571732. [PMID: 38168255 PMCID: PMC10760174 DOI: 10.1101/2023.12.14.571732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds, a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the impact of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans. CMT1A mice exhibited the functional hallmarks of HHL together with disorganization of AN heminodes near the IHCs with minor loss of AN fibers. These results support the hypothesis that mild disruptions of AN myelination can cause HHL, and that heminodal defects contribute to the alterations in the sound-evoked cochlear compound action potentials seen in this mouse model. Also, these findings suggest that patients with CMT1A or other mild peripheral neuropathies are likely to suffer from HHL. Furthermore, these results suggest that studies of hearing in CMT1A patients might help develop robust clinical tests for HHL, which are currently lacking.
Collapse
|
7
|
Zhao HB, Liu LM, Mei L, Quinonez AT, Roberts RA, Lu X. Prevention and treatment of noise-induced hearing loss and cochlear synapse degeneration by potassium channel blockers in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597382. [PMID: 38895254 PMCID: PMC11185602 DOI: 10.1101/2024.06.04.597382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Noise can induce hearing loss. In particularly, noise can induce cochlear synapse degeneration leading to hidden hearing loss, which is the most common type of hearing disorders in the clinic. Currently, there is no pharmacological treatment, particularly, no post-exposure (i.e., therapeutic) treatment available in the clinic. Here, we report that systematic administration of K + channel blockers before or after noise exposure could significantly attenuate NIHL and synapse degeneration. After systematic administration of a general K-channel blocker tetraethylammonium (TEA), the elevation of auditory brainstem response (ABR) thresholds after noise-exposure significantly reduced, and the active cochlear mechanics significantly improved. The therapeutic effect was further improved as the post-exposure administration time extending to 3 days. BK channel is a predominant K + channel in the inner hair cells. Systematic administration of a BK channel blocker GAL-021 after noise exposure also ameliorated hearing loss and improved hearing behavioral responses tested by acoustic startle response (ASR). Finally, both TEA and GAL-021 significantly attenuated noise-induced ribbon synapse degeneration. These data demonstrate that K + -channel blockers can prevent and treat NIHL and cochlear synapse degeneration. Our finding may aid in developing therapeutic strategies for post-exposure treatment of NIHL and synapse degeneration. Significance Statement Noise is a common deafness factor affecting more 100 million people in the United States. So far, there is no pharmacological treatment available. We show here that administration of K + channel blockers after noise exposure could attenuate noise-induced hearing loss and synapse degeneration, and improved behavioral responses. This is the first time to real the K + channel blockers that could treat noise-induced hearing loss and cochlear synaptopathy after noise exposure.
Collapse
|
8
|
Lutze RD, Ingersoll MA, Kelmann RG, Teitz T. Trametinib, a MEK1/2 Inhibitor, Protects Mice from Cisplatin- and Noise-Induced Hearing Loss. Pharmaceuticals (Basel) 2024; 17:735. [PMID: 38931403 PMCID: PMC11206450 DOI: 10.3390/ph17060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Hearing loss is one of the most common types of disability; however, there is only one FDA-approved drug to prevent any type of hearing loss. Treatment with the highly effective chemotherapy agent, cisplatin, and exposure to high-decibel noises are two of the most common causes of hearing loss. The mitogen-activated protein kinase (MAPK) pathway, a phosphorylation cascade consisting of RAF, MEK1/2, and ERK1/2, has been implicated in both types of hearing loss. Pharmacologically inhibiting BRAF or ERK1/2 is protective against noise- and cisplatin-induced hearing loss in multiple mouse models. Trametinib, a MEK1/2 inhibitor, protects from cisplatin-induced outer hair cell death in mouse cochlear explants; however, to the best of our knowledge, inhibiting MEK1/2 has not yet been shown to be protective against hearing loss in vivo. In this study, we demonstrate that trametinib protects against cisplatin-induced hearing loss in a translationally relevant mouse model and does not interfere with cisplatin's tumor-killing efficacy in cancer cell lines. Higher doses of trametinib were toxic to mice when combined with cisplatin, but lower doses of the drug were protective against hearing loss without any known toxicity. Trametinib also protected mice from noise-induced hearing loss and synaptic damage. This study shows that MEK1/2 inhibition protects against both insults of hearing loss, as well as that targeting all three kinases in the MAPK pathway protects mice from cisplatin- and noise-induced hearing loss.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (R.G.K.)
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (R.G.K.)
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (R.G.K.)
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (R.G.K.)
- The Scintillon Research Institute, San Diego, CA 92121, USA
| |
Collapse
|
9
|
Lutze RD, Ingersoll MA, Kelmann RG, Teitz T. FDA-Approved MEK1/2 Inhibitor, Trametinib, Protects Mice from Cisplatin and Noise-Induced Hearing Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595056. [PMID: 38826449 PMCID: PMC11142120 DOI: 10.1101/2024.05.20.595056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Hearing loss is one of the most common types of disability; however, there is only one FDA-approved drug to prevent any type of hearing loss. Treatment with the highly effective chemotherapy agent, cisplatin, and exposure to high decibel noises are two of the most common causes of hearing loss. The mitogen activated protein kinase (MAPK) pathway, a phosphorylation cascade consisting of RAF, MEK1/2, and ERK1/2, has been implicated in both types of hearing loss. Pharmacologically inhibiting BRAF or ERK1/2 is protective from noise and cisplatin-induced hearing loss in multiple mouse models. Trametinib, a MEK1/2 inhibitor, protects from cisplatin induced outer hair cell death in mouse cochlear explants; however, to the best of our knowledge, inhibiting MEK1/2 has not yet been shown to be protective from hearing loss in vivo. In this study, we demonstrate that trametinib protects from cisplatin-induced hearing loss in a translationally relevant mouse model and does not interfere with cisplatin's tumor killing efficacy in cancer cell lines. Higher doses of trametinib were toxic to mice when combined with cisplatin but lower doses of the drug were protective from hearing loss without any known toxicity. Trametinib also protected mice from noise-induced hearing loss and synaptic damage. This study shows that MEK1/2 inhibition protects from both insults of hearing loss and that targeting all three kinases in the MAPK pathway protect from cisplatin and noise-induced hearing loss in mice.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
10
|
Lin YC, Shih CP, Lin YY, Lin HC, Kuo CY, Chen HK, Chen HC, Wang CH. C-Phycocyanin Attenuates Noise-Induced Cochlear Synaptopathy via the Inhibition of Oxidative Stress and Intercellular Adhesion Molecule-1 in the Cochlea. Int J Mol Sci 2024; 25:5154. [PMID: 38791192 PMCID: PMC11120661 DOI: 10.3390/ijms25105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 μg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.
Collapse
MESH Headings
- Animals
- Oxidative Stress/drug effects
- Guinea Pigs
- Phycocyanin/pharmacology
- Phycocyanin/therapeutic use
- Cochlea/metabolism
- Cochlea/drug effects
- Cochlea/pathology
- Synapses/drug effects
- Synapses/metabolism
- Noise/adverse effects
- Intercellular Adhesion Molecule-1/metabolism
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Reactive Oxygen Species/metabolism
- Male
- Spiral Ganglion/drug effects
- Spiral Ganglion/metabolism
- Spiral Ganglion/pathology
- Hydrogen Peroxide/metabolism
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Antioxidants/pharmacology
- Cell Line
- Hearing Loss, Hidden
Collapse
Affiliation(s)
- Yi-Chun Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Yuan-Yung Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Hung-Che Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
- Division of Otolaryngology, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan 33052, Taiwan
| |
Collapse
|
11
|
Sailor-Longsworth E, Lutze RD, Ingersoll MA, Kelmann RG, Ly K, Currier D, Chen T, Zuo J, Teitz T. Oseltamivir (Tamiflu), a Commonly Prescribed Antiviral Drug, Mitigates Hearing Loss in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592815. [PMID: 38765999 PMCID: PMC11100672 DOI: 10.1101/2024.05.06.592815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hearing loss affects up to 10% of all people worldwide, but currently there is only one FDA-approved drug for its prevention in a subgroup of cisplatin-treated pediatric patients. Here, we performed an unbiased screen of 1,300 FDA-approved drugs for protection against cisplatin-induced cell death in an inner ear cell line, and identified oseltamivir phosphate (brand name Tamiflu), a common influenza antiviral drug, as a top candidate. Oseltamivir phosphate was found to be otoprotective by oral delivery in multiple established cisplatin and noise exposure mouse models. The drug conferred permanent hearing protection of 15-25 dB SPL for both female and male mice. Oseltamivir treatment reduced in mice outer hair cells death after cisplatin treatment and mitigated cochlear synaptopathy after noise exposure. A potential binding protein, ERK1/2, associated with inflammation, was shown to be activated with cisplatin treatment and reduced by oseltamivir cotreatment in cochlear explants. Importantly, the number of infiltrating immune cells to the cochleae in mice post noise exposure, were significantly reduced with oseltamivir treatment, suggesting an anti-inflammatory mechanism of action. Our results support oseltamivir, a widespread drug for influenza with low side effects, as a promising otoprotective therapeutic candidate in both cisplatin chemotherapy and traumatic noise exposure.
Collapse
Affiliation(s)
- Emma Sailor-Longsworth
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Kristina Ly
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
12
|
Schirmer J, Wolpert S, Dapper K, Rühle M, Wertz J, Wouters M, Eldh T, Bader K, Singer W, Gaudrain E, Başkent D, Verhulst S, Braun C, Rüttiger L, Munk MHJ, Dalhoff E, Knipper M. Neural Adaptation at Stimulus Onset and Speed of Neural Processing as Critical Contributors to Speech Comprehension Independent of Hearing Threshold or Age. J Clin Med 2024; 13:2725. [PMID: 38731254 PMCID: PMC11084258 DOI: 10.3390/jcm13092725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Background: It is assumed that speech comprehension deficits in background noise are caused by age-related or acquired hearing loss. Methods: We examined young, middle-aged, and older individuals with and without hearing threshold loss using pure-tone (PT) audiometry, short-pulsed distortion-product otoacoustic emissions (pDPOAEs), auditory brainstem responses (ABRs), auditory steady-state responses (ASSRs), speech comprehension (OLSA), and syllable discrimination in quiet and noise. Results: A noticeable decline of hearing sensitivity in extended high-frequency regions and its influence on low-frequency-induced ABRs was striking. When testing for differences in OLSA thresholds normalized for PT thresholds (PTTs), marked differences in speech comprehension ability exist not only in noise, but also in quiet, and they exist throughout the whole age range investigated. Listeners with poor speech comprehension in quiet exhibited a relatively lower pDPOAE and, thus, cochlear amplifier performance independent of PTT, smaller and delayed ABRs, and lower performance in vowel-phoneme discrimination below phase-locking limits (/o/-/u/). When OLSA was tested in noise, listeners with poor speech comprehension independent of PTT had larger pDPOAEs and, thus, cochlear amplifier performance, larger ASSR amplitudes, and higher uncomfortable loudness levels, all linked with lower performance of vowel-phoneme discrimination above the phase-locking limit (/i/-/y/). Conslusions: This study indicates that listening in noise in humans has a sizable disadvantage in envelope coding when basilar-membrane compression is compromised. Clearly, and in contrast to previous assumptions, both good and poor speech comprehension can exist independently of differences in PTTs and age, a phenomenon that urgently requires improved techniques to diagnose sound processing at stimulus onset in the clinical routine.
Collapse
Affiliation(s)
- Jakob Schirmer
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Stephan Wolpert
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Konrad Dapper
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Moritz Rühle
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Jakob Wertz
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Marjoleen Wouters
- Department of Information Technology, Ghent University, Technologiepark 126, 9052 Zwijnaarde, Belgium; (M.W.); (S.V.)
| | - Therese Eldh
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Katharina Bader
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Etienne Gaudrain
- Lyon Neuroscience Research Center, Centre National de la Recherche Scientifique UMR5292, Inserm U1028, Université Lyon 1, Centre Hospitalier Le Vinatier-Bâtiment 462–Neurocampus, 95 Boulevard Pinel, 69675 Bron CEDEX, France;
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, 9700 RB Groningen, The Netherlands;
| | - Deniz Başkent
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, 9700 RB Groningen, The Netherlands;
| | - Sarah Verhulst
- Department of Information Technology, Ghent University, Technologiepark 126, 9052 Zwijnaarde, Belgium; (M.W.); (S.V.)
| | - Christoph Braun
- Magnetoencephalography-Centre and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany;
- Center for Mind and Brain Research, University of Trento, Palazzo Fedrigotti-corso Bettini 31, 38068 Rovereto, Italy
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Matthias H. J. Munk
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
- Department of Psychiatry & Psychotherapy, University of Tübingen, Calwerstraße 14, 72076 Tübingen, Germany
| | - Ernst Dalhoff
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| |
Collapse
|
13
|
Bakay WMH, Cervantes B, Lao-Rodríguez AB, Johannesen PT, Lopez-Poveda EA, Furness DN, Malmierca MS. How 'hidden hearing loss' noise exposure affects neural coding in the inferior colliculus of rats. Hear Res 2024; 443:108963. [PMID: 38308936 DOI: 10.1016/j.heares.2024.108963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
Exposure to brief, intense sound can produce profound changes in the auditory system, from the internal structure of inner hair cells to reduced synaptic connections between the auditory nerves and the inner hair cells. Moreover, noisy environments can also lead to alterations in the auditory nerve or to processing changes in the auditory midbrain, all without affecting hearing thresholds. This so-called hidden hearing loss (HHL) has been shown in tinnitus patients and has been posited to account for hearing difficulties in noisy environments. However, much of the neuronal research thus far has investigated how HHL affects the response characteristics of individual fibres in the auditory nerve, as opposed to higher stations in the auditory pathway. Human models show that the auditory nerve encodes sound stochastically. Therefore, a sufficient reduction in nerve fibres could result in lowering the sampling of the acoustic scene below the minimum rate necessary to fully encode the scene, thus reducing the efficacy of sound encoding. Here, we examine how HHL affects the responses to frequency and intensity of neurons in the inferior colliculus of rats, and the duration and firing rate of those responses. Finally, we examined how shorter stimuli are encoded less effectively by the auditory midbrain than longer stimuli, and how this could lead to a clinical test for HHL.
Collapse
Affiliation(s)
- Warren M H Bakay
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Blanca Cervantes
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; School of Medicine, University Anáhuac Puebla, Mexico
| | - Ana B Lao-Rodríguez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Peter T Johannesen
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain; Department of Surgery, Faculty of Medicine, University of Salamanca, Spain
| | - David N Furness
- School of Life Sciences, Keele University, Keele, United Kingdom
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain; Department of Biology and Pathology, Faculty of Medicine, University of Salamanca, Spain.
| |
Collapse
|
14
|
Yu Q, Liu S, Guo R, Chen K, Li Y, Jiang D, Gong S, Yin L, Liu K. Complete Restoration of Hearing Loss and Cochlear Synaptopathy via Minimally Invasive, Single-Dose, and Controllable Middle Ear Delivery of Brain-Derived Neurotrophic Factor-Poly(dl-lactic acid- co-glycolic acid)-Loaded Hydrogel. ACS NANO 2024; 18:6298-6313. [PMID: 38345574 DOI: 10.1021/acsnano.3c11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Noise-induced hearing loss (NIHL) often accompanies cochlear synaptopathy, which can be potentially reversed to restore hearing. However, there has been little success in achieving complete recovery of sensorineural deafness using nearly noninvasive middle ear drug delivery before. Here, we present a study demonstrating the efficacy of a middle ear delivery system employing brain-derived neurotrophic factor (BDNF)-poly-(dl-lactic acid-co-glycolic acid) (PLGA)-loaded hydrogel in reversing synaptopathy and restoring hearing function in a mouse model with NIHL. The mouse model achieved using the single noise exposure (NE, 115 dBL, 4 h) exhibited an average 20 dBL elevation of hearing thresholds with intact cochlear hair cells but a loss of ribbon synapses as the primary cause of hearing impairment. We developed a BDNF-PLGA-loaded thermosensitive hydrogel, which was administered via a single controllable injection into the tympanic cavity of noise-exposed mice, allowing its presence in the middle ear for a duration of 2 weeks. This intervention resulted in complete restoration of NIHL at frequencies of click, 4, 8, 16, and 32 kHz. Moreover, the cochlear ribbon synapses exhibited significant recovery, whereas other cochlear components (hair cells and auditory nerves) remained unchanged. Additionally, the cochlea of NE treated mice revealed activation of tropomyosin receptor kinase B (TRKB) signaling upon exposure to BDNF. These findings demonstrate a controllable and minimally invasive therapeutic approach that utilizes a BDNF-PLGA-loaded hydrogel to restore NIHL by specifically repairing cochlear synaptopathy. This tailored middle ear delivery system holds great promise for achieving ideal clinical outcomes in the treatment of NIHL and cochlear synaptopathy.
Collapse
Affiliation(s)
- Qianru Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengnan Liu
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kuntao Chen
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Yang Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dan Jiang
- Hearing Implant Centre, Guy's and St. Thomas NHS Foundation Trust, London SE1 7EH, United Kingdom
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| | - Lan Yin
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| |
Collapse
|
15
|
Saidia AR, François F, Casas F, Mechaly I, Venteo S, Veechi JT, Ruel J, Puel JL, Wang J. Oxidative Stress Plays an Important Role in Glutamatergic Excitotoxicity-Induced Cochlear Synaptopathy: Implication for Therapeutic Molecules Screening. Antioxidants (Basel) 2024; 13:149. [PMID: 38397748 PMCID: PMC10886292 DOI: 10.3390/antiox13020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The disruption of the synaptic connection between the sensory inner hair cells (IHCs) and the auditory nerve fiber terminals of the type I spiral ganglion neurons (SGN) has been observed early in several auditory pathologies (e.g., noise-induced or ototoxic drug-induced or age-related hearing loss). It has been suggested that glutamate excitotoxicity may be an inciting element in the degenerative cascade observed in these pathological cochlear conditions. Moreover, oxidative damage induced by free hydroxyl radicals and nitric oxide may dramatically enhance cochlear damage induced by glutamate excitotoxicity. To investigate the underlying molecular mechanisms involved in cochlear excitotoxicity, we examined the molecular basis responsible for kainic acid (KA, a full agonist of AMPA/KA-preferring glutamate receptors)-induced IHC synapse loss and degeneration of the terminals of the type I spiral ganglion afferent neurons using a cochlear explant culture from P3 mouse pups. Our results demonstrated that disruption of the synaptic connection between IHCs and SGNs induced increased levels of oxidative stress, as well as altered both mitochondrial function and neurotrophin signaling pathways. Additionally, the application of exogenous antioxidants and neurotrophins (NT3, BDNF, and small molecule TrkB agonists) clearly increases synaptogenesis. These results suggest that understanding the molecular pathways involved in cochlear excitotoxicity is of crucial importance for the future clinical trials of drug interventions for auditory synaptopathies.
Collapse
Affiliation(s)
- Anissa Rym Saidia
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Florence François
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - François Casas
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France;
| | - Ilana Mechaly
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Stéphanie Venteo
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Joseph T. Veechi
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Jérôme Ruel
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université-INSERM, 1263-INRAE 1260, 13385 Marseille, France;
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| |
Collapse
|
16
|
Gedik Toker Ö, Kuru E. The effect of occupational exposure to noise and chemical agents on hearing abilities. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2024; 79:1-10. [PMID: 38265067 DOI: 10.1080/19338244.2024.2305803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Exposure to loud noise or chemical agents may cause hearing disorders such as tinnitus and recruitment, known as an increase in the perception of loudness in addition to hearing loss. Our study aims to evaluate the hearing abilities of hairdressers exposed to noise and chemical agents in the working environment. The study included one hundred hairdressers and one hundred participants who do not work as hairdressers or are nonworkers. The participants' demographic characteristics, working conditions, and auditory complaints were questioned, and each participant completed the Speech, Spatial, and Qualities of Hearing Scale (SSQ). A statistically significant difference was found between the two groups in speech perception, spatial perception, hearing quality, and general SSQ scores. Hairdressers' SSQ scores were significantly lower in all sub-dimensions and general scale scores (p < 0.001). The auditory complaints of the hairdressers and the low SSQ scores indicate that exposure to noise and chemical agents affects the hairdressers' hearing system.
Collapse
Affiliation(s)
- Özge Gedik Toker
- Department of Audiology, Faculty of Health Sciences, Bezmialem Vakıf University, Istanbul, Turkey
| | - Elif Kuru
- Department of Audiology, Faculty of Health Sciences, Bezmialem Vakıf University, Istanbul, Turkey
| |
Collapse
|
17
|
Casolani C, Borhan-Azad A, Sørensen RS, Schlittenlacher J, Epp B. Evaluation of a Fast Method to Measure High-Frequency Audiometry Based on Bayesian Learning. Trends Hear 2024; 28:23312165231225545. [PMID: 38192152 PMCID: PMC10777778 DOI: 10.1177/23312165231225545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
This study aimed to assess the validity of a high-frequency audiometry tool based on Bayesian learning to provide a reliable, repeatable, automatic, and fast test to clinics. The study involved 85 people (138 ears) who had their high-frequency thresholds measured with three tests: standard audiometry (SA), alternative forced choice (AFC)-based algorithm, and Bayesian active (BA) learning-based algorithm. The results showed median differences within ±5 dB up to 10 kHz when comparing the BA with the other two tests, and median differences within ±10 dB at higher frequencies. The variability increased from lower to higher frequencies. The BA showed lower thresholds compared to the SA at the majority of the frequencies. The results of the different tests were consistent across groups (age, hearing loss, and tinnitus). The data for the BA showed high test-retest reliability (>90%). The time required for the BA was shorter than for the AFC (4 min vs. 13 min). The data suggest that the BA test for high-frequency audiometry could be a good candidate for clinical screening. It would add reliable and significant information without adding too much time to the visit.
Collapse
Affiliation(s)
- Chiara Casolani
- Auditory Physics Group, Hearing Systems section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Ali Borhan-Azad
- Auditory Physics Group, Hearing Systems section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Rikke Skovhøj Sørensen
- Auditory Physics Group, Hearing Systems section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Bastian Epp
- Auditory Physics Group, Hearing Systems section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
18
|
Jiang WJ, Zhou Z, Wang YP, Gao W, Li L, Si JQ. PGC-1α affects cochlear pericytes migration in noise-exposed mice. Biochem Biophys Res Commun 2023; 687:149172. [PMID: 37931421 DOI: 10.1016/j.bbrc.2023.149172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE The study aimed to observe the effects of noise exposure on the pericytes of the cochlear stria vascularis (SV) in mice and to investigate its molecular mechanism. METHOD Male C57BL/6J mice aged 6-8 weeks were used as the subjects. Auditory Brainstem Response (ABR) was used to assess hearing loss. Hematoxylin and Eosin (HE) staining was conducted to observe morphological alterations in the SV. Immunofluorescence combined with transmission electron microscopy (TEM) was used to scrutinize changes in pericytes following acoustic injury. Western blotting (WB) was used to assess the expression variations of the migration-related protein Osteopontin (OPN). Evans Blue assay was performed to evaluate the permeability of the blood labyrinth barrier (BLB). 4-Hydroxynonenal (4-HNE) staining, in conjunction with measurements of Superoxide Dismutase (SOD), Malondialdehyde (MDA), and Catalase (CAT) content, was used to ascertain whether oxidative stress injury occurred in the SV. WB, combined with immunofluorescence, was used to examine alterations in the expression of proliferator-activated receptor-gamma coactivator 1α (PGC-1α) in the SV and pericytes. RESULTS Noise exposure resulted in permanent hearing loss in C57BL/6J mice, accompanied by SV swelling, migration of pericytes from their vascular attachments, BLB leakage, elevated oxidative stress levels in the SV, and reduced expression of PGC-1α on both the SV and migrating pericytes. CONCLUSION Noise exposure may potentially increase oxidative stress levels in the SV, downregulate the expression levels of PGC-1α, promote pericytes migration, and subsequently lead to an elevation in BLB permeability.
Collapse
Affiliation(s)
- Wen-Jun Jiang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310051, China; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Zan Zhou
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China; Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yan-Ping Wang
- Department of Nursing, Medical College of Jiaxing University, Jiaxing,Zhejiang, 314000, China
| | - Wa Gao
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China; Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China.
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
19
|
Samelli AG, Rocha CH, Kamita MK, Lopes MEP, Andrade CQ, Matas CG. Evaluation of Subtle Auditory Impairments with Multiple Audiological Assessments in Normal Hearing Workers Exposed to Occupational Noise. Brain Sci 2023; 13:968. [PMID: 37371447 PMCID: PMC10296706 DOI: 10.3390/brainsci13060968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies involving guinea pigs have shown that noise can damage the synapses between the inner hair cells and spiral ganglion neurons, even with normal hearing thresholds-which makes it important to investigate this kind of impairment in humans. The aim was to investigate, with multiple audiological assessments, the auditory function of normal hearing workers exposed to occupational noise. Altogether, 60 workers were assessed (30 in the noise-exposure group [NEG], who were exposed to occupational noise, and 30 in the control group [CG], who were not exposed to occupational noise); the workers were matched according to age. The following procedures were used: complete audiological assessment; speech recognition threshold in noise (SRTN); speech in noise (SN) in an acoustic field; gaps-in-noise (GIN); transient evoked otoacoustic emissions (TEOAE) and inhibitory effect of the efferent auditory pathway; auditory brainstem response (ABR); and long-latency auditory evoked potentials (LLAEP). No significant difference was found between the groups in SRTN. In SN, the NEG performed worse than the CG in signal-to-noise ratio (SNR) 0 (p-value 0.023). In GIN, the NEG had a significantly lower percentage of correct answers (p-value 0.042). In TEOAE, the NEG had smaller amplitude values bilaterally (RE p-value 0.048; LE p-value 0.045) and a smaller inhibitory effect of the efferent pathway (p-value 0.009). In ABR, the NEG had greater latencies of wave V (p-value 0.017) and interpeak intervals III-V and I-V in the LE (respective p-values: 0.005 and 0.04). In LLAEP, the NEG had a smaller P3 amplitude bilaterally (RE p-value 0.001; LE p-value 0.002). The NEG performed worse than the CG in most of the assessments, suggesting that the auditory function in individuals exposed to occupational noise is impaired, even with normal audiometric thresholds.
Collapse
Affiliation(s)
- Alessandra Giannella Samelli
- Department of Physical Therapy, Speech-Language-Hearing Sciences, and Occupational Therapy, Medical School (FMUSP), University of São Paulo, São Paulo 05360-160, SP, Brazil; (C.H.R.); (M.K.K.); (M.E.P.L.); (C.Q.A.); (C.G.M.)
| | | | | | | | | | | |
Collapse
|
20
|
Anastasios G, Magioula G, Konstantinos K, Ioannis A. Noise and Health: Review. Indian J Otolaryngol Head Neck Surg 2022; 74:5482-5491. [PMID: 36742745 PMCID: PMC9895353 DOI: 10.1007/s12070-021-02797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
Noise in human societies is unavoidable, but it tends to become a modern epidemic that induces various detrimental effects to several organs and functions in humans. Increased cardiovascular danger, anxiety and sleep disturbance are just few of these effects. It is noteworthy that children, even neonates and their developing organism are especially vulnerable to noise-related health problems. Noise is measured with special noise-meters. These devices express results in decibels by transforming random noise to a continuous sound. This sound is characterized by equivalent acoustic energy to the random noise for a defined time interval. Human auditory apparatus is principally endangered by acute noises but also by chronic noise exposure, in the context of both occupational and recreational activities. Various mechanisms are implicated in the pathogenesis of noise-induced hearing loss that can cause either temporary or permanent damage. Among them, emphasis is given to the impairment by free radicals and inflammatory mediators, to the activation of apoptotic molecular pathways, but also to glutamate excitotoxicity. A hidden hearing loss, synaptopathy, is attributed to the latter. The irreversible nature of hearing loss, as well as the idiosyncratic sensitivity of individuals, imposes the necessity of early diagnosis of auditory impairment by noise. Super high frequency audiograms, otoacoustic emissions and electrophysiological examinations can address diagnosis. Thankfully, there is extensive research on acoustic trauma therapeutic approaches. However, until we succeed in regenerating the sensory organ of hearing, chronic noise-induced hearing loss cannot be treated. Thus, it is fundamental that society protects people from noise, by laws and regulations.
Collapse
Affiliation(s)
- Goulioumis Anastasios
- Department of Otorhinolaryngology, Pediatric Hospital “Karamandanio”, Patras, Greece
| | | | - Kourelis Konstantinos
- Department of Otorhinolaryngology, Pediatric Hospital “Karamandanio”, Patras, Greece
| | - Athanasopoulos Ioannis
- Department of Otorhinolaryngology, Pediatric Center of “Iatriko Athinon” Hospital, Athens, Greece
| |
Collapse
|
21
|
Brutnell TP, Wang X, Bao J. Integrating pharmacogenomics into clinical trials of hearing disorders. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2828. [PMID: 36456290 PMCID: PMC9648993 DOI: 10.1121/10.0015092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
In 2019, the U.S. Food and Drug Administration issued guidance to increase the efficiency of drug development and support precision medicine, including tailoring treatments to those patients who will benefit based on genetic variation even in the absence of a documented mechanism of action. Although multiple advancements have been made in the field of pharmacogenetics (PGx) for other disease conditions, there are no approved PGx guidelines in the treatment of hearing disorders. In studies of noise-induced hearing loss (NIHL), some progress has been made in the last several years associating genomic loci with susceptibility to noise damage. However, the power of such studies is limited as the underlying physiological responses may vary considerably among the patient populations. Here, we have summarized previous animal studies to argue that NIHL subtyping is a promising strategy to increase the granularity of audiological assessments. By coupling this enhanced phenotyping capability with genetic association studies, we suggest that drug efficacy will be better predicted, increasing the likelihood of success in clinical trials when populations are stratified based on genetic variation or designed with multidrug combinations to reach a broader segment of individuals suffering or at risk from NIHL.
Collapse
Affiliation(s)
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272, USA
| | - Jianxin Bao
- Gateway Biotechnology, St. Louis, Missouri 63132, USA
| |
Collapse
|
22
|
Valderrama JT, de la Torre A, McAlpine D. The hunt for hidden hearing loss in humans: From preclinical studies to effective interventions. Front Neurosci 2022; 16:1000304. [PMID: 36188462 PMCID: PMC9519997 DOI: 10.3389/fnins.2022.1000304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Many individuals experience hearing problems that are hidden under a normal audiogram. This not only impacts on individual sufferers, but also on clinicians who can offer little in the way of support. Animal studies using invasive methodologies have developed solid evidence for a range of pathologies underlying this hidden hearing loss (HHL), including cochlear synaptopathy, auditory nerve demyelination, elevated central gain, and neural mal-adaptation. Despite progress in pre-clinical models, evidence supporting the existence of HHL in humans remains inconclusive, and clinicians lack any non-invasive biomarkers sensitive to HHL, as well as a standardized protocol to manage hearing problems in the absence of elevated hearing thresholds. Here, we review animal models of HHL as well as the ongoing research for tools with which to diagnose and manage hearing difficulties associated with HHL. We also discuss new research opportunities facilitated by recent methodological tools that may overcome a series of barriers that have hampered meaningful progress in diagnosing and treating of HHL.
Collapse
Affiliation(s)
- Joaquin T. Valderrama
- National Acoustic Laboratories, Sydney, NSW, Australia
- Department of Linguistics, Macquarie University Hearing, Macquarie University, Sydney, NSW, Australia
| | - Angel de la Torre
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
- Research Centre for Information and Communications Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - David McAlpine
- Department of Linguistics, Macquarie University Hearing, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
23
|
Zhai X, Du H, Shen Y, Zhang X, Chen Z, Wang Y, Xu Z. FCHSD2 is required for stereocilia maintenance in mouse cochlear hair cells. J Cell Sci 2022; 135:jcs259912. [PMID: 35892293 DOI: 10.1242/jcs.259912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Stereocilia are F-actin-based protrusions on the apical surface of inner-ear hair cells and are indispensable for hearing and balance perception. The stereocilia of each hair cell are organized into rows of increasing heights, forming a staircase-like pattern. The development and maintenance of stereocilia are tightly regulated, and deficits in these processes lead to stereocilia disorganization and hearing loss. Previously, we showed that the F-BAR protein FCHSD2 is localized along the stereocilia of cochlear hair cells and cooperates with CDC42 to regulate F-actin polymerization and cell protrusion formation in cultured COS-7 cells. In the present work, Fchsd2 knockout mice were established to investigate the role of FCHSD2 in hearing. Our data show that stereocilia maintenance is severely affected in cochlear hair cells of Fchsd2 knockout mice, which leads to progressive hearing loss. Moreover, Fchsd2 knockout mice show increased acoustic vulnerability. Noise exposure causes robust stereocilia degeneration as well as enhanced hearing threshold elevation in Fchsd2 knockout mice. Lastly, Fchsd2/Cdc42 double knockout mice show more severe stereocilia deficits and hearing loss, suggesting that FCHSD2 and CDC42 cooperatively regulate stereocilia maintenance.
Collapse
Affiliation(s)
- Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Yuxin Shen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiujuan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology , Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology , Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
24
|
Savitska D, Hess M, Calis D, Marchetta P, Harasztosi C, Fink S, Eckert P, Ruth P, Rüttiger L, Knipper M, Singer W. Stress Affects Central Compensation of Neural Responses to Cochlear Synaptopathy in a cGMP-Dependent Way. Front Neurosci 2022; 16:864706. [PMID: 35968392 PMCID: PMC9372611 DOI: 10.3389/fnins.2022.864706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
In light of the increasing evidence supporting a link between hearing loss and dementia, it is critical to gain a better understanding of the nature of this relationship. We have previously observed that following cochlear synaptopathy, the temporal auditory processing (e.g., auditory steady state responses, ASSRs), is sustained when reduced auditory input is centrally compensated. This central compensation process was linked to elevated hippocampal long-term potentiation (LTP). We further observed that, independently of age, central responsiveness to cochlear synaptopathy can differ, resulting in either a low or high capacity to compensate for the reduced auditory input. Lower central compensation resulted in poorer temporal auditory processing, reduced hippocampal LTP, and decreased recruitment of activity-dependent brain-derived neurotrophic factor (BDNF) expression in hippocampal regions (low compensators). Higher central compensation capacity resulted in better temporal auditory processing, higher LTP responses, and increased activity-dependent BDNF expression in hippocampal regions. Here, we aimed to identify modifying factors that are potentially responsible for these different central responses. Strikingly, a poorer central compensation capacity was linked to lower corticosterone levels in comparison to those of high compensators. High compensators responded to repeated placebo injections with elevated blood corticosterone levels, reduced auditory brainstem response (ABR) wave I amplitude, reduced inner hair cell (IHC) ribbon number, diminished temporal processing, reduced LTP responses, and decreased activity-dependent hippocampal BDNF expression. In contrast, the same stress exposure through injection did not elevate blood corticosterone levels in low compensators, nor did it reduce IHC ribbons, ABR wave I amplitude, ASSR, LTP, or BDNF expression as seen in high compensators. Interestingly, in high compensators, the stress-induced responses, such as a decline in ABR wave I amplitude, ASSR, LTP, and BDNF could be restored through the "memory-enhancing" drug phosphodiesterase 9A inhibitor (PDE9i). In contrast, the same treatment did not improve these aspects in low compensators. Thus, central compensation of age-dependent cochlear synaptopathy is a glucocorticoid and cyclic guanosine-monophosphate (cGMP)-dependent neuronal mechanism that fails upon a blunted stress response.
Collapse
Affiliation(s)
- Daria Savitska
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philine Marchetta
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Csaba Harasztosi
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Xia L, Ripley S, Jiang Z, Yin X, Yu Z, Aiken SJ, Wang J. Synaptopathy in Guinea Pigs Induced by Noise Mimicking Human Experience and Associated Changes in Auditory Signal Processing. Front Neurosci 2022; 16:935371. [PMID: 35873820 PMCID: PMC9298651 DOI: 10.3389/fnins.2022.935371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Noise induced synaptopathy (NIS) has been researched extensively since a large amount of synaptic loss without permanent threshold shift (PTS) was found in CBA mice after a brief noise exposure. However, efforts to translate these results to humans have met with little success—and might not be possible since noise exposure used in laboratory animals is generally different from what is experienced by human subjects in real life. An additional problem is a lack of morphological data and reliable functional methods to quantify loss of afferent synapses in humans. Based on evidence for disproportionate synaptic loss for auditory nerve fibers (ANFs) with low spontaneous rates (LSR), coding-in-noise deficits (CIND) have been speculated to be the major difficulty associated with NIS without PTS. However, no robust evidence for this is available in humans or animals. This has led to a re-examination of the role of LSR ANFs in signal coding in high-level noise. The fluctuation profile model has been proposed to support a role for high-SR ANFs in the coding of high-level noise in combination with efferent control of cochlear gain. This study aimed to induce NIS by a low-level, intermittent noise exposure mimicking what is experienced in human life and examined the impact of the NIS on temporal processing under masking. It also evaluated the role of temporal fluctuation in evoking efferent feedback and the effects of NIS on this feedback.
Collapse
Affiliation(s)
- Li Xia
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Sara Ripley
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Zhenhua Jiang
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xue Yin
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zhiping Yu
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Steve J Aiken
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Jian Wang
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China.,School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
26
|
Hearing loss drug discovery and medicinal chemistry: Current status, challenges, and opportunities. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:1-91. [PMID: 35753714 DOI: 10.1016/bs.pmch.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hearing loss is a severe high unmet need condition affecting more than 1.5 billion people globally. There are no licensed medicines for the prevention, treatment or restoration of hearing. Prosthetic devices, such as hearing aids and cochlear implants, do not restore natural hearing and users struggle with speech in the presence of background noise. Hearing loss drug discovery is immature, and small molecule approaches include repurposing existing drugs, combination therapeutics, late-stage discovery optimisation of known chemotypes for identified molecular targets of interest, phenotypic tissue screening and high-throughput cell-based screening. Hearing loss drug discovery requires the integration of specialist therapeutic area biology and otology clinical expertise. Small molecule drug discovery projects in the global clinical portfolio for hearing loss are here collated and reviewed. An overview is provided of human hearing, inner ear anatomy, inner ear delivery, types of hearing loss and hearing measurement. Small molecule experimental drugs in clinical development for hearing loss are reviewed, including their underpinning biology, discovery strategy and activities, medicinal chemistry, calculated physicochemical properties, pharmacokinetics and clinical trial status. SwissADME BOILED-Egg permeability modelling is applied to the molecules reviewed, and these results are considered. Non-small molecule hearing loss assets in clinical development are briefly noted in this review. Future opportunities in hearing loss drug discovery for human genomics and targeted protein degradation are highlighted.
Collapse
|
27
|
Ripley S, Xia L, Zhang Z, Aiken SJ, Wang J. Animal-to-Human Translation Difficulties and Problems With Proposed Coding-in-Noise Deficits in Noise-Induced Synaptopathy and Hidden Hearing Loss. Front Neurosci 2022; 16:893542. [PMID: 35720689 PMCID: PMC9199355 DOI: 10.3389/fnins.2022.893542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Noise induced synaptopathy (NIS) and hidden hearing loss (NIHHL) have been hot topic in hearing research since a massive synaptic loss was identified in CBA mice after a brief noise exposure that did not cause permanent threshold shift (PTS) in 2009. Based upon the amount of synaptic loss and the bias of it to synapses with a group of auditory nerve fibers (ANFs) with low spontaneous rate (LSR), coding-in-noise deficit (CIND) has been speculated as the major difficult of hearing in subjects with NIS and NIHHL. This speculation is based upon the idea that the coding of sound at high level against background noise relies mainly on the LSR ANFs. However, the translation from animal data to humans for NIS remains to be justified due to the difference in noise exposure between laboratory animals and human subjects in real life, the lack of morphological data and reliable functional methods to quantify or estimate the loss of the afferent synapses by noise. Moreover, there is no clear, robust data revealing the CIND even in animals with the synaptic loss but no PTS. In humans, both positive and negative reports are available. The difficulty in verifying CINDs has led a re-examination of the hypothesis that CIND is the major deficit associated with NIS and NIHHL, and the theoretical basis of this idea on the role of LSR ANFs. This review summarized the current status of research in NIS and NIHHL, with focus on the translational difficulty from animal data to human clinicals, the technical difficulties in quantifying NIS in humans, and the problems with the SR theory on signal coding. Temporal fluctuation profile model was discussed as a potential alternative for signal coding at high sound level against background noise, in association with the mechanisms of efferent control on the cochlea gain.
Collapse
Affiliation(s)
- Sara Ripley
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Li Xia
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Steve J. Aiken
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Jian Wang
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
28
|
Liu YH, Jiang YH, Li CC, Chen XM, Huang LG, Zhang M, Ruan B, Wang XC. Involvement of the SIRT1/PGC-1α Signaling Pathway in Noise-Induced Hidden Hearing Loss. Front Physiol 2022; 13:798395. [PMID: 35620603 PMCID: PMC9127058 DOI: 10.3389/fphys.2022.798395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/18/2022] [Indexed: 12/06/2022] Open
Abstract
Objective: To establish an animal model of noise-induced hidden hearing loss (NIHHL), evaluate the dynamic changes in cochlear ribbon synapses and cochlear hair cell morphology, and observe the involvement of the SIRT1/PGC-1α signaling pathway in NIHHL.Methods: Male guinea pigs were randomly divided into three groups: control group, noise exposure group, and resveratrol treatment group. Each group was divided into five subgroups: the control group and 1 day, 1 week, 2 weeks, and 1 month post noise exposure groups. The experimental groups received noise stimulation at 105 dB SPL for 2 h. Hearing levels were examined by auditory brainstem response (ABR). Ribbon synapses were evaluated by inner ear basilar membrane preparation and immunofluorescence. The cochlear morphology was observed using scanning electron microscopy. Western blotting analysis and immunofluorescence was performed to assess the change of SIRT1/PGC-1α signaling. Levels of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), ATP and SIRT1 activity were measured using commercial testing kits.Results: In the noise exposure group, hearing threshold exhibited a temporary threshold shift (TTS), and amplitude of ABR wave I decreased irreversibly. Ribbon synapse density decreased after noise exposure, and the stereocilia were chaotic and then returned to normal. The expression and activity of SIRT1 and PGC-1α protein was lower than that in the control group. SOD, CAT and ATP were also influenced by noise exposure and were lower than those in the control group, but MDA showed no statistical differences compared with the control group. After resveratrol treatment, SIRT1 expression and activity showed a significant increase after noise exposure, compared with the noise exposure group. In parallel, the PGC-1α and antioxidant proteins were also significantly altered after noise exposure, compared with the noise exposure group. The damage to the ribbon synapses and the stereocilia were attenuated by resveratrol as well. More importantly, the auditory function, especially ABR wave I amplitudes, was also promoted in the resveratrol treatment group.Conclusion: The SIRT1/PGC-1α signaling pathway and oxidative stress are involved in the pathogenesis of NIHHL and could be potential therapeutical targets in the future.
Collapse
Affiliation(s)
- Yu-Hui Liu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yi-Hong Jiang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
| | - Cong-Cong Li
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xue-Min Chen
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head and Neck Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Li-Gui Huang
- The 908th Hospital of Joint Logistics Support Force of PLA, Nanchang, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Xiao-Cheng Wang, ; Bai Ruan, ; Min Zhang,
| | - Bai Ruan
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Xiao-Cheng Wang, ; Bai Ruan, ; Min Zhang,
| | - Xiao-Cheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Xiao-Cheng Wang, ; Bai Ruan, ; Min Zhang,
| |
Collapse
|
29
|
Shin SH, Jung J, Park HR, Sim NS, Choi JY, Bae SH. The Time Course of Monocytes Infiltration After Acoustic Overstimulation. Front Cell Neurosci 2022; 16:844480. [PMID: 35496904 PMCID: PMC9039292 DOI: 10.3389/fncel.2022.844480] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cochlea macrophages regulate cochlea inflammation and may harbors the potentials to protect hearing function from injury, including acoustic overstimulation. Cochlea macrophage numbers increase at 3–7 days after acoustic stimulation. However, the exact timing of macrophage infiltration and maturation from inflammatory monocytes is unclear. Furthermore, neutrophils may also be involved in this process. Therefore, in this study, we investigated time-dependent immune cell infiltration, macrophage transformation, and neutrophil involvement following acoustic stimulation. Flow cytometry and immunofluorescence were conducted in C-X3-C motif chemokine receptor 1 (CX3CR1)+/GFP mice after acoustic overstimulation (at baseline and at 1, 2, 3, and 5 days after exposure to 120 dB for 1 h) to identify inflammatory monocytes in the cochlea. RNA-sequencing and quantitative polymerase chain reaction were performed to identify differentially expressed genes. Inflammatory monocytes infiltrated into the lower portion of the lateral wall within 2 days after acoustic overstimulation (dpn), followed by transformation into macrophages at 3–5 dpn via CX3CR1 upregulation and Ly6C downregulation. In addition, inflammatory monocytes were aggregated inside the collecting venule only at 1 dpn. Neutrophils were not a major type of phagocyte during this response. The gene encoding C-C motif chemokine ligand 2 gene was significantly upregulated as early as 3 h after acoustic overstimulation. Given these results, treatment to control immune response after a noise-induced hearing loss should be applied as soon as possible.
Collapse
Affiliation(s)
- Seung Ho Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Haeng Ran Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Suk Sim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Seong Hoon Bae
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Seong Hoon Bae,
| |
Collapse
|
30
|
Bhatt IS, Washnik N, Torkamani A. Suprathreshold Auditory Measures for Detecting Early-Stage Noise-Induced Hearing Loss in Young Adults. J Am Acad Audiol 2022; 33:185-195. [PMID: 36195294 PMCID: PMC10858682 DOI: 10.1055/s-0041-1740362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
BACKGROUND Over 1 billion young adults are at risk for developing noise-induced hearing loss (NIHL) due to their habit of listening to music at loud levels. The gold standard for detecting NIHL is the audiometric notch around 3,000 to 6,000 Hz observed in pure tone audiogram. However, recent studies suggested that suprathreshold auditory measures might be more sensitive to detect early-stage NIHL in young adults. PURPOSE The present study compared suprathreshold measures in individuals with high and low noise exposure backgrounds (NEBs). We hypothesized that individuals with high NEB would exhibit reduced performance on suprathreshold measures than those with low NEB. STUDY SAMPLE An initial sample of 100 English-speaking healthy adults (18-35 years; females = 70) was obtained from five university classes. We identified 15 participants with the lowest NEB scores (10 females) and 15 participants with the highest NEB scores (10 females). We selected a sample of healthy young adults with no history of middle ear infection, and those in the low NEB group were selected with no history of impulse noise exposure. DATA COLLECTION AND ANALYSIS The study included conventional audiometry, extended high-frequency audiometry, middle ear muscle reflex (MEMR) thresholds, distortion-product otoacoustic emissions (DPOAEs), QuickSIN, and suprathreshold auditory brainstem response (ABR) measures. We used independent sample t-tests, correlation coefficients, and linear mixed model analysis to compare the audiometric measures between the NEB groups. RESULTS The prevalence of audiometric notch was low in the study sample, even for individuals with high NEB. We found that: (1) individuals with high NEB revealed significantly reduced QuickSIN performance than those with low NEB; (2) music exposure via earphone revealed a significant association with QuickSIN; (3) individuals with high NEB revealed significantly reduced DPOAEs and ABR wave I amplitude compared with individuals with low NEB; (4) MEMR and ABR latency measures showed a modest association with NEB; and (5) audiometric thresholds across the frequency range did not show statistically significant association with NEB. CONCLUSION Our results suggest that young adults with high NEB might exhibit impaired peripheral neural coding deficits leading to reduced speech-in-noise (SIN) performance despite clinically normal hearing thresholds. SIN measures might be more sensitive than audiometric notch for detecting early-stage NIHL in young adults.
Collapse
Affiliation(s)
- Ishan S Bhatt
- Department of Communication Sciences and Disorders, The University of Iowa, Iowa City, Iowa
| | - Nilesh Washnik
- Department of Communication Sciences & Disorders, Ohio University, Athens, Ohio
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Translational Science Institute, La Jolla, California
| |
Collapse
|
31
|
Harris KC, Bao J. Optimizing non-invasive functional markers for cochlear deafferentation based on electrocochleography and auditory brainstem responses. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2802. [PMID: 35461487 PMCID: PMC9034896 DOI: 10.1121/10.0010317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Accumulating evidence suggests that cochlear deafferentation may contribute to suprathreshold deficits observed with or without elevated hearing thresholds, and can lead to accelerated age-related hearing loss. Currently there are no clinical diagnostic tools to detect human cochlear deafferentation in vivo. Preclinical studies using a combination of electrophysiological and post-mortem histological methods clearly demonstrate cochlear deafferentation including myelination loss, mitochondrial damages in spiral ganglion neurons (SGNs), and synaptic loss between inner hair cells and SGNs. Since clinical diagnosis of human cochlear deafferentation cannot include post-mortem histological quantification, various attempts based on functional measurements have been made to detect cochlear deafferentation. So far, those efforts have led to inconclusive results. Two major obstacles to the development of in vivo clinical diagnostics include a lack of standardized methods to validate new approaches and characterize the normative range of repeated measurements. In this overview, we examine strategies from previous studies to detect cochlear deafferentation from electrocochleography and auditory brainstem responses. We then summarize possible approaches to improve these non-invasive functional methods for detecting cochlear deafferentation with a focus on cochlear synaptopathy. We identify conceptual approaches that should be tested to associate unique electrophysiological features with cochlear deafferentation.
Collapse
Affiliation(s)
- Kelly C Harris
- Department of Otolaryngology, Head & Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, South Carolina 29425, USA
| | - Jianxin Bao
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio 44272, USA
| |
Collapse
|
32
|
Bao J, Jegede SL, Hawks JW, Dade B, Guan Q, Middaugh S, Qiu Z, Levina A, Tsai TH. Detecting Cochlear Synaptopathy Through Curvature Quantification of the Auditory Brainstem Response. Front Cell Neurosci 2022; 16:851500. [PMID: 35356798 PMCID: PMC8959412 DOI: 10.3389/fncel.2022.851500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The sound-evoked electrical compound potential known as auditory brainstem response (ABR) represents the firing of a heterogenous population of auditory neurons in response to sound stimuli, and is often used for clinical diagnosis based on wave amplitude and latency. However, recent ABR applications to detect human cochlear synaptopathy have led to inconsistent results, mainly due to the high variability of ABR wave-1 amplitude. Here, rather than focusing on the amplitude of ABR wave 1, we evaluated the use of ABR wave curvature to detect cochlear synaptic loss. We first compared four curvature quantification methods using simulated ABR waves, and identified that the cubic spline method using five data points produced the most accurate quantification. We next evaluated this quantification method with ABR data from an established mouse model with cochlear synaptopathy. The data clearly demonstrated that curvature measurement is more sensitive and consistent in identifying cochlear synaptic loss in mice compared to the amplitude and latency measurements. We further tested this curvature method in a different mouse model presenting with otitis media. The change in curvature profile due to middle ear infection in otitis media is different from the profile of mice with cochlear synaptopathy. Thus, our study suggests that curvature quantification can be used to address the current ABR variability issue, and may lead to additional applications in the clinic diagnosis of hearing disorders.
Collapse
Affiliation(s)
- Jianxin Bao
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH, United States
- *Correspondence: Jianxin Bao,
| | - Segun Light Jegede
- Department of Mathematical Sciences, Kent State University, Kent, OH, United States
| | - John W. Hawks
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH, United States
| | - Bethany Dade
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH, United States
| | - Qiang Guan
- Department of Computer Science, Kent State University, Kent, OH, United States
| | - Samantha Middaugh
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Ziyu Qiu
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH, United States
| | - Anna Levina
- Department of Mathematical Sciences, Kent State University, Kent, OH, United States
| | - Tsung-Heng Tsai
- Department of Mathematical Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
33
|
ROS-Induced Oxidative Damage and Mitochondrial Dysfunction Mediated by Inhibition of SIRT3 in Cultured Cochlear Cells. Neural Plast 2022; 2022:5567174. [PMID: 35096052 PMCID: PMC8791755 DOI: 10.1155/2022/5567174] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most common causes of disability worldwide. Previous evidence suggests that reactive oxygen species (ROS) may play an important role in the occurrence and development of SNHL, while its mechanism remains unclear. We cultured dissected organs of Corti in medium containing different concentrations (0, 0.25, 0.5, 0.75, 1, and 1.25 mM) of hydrogen peroxide (H2O2) and established a four-concentration model of 0, 0.5, 0.75, and 1 mM to study different degrees of damage. We examined ROS-induced mitochondrial damage and the role of sirtuin 3 (SIRT3). Our results revealed that the number of ribbon synapses and hair cells appeared significantly concentration-dependent decrease with exposure to H2O2. Outer hair cells (OHCs) and inner hair cells (IHCs) began to be lost, and activation of apoptosis of hair cells (HCs) was observed at 0.75 mM and 1 mM H2O2, respectively. In contrast with the control group, the accumulation of ROS was significantly higher, and the mitochondrial membrane potential (MMP) was lower in the H2O2-treated groups. Furthermore, the expression of SIRT3, FOXO3A, and SOD2 proteins declined, except for an initial elevation of SIRT3 between 0 and 0.75 mM H2O2. Administration of the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine resulted in increased damage to the cochlea, including loss of ribbon synapses and hair cells, apoptosis of hair cells, more production of ROS, and reduced mitochondrial membrane potential. Thoroughly, our results highlight that ROS-induced mitochondrial oxidative damage drives hair cell degeneration and apoptosis. Furthermore, SIRT3 is crucial for preserving mitochondrial function and protecting the cochlea from oxidative damage and may represent a possible therapeutic target for SNHL.
Collapse
|
34
|
AudioChip: A Deep Phenotyping Approach for Deconstructing and Quantifying Audiological Phenotypes of Self-Reported Speech Perception Difficulties. Ear Hear 2021; 43:1023-1036. [PMID: 34860719 PMCID: PMC9010350 DOI: 10.1097/aud.0000000000001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES About 15% of U.S. adults report speech perception difficulties despite showing normal audiograms. Recent research suggests that genetic factors might influence the phenotypic spectrum of speech perception difficulties. The primary objective of the present study was to describe a conceptual framework of a deep phenotyping method, referred to as AudioChipping, for deconstructing and quantifying complex audiometric phenotypes. DESIGN In a sample of 70 females 18 to 35 years of age with normal audiograms (from 250 to 8000 Hz), the study measured behavioral hearing thresholds (250 to 16,000 Hz), distortion product otoacoustic emissions (1000 to 16,000 Hz), click-evoked auditory brainstem responses (ABR), complex ABR (cABR), QuickSIN, dichotic digit test score, loudness discomfort level, and noise exposure background. The speech perception difficulties were evaluated using the Speech, Spatial, and Quality of Hearing Scale-12-item version (SSQ). A multiple linear regression model was used to determine the relationship between SSQ scores and audiometric measures. Participants were categorized into three groups (i.e., high, mid, and low) using the SSQ scores before performing the clustering analysis. Audiometric measures were normalized and standardized before performing unsupervised k-means clustering to generate AudioChip. RESULTS The results showed that SSQ and noise exposure background exhibited a significant negative correlation. ABR wave I amplitude, cABR offset latency, cABR response morphology, and loudness discomfort level were significant predictors for SSQ scores. These predictors explained about 18% of the variance in the SSQ score. The k-means clustering was used to split the participants into three major groups; one of these clusters revealed 53% of participants with low SSQ. CONCLUSIONS Our study highlighted the relationship between SSQ and auditory coding precision in the auditory brainstem in normal-hearing young females. AudioChip was useful in delineating and quantifying internal homogeneity and heterogeneity in audiometric measures among individuals with a range of SSQ scores. AudioChip could help identify the genotype-phenotype relationship, document longitudinal changes in auditory phenotypes, and pair individuals in case-control groups for the genetic association analysis.
Collapse
|
35
|
Bhatt IS, Dias R, Torkamani A. Association Analysis of Candidate Gene Polymorphisms and Tinnitus in Young Musicians. Otol Neurotol 2021; 42:e1203-e1212. [PMID: 34282101 PMCID: PMC10860185 DOI: 10.1097/mao.0000000000003279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Subjective tinnitus, a perception of phantom sound, is a common otological condition that affects almost 15% of the general population. It is known that noise-induced hearing loss (NIHL) and tinnitus exhibit a high level of comorbidity in individuals exposed to intense noise and music. However, the influence of genetic variants associated with NIHL on tinnitus remains elusive. We hypothesized that young musicians carrying genetic variants associated with NIHL would exhibit a higher prevalence of tinnitus than their counterparts. METHODS To test this hypothesis, we analyzed the database by Bhatt et al. (2020) (originally developed by Phillips et al., 2015) that investigated the genetic links to NIHL in young college-aged musicians. The present study identified 186 participants (average age = 20.3 yrs, range = 18-25 yrs) with normal tympanometry and otoscopic findings and with no missing data. We included 19 single nucleotide polymorphisms in 13 cochlear genes that were previously associated with NIHL. The candidate genes include: KCNE1, KCNQ1, CDH23, GJB2, GJB4, KCNJ10, CAT, HSP70, PCDH70, MYH14, GRM7, PON2, and ESRRB. RESULTS We find that individuals with at least one minor allele of rs163171 (C > T) in KCNQ1 exhibit significantly higher odds of reporting tinnitus compared to individuals carrying the major allele of rs163171. KCNE1 rs2070358 revealed a suggestive association (p = 0.049) with tinnitus, but the FDR corrected p-value did not achieve statistical significance (p < 0.05). A history of ear infection and sound level tolerance showed a statistically significant association with tinnitus. Music exposure showed a suggestive association trend with tinnitus. Biological sex revealed a statistically significant association with distortion product otoacoustic emissions SNR measures. CONCLUSIONS We concluded that KCNQ1/KCNE1 voltage-gated potassium ion channel plays a critical role in the pathogenesis of NIHL and tinnitus. Further research is required to construct clinical tools for identifying genetically predisposed individuals well before they acquire NIHL and tinnitus.
Collapse
Affiliation(s)
| | - Raquel Dias
- Scripps Research Translational Institute
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California
| | - Ali Torkamani
- Scripps Research Translational Institute
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California
| |
Collapse
|
36
|
Occelli F, Hasselmann F, Bourien J, Puel JL, Desvignes N, Wiszniowski B, Edeline JM, Gourévitch B. Temporal Alterations to Central Auditory Processing without Synaptopathy after Lifetime Exposure to Environmental Noise. Cereb Cortex 2021; 32:1737-1754. [PMID: 34494109 DOI: 10.1093/cercor/bhab310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
People are increasingly exposed to environmental noise through the cumulation of occupational and recreational activities, which is considered harmless to the auditory system, if the sound intensity remains <80 dB. However, recent evidence of noise-induced peripheral synaptic damage and central reorganizations in the auditory cortex, despite normal audiometry results, has cast doubt on the innocuousness of lifetime exposure to environmental noise. We addressed this issue by exposing adult rats to realistic and nontraumatic environmental noise, within the daily permissible noise exposure limit for humans (80 dB sound pressure level, 8 h/day) for between 3 and 18 months. We found that temporary hearing loss could be detected after 6 months of daily exposure, without leading to permanent hearing loss or to missing synaptic ribbons in cochlear hair cells. The degraded temporal representation of sounds in the auditory cortex after 18 months of exposure was very different from the effects observed after only 3 months of exposure, suggesting that modifications to the neural code continue throughout a lifetime of exposure to noise.
Collapse
Affiliation(s)
- Florian Occelli
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Florian Hasselmann
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Jérôme Bourien
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Nathalie Desvignes
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Bernadette Wiszniowski
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Jean-Marc Edeline
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Boris Gourévitch
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France.,Institut de l'Audition, Institut Pasteur, INSERM, Paris F-75012, France.,CNRS, France
| |
Collapse
|
37
|
Lyu AR, Kim TH, Shin SA, Kim EH, Yu Y, Gajbhiye A, Kwon HC, Je AR, Huh YH, Park MJ, Park YH. Hearing Impairment in a Mouse Model of Diabetes Is Associated with Mitochondrial Dysfunction, Synaptopathy, and Activation of the Intrinsic Apoptosis Pathway. Int J Mol Sci 2021; 22:ijms22168807. [PMID: 34445504 PMCID: PMC8395823 DOI: 10.3390/ijms22168807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Although previous studies continuously report an increased risk of hearing loss in diabetes patients, the impact of the disease on the inner ear remains unexplored. Herein, we examine the pathophysiology of diabetes-associated hearing impairment and cochlear synaptopathy in a mouse model of diabetes. Male B6.BKS(D)-Leprdb/J (db/db, diabetes) and heterozygote (db/+, control) mice were assigned into each experimental group (control vs. diabetes) based on the genotype and tested for hearing sensitivity every week from 6 weeks of age. Each cochlea was collected for histological and biological assays at 14 weeks of age. The diabetic mice exerted impaired hearing and a reduction in cochlear blood flow and C-terminal-binding protein 2 (CtBP2, a presynaptic ribbon marker) expression. Ultrastructural images revealed severely damaged mitochondria from diabetic cochlea accompanied by a reduction in Cytochrome c oxidase subunit 4 (COX4) and CR6-interacting factor 1 (CRIF1). The diabetic mice presented significantly decreased levels of platelet endothelial cell adhesion molecule (PECAM-1), B-cell lymphoma 2 (BCL-2), and procaspase-9, but not procaspase-8. Importantly, significant changes were not found in necroptotic programmed cell death markers (receptor-interacting serine/threonine-protein kinase 1, RIPK1; RIPK3; and mixed lineage kinase domain-like pseudokinase, MLKL) between the groups. Taken together, diabetic hearing loss is accompanied by synaptopathy, microangiopathy, damage to the mitochondrial structure/function, and activation of the intrinsic apoptosis pathway. Our results imply that mitochondrial dysfunction is deeply involved in diabetic hearing loss, and further suggests the potential benefits of therapeutic strategies targeting mitochondria.
Collapse
Affiliation(s)
- Ah-Ra Lyu
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (A.-R.L.); (E.-H.K.); (Y.Y.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (A.G.); (H.-C.K.)
| | - Tae-Hwan Kim
- Biomedical Convergence Research Center, Chungnam National University Hospital, Daejeon 35015, Korea;
| | - Sun-Ae Shin
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Eung-Hyub Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (A.-R.L.); (E.-H.K.); (Y.Y.)
| | - Yang Yu
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (A.-R.L.); (E.-H.K.); (Y.Y.)
| | - Akanksha Gajbhiye
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (A.G.); (H.-C.K.)
| | - Hyuk-Chan Kwon
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (A.G.); (H.-C.K.)
| | - A Reum Je
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 28119, Korea; (A.R.J.); (Y.H.H.)
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 28119, Korea; (A.R.J.); (Y.H.H.)
| | - Min Jung Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (A.-R.L.); (E.-H.K.); (Y.Y.)
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Correspondence: (M.J.P.); (Y.-H.P.)
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (A.-R.L.); (E.-H.K.); (Y.Y.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (A.G.); (H.-C.K.)
- Biomedical Convergence Research Center, Chungnam National University Hospital, Daejeon 35015, Korea;
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Correspondence: (M.J.P.); (Y.-H.P.)
| |
Collapse
|
38
|
Perugia E, Plack CJ, Stone MA. Low-sound-level auditory processing in noise-exposed adults. Hear Res 2021; 409:108309. [PMID: 34340022 DOI: 10.1016/j.heares.2021.108309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 01/13/2023]
Abstract
Early signs of noise-induced hearing damage are difficult to identify, as they are often confounded by factors such as age, audiometric thresholds, or even music experience. Much previous research has focused on deficits observed at high intensity levels. In contrast, the present study was designed to test the hypothesis that noise exposure causes a degradation in low-sound-level auditory processing in humans, as a consequence of dysfunction of the inner hair cell pathway. Frequency difference limens (FDLs) and amplitude modulation depth discrimination (MDD) were measured for five center frequencies (0.75, 1, 3, 4 and 6 kHz) at 15 and 25 dB sensation level (SL), as a function of noise exposure, age, audiometric hearing loss, and music experience. Forty participants, aged 33-75 years, with normal hearing up to 1 kHz and mild-to-moderate hearing loss above 2 kHz, were tested. Participants had varying degrees of self-reported noise exposure, and varied in music experience. FDL worsened as a function of age. Participants with music experience outperformed the non-experienced in both the FDL and MDD tasks. MDD thresholds were significantly better for high-noise-exposed, than for low-noise-exposed, participants at 25 dB SL, particularly at 6 kHz. No effects of age or hearing loss were observed in the MDD. It is possible that the association between MDD thresholds and noise exposure was not causal, but instead was mediated by other factors that were not measured in the study. The association is consistent, qualitatively, with a hypothesized loss of compression due to outer hair cell dysfunction.
Collapse
Affiliation(s)
- Emanuele Perugia
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, M13 9PL, UK..
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, M13 9PL, UK.; Department of Psychology, Lancaster University, Lancaster, LA1 4YF, UK
| | - Michael A Stone
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, M13 9PL, UK.; Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK.
| |
Collapse
|
39
|
Nam GS, Kim JY, Hong SA, Kim SG, Son EJ. Limitation of Conventional Audiometry in Identifying Hidden Hearing Loss in Acute Noise Exposure. Yonsei Med J 2021; 62:615-621. [PMID: 34164959 PMCID: PMC8236352 DOI: 10.3349/ymj.2021.62.7.615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The concept of hidden hearing loss can explain the discrepancy between a listener's perception of hearing ability and hearing evaluation using pure tone audiograms. This study investigated the utility of the suprathreshold auditory brainstem response (ABR) for the evaluation of hidden hearing loss in noise-exposed ear with normal audiograms. MATERIALS AND METHODS A total of 15 patients (24 ears) with normal auditory thresholds and normal distortion product otoacoustic emissions were included in a retrospective analysis of medical records of 80 patients presenting with histories of acute noise exposure. The control group included 12 subjects (24 ears) with normal audiograms and no history of noise exposure. Pure tone audiometry and suprathreshold ABR testing at 90 dB peSPL were performed. The amplitudes and latencies of ABR waves I and V were compared between the noise-exposed and control groups. RESULTS We found no significant difference in the wave I or V amplitude, or the wave I/V ratio, between the two groups. The latencies of ABR wave I, V, and I-V interpeak interval were compared, and no significant intergroup difference was observed. CONCLUSION The results suggest that either hidden hearing loss may not be significant in this cohort of patients with acute noise exposure history, or the possible damage by noise exposure is not reflected in the ABRs. Further studies are needed to inquire about the role of ABR in identification of hidden hearing loss.
Collapse
Affiliation(s)
- Gi Sung Nam
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, Korea
| | - Ju Young Kim
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Ah Hong
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seon Geum Kim
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jin Son
- Department of Otorhinolaryngology-Head and Neck Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea.
| |
Collapse
|
40
|
Dose-Dependent Pattern of Cochlear Synaptic Degeneration in C57BL/6J Mice Induced by Repeated Noise Exposure. Neural Plast 2021; 2021:9919977. [PMID: 34221004 PMCID: PMC8211526 DOI: 10.1155/2021/9919977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
It is widely accepted that even a single acute noise exposure at moderate intensity that induces temporary threshold shift (TTS) can result in permanent loss of ribbon synapses between inner hair cells and afferents. However, effects of repeated or chronic noise exposures on the cochlear synapses especially medial olivocochlear (MOC) efferent synapses remain elusive. Based on a weeklong repeated exposure model of bandwidth noise over 2-20 kHz for 2 hours at seven intensities (88 to 106 dB SPL with 3 dB increment per gradient) on C57BL/6J mice, we attempted to explore the dose-response mechanism of prolonged noise-induced audiological dysfunction and cochlear synaptic degeneration. In our results, mice repeatedly exposed to relatively low-intensity noise (88, 91, and 94 dB SPL) showed few changes on auditory brainstem response (ABR), ribbon synapses, or MOC efferent synapses. Notably, repeated moderate-intensity noise exposures (97 and 100 dB SPL) not only caused hearing threshold shifts and the inner hair cell ribbon synaptopathy but also impaired MOC efferent synapses, which might contribute to complex patterns of damages on cochlear function and morphology. However, repeated high-intensity (103 and 106 dB SPL) noise exposures induced PTSs mainly accompanied by damages on cochlear amplifier function of outer hair cells and the inner hair cell ribbon synaptopathy, rather than the MOC efferent synaptic degeneration. Moreover, we observed a frequency-dependent vulnerability of the repeated acoustic trauma-induced cochlear synaptic degeneration. This study provides a sight into the hypothesis that noise-induced cochlear synaptic degeneration involves both afferent (ribbon synapses) and efferent (MOC terminals) pathology. The pattern of dose-dependent pathological changes induced by repeated noise exposure at various intensities provides a possible explanation for the complicated cochlear synaptic degeneration in humans. The underlying mechanisms remain to be studied in the future.
Collapse
|
41
|
Vijayasarathy S, Mohan M, Nagalakshmi P, Barman A. Speech perception in noise, gap detection and amplitude modulation detection in suspected hidden hearing loss. HEARING, BALANCE AND COMMUNICATION 2021. [DOI: 10.1080/21695717.2021.1876494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Srikar Vijayasarathy
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| | - Meghana Mohan
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| | - Pratibha Nagalakshmi
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| | - Animesh Barman
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
| |
Collapse
|
42
|
Brungart DS, Makashay MJ, Sheffield BM. Development of an 80-word clinical version of the modified rhyme test (MRT 80). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:3311. [PMID: 34241116 DOI: 10.1121/10.0003563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/02/2021] [Indexed: 06/13/2023]
Abstract
The modified rhyme test [MRT; House, Williams, Hecker, and Kryter. (1965). J. Acoust. Soc. Am. 37, 158-166] is a widely used test for measuring the intelligibility of communication systems [ANSI (2009). S3.2 (American National Standards Institute, New York)] but has never gained widespread acceptance as a clinical test of speech intelligibility for listeners who are hearing impaired (HI). In this study, a clinical version of the MRT consisting of two 80-word lists was developed and tested on 2394 service members with varying levels of hearing loss. The test used a factorial design incorporating two speech levels [70 and 78 dB sound pressure level (SPL)], two signal-to-noise ratios (+4 and -4 dB), and two binaural conditions (diotic and binaural). High-frequency emphasis reduced the impact of audibility for HI listeners, focusing the test on the distortion component of hearing loss. The results show that listeners with normal hearing (NH) obtained an average score of 80% correct on the MRT80 test. Listeners with a moderate hearing impairment scored an average of 70% correct. The overall level had little impact on performance for either NH or HI listeners. The results demonstrate that the MRT80 test could be a useful test to assess the distortion effects of hearing loss on speech intelligibility, particularly in cases where it is desirable to use a closed-set test for automatic administration.
Collapse
Affiliation(s)
- Douglas S Brungart
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland 20889, USA
| | - Matthew J Makashay
- Army Hearing Program, U.S. Army Public Health Center, Aberdeen Proving Ground, Maryland 21010, USA
| | - Benjamin M Sheffield
- Army Hearing Program, U.S. Army Public Health Center, Aberdeen Proving Ground, Maryland 21010, USA
| |
Collapse
|
43
|
Zheng Z, Zeng S, Liu C, Li W, Zhao L, Cai C, Nie G, He Y. The DNA methylation inhibitor RG108 protects against noise-induced hearing loss. Cell Biol Toxicol 2021; 37:751-771. [PMID: 33723744 PMCID: PMC8490244 DOI: 10.1007/s10565-021-09596-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
Background Noise-induced hearing loss represents a commonly diagnosed type of hearing disability, severely impacting the quality of life of individuals. The current work is aimed at assessing the effects of DNA methylation on noise-induced hearing loss. Methods Blocking DNA methyltransferase 1 (DNMT1) activity with a selective inhibitor RG108 or silencing DNMT1 with siRNA was used in this study. Auditory brainstem responses were measured at baseline and 2 days after trauma in mice to assess auditory functions. Whole-mount immunofluorescent staining and confocal microcopy of mouse inner ear specimens were performed to analyze noise-induced damage in cochleae and the auditory nerve at 2 days after noise exposure. Results The results showed that noise exposure caused threshold elevation of auditory brainstem responses and cochlear hair cell loss. Whole-mount cochlea staining revealed a reduction in the density of auditory ribbon synapses between inner hair cells and spiral ganglion neurons. Inhibition of DNA methyltransferase activity via a non-nucleoside specific pharmacological inhibitor, RG108, or silencing of DNA methyltransferase-1 with siRNA significantly attenuated ABR threshold elevation, hair cell damage, and the loss of auditory synapses. Conclusions This study suggests that inhibition of DNMT1 ameliorates noise-induced hearing loss and indicates that DNMT1 may be a promising therapeutic target. Graphical abstract Graphical Headlights • RG108 protected against noise-induced hearing loss • RG108 administration protected against noise-induced hair cell loss and auditory neural damage. • RG108 administration attenuated oxidative stress-induced DNA damage and subsequent apoptosis-mediated cell loss in the cochlea after noise exposure. ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s10565-021-09596-y.
Collapse
Affiliation(s)
- Zhiwei Zheng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Shan Zeng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chang Liu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Wen Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Liping Zhao
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chengfu Cai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
| | - Guohui Nie
- Department of Otolaryngology and Institute of Translational Medicine, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| | - Yingzi He
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
44
|
Wang Q, Wang X, Yang L, Han K, Huang Z, Wu H. Sex differences in noise-induced hearing loss: a cross-sectional study in China. Biol Sex Differ 2021; 12:24. [PMID: 33676563 PMCID: PMC7937304 DOI: 10.1186/s13293-021-00369-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Significant sex differences exist in hearing physiology, while few human studies have investigated sex differences in noise-induced hearing loss (NIHL), and the sex bias in previous studies resulted in inadequate female data. The study aims to investigate sex differences in the characteristics of NIHL to provide insight into sex-specific risk factors, prevention strategies and treatment for NIHL. METHODS This cross-sectional study included 2280 industrial noise-exposed shipyard workers (1140 males and 1140 females matched for age, job and employment length) in China. Individual noise exposure levels were measured to calculate the cumulative noise exposure (CNE), and an audiometric test was performed by an experienced technician in a soundproof booth. Sex differences in and influencing factors of low-frequency (LFHL) and high-frequency hearing loss (HFHL) were analyzed using logistic regression models stratified by age and CNE. RESULTS At comparable noise exposure levels and ages, the prevalence of HFHL was significantly higher in males (34.4%) than in females (13.8%), and males had a higher prevalence of HFHL (OR = 4.19, 95% CI 3.18 to 5.52) after adjusting for age, CNE, and other covariates. Sex differences were constant and highly remarkable among subjects aged 30 to 40 years and those with a CNE of 80 to 95 dB(A). Alcohol consumption might be a risk factor for HFHL in females (OR = 3.12, 95% CI 1.10 to 8.89). CONCLUSIONS This study indicates significant sex differences in NIHL. Males are at higher risk of HFHL than females despite equivalent noise exposure and age. The risk factors for NIHL might be different in males and females.
Collapse
Affiliation(s)
- Qixuan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, HuangPu District, Shanghai, 200011, People's Republic of China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.,Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, People's Republic of China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, HuangPu District, Shanghai, 200011, People's Republic of China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.,Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, People's Republic of China.,Biobank, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Lu Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, HuangPu District, Shanghai, 200011, People's Republic of China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.,Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, People's Republic of China
| | - Kun Han
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, HuangPu District, Shanghai, 200011, People's Republic of China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.,Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, People's Republic of China
| | - Zhiwu Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, HuangPu District, Shanghai, 200011, People's Republic of China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China. .,Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, People's Republic of China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, HuangPu District, Shanghai, 200011, People's Republic of China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China. .,Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
45
|
Takahashi M, Sanchez JT. Effects of Neurotrophin-3 on Intrinsic Neuronal Properties at a Central Auditory Structure. Neurosci Insights 2020; 15:2633105520980442. [PMID: 33354669 PMCID: PMC7734498 DOI: 10.1177/2633105520980442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Neurotrophins, a class of growth factor proteins that control neuronal proliferation, morphology, and apoptosis, are found ubiquitously throughout the nervous system. One particular neurotrophin (NT-3) and its cognate tyrosine receptor kinase (TrkC) have recently received attention as a possible therapeutic target for synaptopathic sensorineural hearing loss. Additionally, research shows that NT-3-TrkC signaling plays a role in establishing the sensory organization of frequency topology (ie, tonotopic order) in the cochlea of the peripheral inner ear. However, the neurotrophic effects of NT-3 on central auditory properties are unclear. In this study we examined whether NT-3-TrkC signaling affects the intrinsic electrophysiological properties at a first-order central auditory structure in chicken, known as nucleus magnocellularis (NM). Here, the expression pattern of specific neurotrophins is well known and tightly regulated. By using whole-cell patch-clamp electrophysiology, we show that NT-3 application to brainstem slices does not affect intrinsic properties of high-frequency neuronal regions but had robust effects for low-frequency neurons, altering voltage-dependent potassium functions, action potential repolarization kinetics, and passive membrane properties. We suggest that NT-3 may contribute to the precise establishment and organization of tonotopy in the central auditory pathway by playing a specialized role in regulating the development of intrinsic neuronal properties of low-frequency NM neurons.
Collapse
Affiliation(s)
- Momoko Takahashi
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
46
|
Lutfi RA, Rodriguez B, Lee J, Pastore T. A test of model classes accounting for individual differences in the cocktail-party effect. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:4014. [PMID: 33379927 PMCID: PMC7775115 DOI: 10.1121/10.0002961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/06/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Listeners differ widely in the ability to follow the speech of a single talker in a noisy crowd-what is called the cocktail-party effect. Differences may arise for any one or a combination of factors associated with auditory sensitivity, selective attention, working memory, and decision making required for effective listening. The present study attempts to narrow the possibilities by grouping explanations into model classes based on model predictions for the types of errors that distinguish better from poorer performing listeners in a vowel segregation and talker identification task. Two model classes are considered: those for which the errors are predictably tied to the voice variation of talkers (decision weight models) and those for which the errors occur largely independently of this variation (internal noise models). Regression analyses of trial-by-trial responses, for different tasks and task demands, show overwhelmingly that the latter type of error is responsible for the performance differences among listeners. The results are inconsistent with models that attribute the performance differences to differences in the reliance listeners place on relevant voice features in this decision. The results are consistent instead with models for which largely stimulus-independent, stochastic processes cause information loss at different stages of auditory processing.
Collapse
Affiliation(s)
- Robert A Lutfi
- Auditory Behavioral Research Lab, Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida 33620, USA
| | - Briana Rodriguez
- Auditory Behavioral Research Lab, Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida 33620, USA
| | - Jungmee Lee
- Auditory Behavioral Research Lab, Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida 33620, USA
| | - Torben Pastore
- Spatial Hearing Lab, College of Health Solutions, Arizona State University, Tempe, Arizona 85281, USA
| |
Collapse
|
47
|
Chen KH, Su SB, Chen KT. An overview of occupational noise-induced hearing loss among workers: epidemiology, pathogenesis, and preventive measures. Environ Health Prev Med 2020; 25:65. [PMID: 33129267 PMCID: PMC7603754 DOI: 10.1186/s12199-020-00906-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022] Open
Abstract
Occupational noise-induced hearing loss (ONIHL) is the most prevalent occupational disease in the world. The goal of this study was to review the epidemiology, pathogenesis, and preventive measures of ONIHL among workers and provide evidence for the implementation of control measures. Literature studies were identified from the MEDLINE, PubMed, Embase, Web of Science, and Google Scholar using the search terms “noise-induced hearing loss” “prevalence”, “pathogenesis”, and “preventive measures”. The articles reviewed in this report were limited from 2000 to 2020. Articles that were not published in the English language, manuscripts without an abstract, and opinion articles were excluded. After a preliminary screening, all of the articles were reviewed and synthesized to provide an overview of the current status of ONIHL among workers. The mechanism of ONIHL among workers is a complex interaction between environmental and host factors (both genetic and acquired factors). The outcomes of noise exposure are different among individual subjects. Clinical trials are currently underway to evaluate the treatment effect of antioxidants on ONIHL. Noise exposure may contribute to temporary or permanent threshold shifts; however, even temporary threshold shifts may predispose an individual to eventual permanent hearing loss. Noise prevention programs are an important preventive measure in reducing the morbidity of ONIHL among workers.
Collapse
Affiliation(s)
- Kou-Huang Chen
- School of Mechanical and Electronic Engineering, Sanming University, Sanming, 365, Fujian Province, China
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, 710, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), No. 670, Chongde Road, East District, Tainan, 701, Taiwan. .,Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
48
|
Marchetta P, Savitska D, Kübler A, Asola G, Manthey M, Möhrle D, Schimmang T, Rüttiger L, Knipper M, Singer W. Age-Dependent Auditory Processing Deficits after Cochlear Synaptopathy Depend on Auditory Nerve Latency and the Ability of the Brain to Recruit LTP/BDNF. Brain Sci 2020; 10:brainsci10100710. [PMID: 33036168 PMCID: PMC7601375 DOI: 10.3390/brainsci10100710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Age-related decoupling of auditory nerve fibers from hair cells (cochlear synaptopathy) has been linked to temporal processing deficits and impaired speech recognition performance. The link between both is elusive. We have previously demonstrated that cochlear synaptopathy, if centrally compensated through enhanced input/output function (neural gain), can prevent age-dependent temporal discrimination loss. It was also found that central neural gain after acoustic trauma was linked to hippocampal long-term potentiation (LTP) and upregulation of brain-derived neurotrophic factor (BDNF). Using middle-aged and old BDNF-live-exon-visualization (BLEV) reporter mice we analyzed the specific recruitment of LTP and the activity-dependent usage of Bdnf exon-IV and -VI promoters relative to cochlear synaptopathy and central (temporal) processing. For both groups, specimens with higher or lower ability to centrally compensate diminished auditory nerve activity were found. Strikingly, low compensating mouse groups differed from high compensators by prolonged auditory nerve latency. Moreover, low compensators exhibited attenuated responses to amplitude-modulated tones, and a reduction of hippocampal LTP and Bdnf transcript levels in comparison to high compensators. These results suggest that latency of auditory nerve processing, recruitment of hippocampal LTP, and Bdnf transcription, are key factors for age-dependent auditory processing deficits, rather than cochlear synaptopathy or aging per se.
Collapse
Affiliation(s)
- Philine Marchetta
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Daria Savitska
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Angelika Kübler
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Giulia Asola
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Marie Manthey
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Dorit Möhrle
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain;
| | - Lukas Rüttiger
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Marlies Knipper
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
- Correspondence: ; Tel.: +49-(0)7071-2988194; Fax: +49-(0)7071-294950
| | - Wibke Singer
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| |
Collapse
|
49
|
Chen HC, Wang CH, Chien WC, Chung CH, Shih CP, Lin YC, Li IH, Lin YY, Kuo CY. Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176336. [PMID: 32878128 PMCID: PMC7504445 DOI: 10.3390/ijerph17176336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
The effect of dextromethorphan (DXM) use in sensorineural hearing loss (SNHL) has not been fully examined. We conducted an animal model and nationwide retrospective matched-cohort study to explore the association between DXM use and SNHL. Eight-week-old CBA/CaJ hearing loss was induced by a white noise 118 dB sound pressure level for 3 h. DXM (30 mg/kg) was administered intraperitoneally for 5 days and boost once round window DXM socking. In population-based study, we examined the medical records over 40 years old in Taiwan’s National Health Insurance Research Database between 2000 and 2015 to establish retrospective matched-cohort to explore the correlation between DXM use and SNHL. Using click auditory brainstem response (ABR), hearing threshold was measured as 48.6 ± 2.9 dB in control mice compared with 42.6 ± 7.0 dB in DXM mice, which differed significantly (p = 0.002) on day 60 after noise exposure with a larger ABR wave I amplitude in DXM mice. In human study, we used a Cox regression hazard model to indicate that a significantly lower percentage individuals developed SNHL compared with and without DXM use (0.44%, 175/39,895 vs. 1.05%, 1675/159,580, p < 0.001). After adjustment for age and other variables [adjusted hazard ratio: 0.725 (95% confidence interval: 0.624–0.803, p < 0.001)], this study also demonstrated that DXM use appeared to reduce the risk of developing SNHL. This animal study demonstrated that DXM significantly attenuated noise-induced hearing loss. In human study, DXM use may have a protective effect against SNHL.
Collapse
Affiliation(s)
- Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.W.); (C.-P.S.); (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.)
- Correspondence: ; Tel.: +886-2-8792-7192; Fax: +886-2-8792-7193
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.W.); (C.-P.S.); (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; (W.-C.C.); (C.-H.C.)
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; (W.-C.C.); (C.-H.C.)
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.W.); (C.-P.S.); (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.)
| | - Yi-Chun Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.W.); (C.-P.S.); (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Yuan-Yung Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.W.); (C.-P.S.); (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.W.); (C.-P.S.); (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.)
| |
Collapse
|
50
|
Intratympanic Treatment in Menière's Disease, Efficacy of Aminoglycosides Versus Corticosteroids in Comparison Studies: A Systematic Review. Otol Neurotol 2020; 41:1-10. [PMID: 31789967 DOI: 10.1097/mao.0000000000002451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To compare the functional outcomes and complications of intratympanic gentamicin (ITG) versus intratympanic corticosteroids (ITC) in Menière's disease. DATA SOURCES An electronic search was conducted in the Cochrane Library, PubMed, and Embase databases on February 3, 2019. Articles written in English, Dutch, German, French, or Turkish language were included. STUDY SELECTION Study inclusion criteria were: 1) patients diagnosed with definite Menière's disease according to the criteria of the American Academy of Otolaryngology-Head and Neck Surgery, 2) treated with ITG or ITC in a comparison study, and 3) reported subjective and objective outcomes concerning Menière's disease. DATA EXTRACTION The quality of eligible studies was assessed according to an adjusted version of the Cochrane Risk of Bias tool. The extracted data were study characteristics (study design, publication year, and number of relevant patients), patient's characteristics (sex and age), disease characteristics (uni or bilateral and duration of Menière's disease), treatment protocol, and different therapeutic outcomes (vertigo, tinnitus, aural fullness, and hearing loss). DATA SYNTHESIS A total of eight articles were included for data extraction and analysis. For subjective outcomes, ITG was slightly favored compared to intratympanic corticosteroids. This was significant only in three studies (p < 0.05). For objective outcomes and complications, no significant differences were seen. CONCLUSIONS The result of this systematic review shows some benefit of ITG over ITC for subjective outcomes and no difference regarding objective outcomes or complication rate. However, this superiority of ITG is rather weak. Both interventions can be effectively and safely used in controlling Menière's disease in acute situations.
Collapse
|