1
|
Fischl M, Pederson A, Voglewede R, Cheng H, Drew J, Torres Cadenas L, Weisz CJC. Fast Inhibition Slows and Desynchronizes Mouse Auditory Efferent Neuron Activity. J Neurosci 2024; 44:e0382242024. [PMID: 38937103 PMCID: PMC11326868 DOI: 10.1523/jneurosci.0382-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits. However, their modulation of cochlear function occurs over time scales of a slower nature. This suggests the presence of mechanisms that reduce MOC inhibition of cochlear function. To determine how monaural excitatory and inhibitory synaptic inputs integrate to affect the timing of MOC neuron activity, we developed a novel in vitro slice preparation ("wedge-slice"). The wedge-slice maintains the ascending auditory nerve root, the entire CN and projecting axons, while preserving the ability to perform visually guided patch-clamp electrophysiology recordings from genetically identified MOC neurons. The "in vivo-like" timing of the wedge-slice demonstrates that the inhibitory pathway accelerates relative to the excitatory pathway when the ascending circuit is intact, and the CN portion of the inhibitory circuit is precise enough to compensate for reduced precision in later synapses. When combined with machine learning PSC analysis and computational modeling, we demonstrate a larger suppression of MOC neuron activity when the inhibition occurs with in vivo-like timing. This delay of MOC activity may ensure that the MOC system is only engaged by sustained background sounds, preventing a maladaptive hypersuppression of cochlear activity.
Collapse
Affiliation(s)
- Matthew Fischl
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Alia Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Rebecca Voglewede
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Hui Cheng
- NIDCD Data Science Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Jordan Drew
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| |
Collapse
|
2
|
Fischl M, Pederson A, Voglewede R, Cheng H, Drew J, Cadenas LT, Weisz CJ. Fast inhibition slows and desynchronizes mouse auditory efferent neuron activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572886. [PMID: 38313270 PMCID: PMC10836066 DOI: 10.1101/2023.12.21.572886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well-suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits. However, their modulation of cochlear function occurs over time scales of a slower nature. This suggests the presence of mechanisms that restrict MOC inhibition of cochlear function. To determine how monaural excitatory and inhibitory synaptic inputs integrate to affect the timing of MOC neuron activity, we developed a novel in vitro slice preparation ('wedge-slice'). The wedge-slice maintains the ascending auditory nerve root, the entire CN and projecting axons, while preserving the ability to perform visually guided patch-clamp electrophysiology recordings from genetically identified MOC neurons. The 'in vivo-like' timing of the wedge-slice demonstrates that the inhibitory pathway accelerates relative to the excitatory pathway when the ascending circuit is intact, and the CN portion of the inhibitory circuit is precise enough to compensate for reduced precision in later synapses. When combined with machine learning PSC analysis and computational modeling, we demonstrate a larger suppression of MOC neuron activity when the inhibition occurs with in vivo-like timing. This delay of MOC activity may ensure that the MOC system is only engaged by sustained background sounds, preventing a maladaptive hyper-suppression of cochlear activity.
Collapse
Affiliation(s)
- Matthew Fischl
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
- Current affiliation: Lafayette College, Neuroscience Program, Easton, PA 18042, USA
| | - Alia Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
- Current affiliation: The University of Texas at Austin Dell Medical School, Austin, TX 78712, USA
| | - Rebecca Voglewede
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Jordan Drew
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
- Current affiliation: Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Catherine J.C. Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Wang H, Lu Y. High calcium concentrations reduce cellular excitability of mouse MNTB neurons. Brain Res 2023; 1820:148568. [PMID: 37689332 PMCID: PMC10591835 DOI: 10.1016/j.brainres.2023.148568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Calcium, a universal intracellular signaling molecule, plays essential roles in neural functions. Historically, in most in vitro brain slice electrophysiology studies, the extracellular calcium concentration ([Ca2+]e) in artificial cerebrospinal fluid is of a wide range and typically higher than the physiological value. At high [Ca2+]e, synaptic transmission is generally enhanced. However, the effects and the underlying mechanisms of calcium on intrinsic neuronal properties are diverse. Using whole-cell patch clamp in acute brainstem slices obtained from mice of either sex, we investigated the effects and the underlying mechanisms of high [Ca2+]e on intrinsic neuronal properties of neurons in the medial nucleus of the trapezoid body (MNTB), an auditory brainstem component in the sound localization circuitry. Compared to the physiological [Ca2+]e (1.2 mM), high [Ca2+]e at 1.8 and 2.4 mM significantly reduced the cellular excitability of MNTB neurons, resulting in decreased spike firing rate, depolarized spike threshold, and decreased the ability to follow high frequency inputs. High extracellular magnesium concentrations at 1.8 and 2.4 mM produced similar but less robust effects, due to surface charge screening. Upon high calcium application, voltage-gated sodium channel currents remained largely unchanged. Calcium-sensing receptors were detected in MNTB neurons, but blocking these receptors did not eliminate the effects of high calcium on spontaneous spiking. We attribute the lack of significant effects in these last two experiments to the moderate changes in calcium we tested. Our results call for the use of physiological [Ca2+]e in brain slice experiments.
Collapse
Affiliation(s)
- Huimei Wang
- Department of Anatomy and Neurobiology, Hearing Research Group, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yong Lu
- Department of Anatomy and Neurobiology, Hearing Research Group, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
4
|
Wang H, Peng K, Curry RJ, Li D, Wang Y, Wang X, Lu Y. Group I metabotropic glutamate receptor-triggered temporally patterned action potential-dependent spontaneous synaptic transmission in mouse MNTB neurons. Hear Res 2023; 435:108822. [PMID: 37285615 PMCID: PMC10330867 DOI: 10.1016/j.heares.2023.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Rhythmic action potentials (AP) are generated via intrinsic ionic mechanisms in pacemaking neurons, producing synaptic responses of regular inter-event intervals (IEIs) in their targets. In auditory processing, evoked temporally patterned activities are induced when neural responses timely lock to a certain phase of the sound stimuli. Spontaneous spike activity, however, is a stochastic process, rendering the prediction of the exact timing of the next event completely based on probability. Furthermore, neuromodulation mediated by metabotropic glutamate receptors (mGluRs) is not commonly associated with patterned neural activities. Here, we report an intriguing phenomenon. In a subpopulation of medial nucleus of the trapezoid body (MNTB) neurons recorded under whole-cell voltage-clamp mode in acute mouse brain slices, temporally patterned AP-dependent glycinergic sIPSCs and glutamatergic sEPSCs were elicited by activation of group I mGluRs with 3,5-DHPG (200 µM). Auto-correlation analyses revealed rhythmogenesis in these synaptic responses. Knockout of mGluR5 largely eliminated the effects of 3,5-DHPG. Cell-attached recordings showed temporally patterned spikes evoked by 3,5-DHPG in potential presynaptic VNTB cells for synaptic inhibition onto MNTB. The amplitudes of sEPSCs enhanced by 3,5-DHPG were larger than quantal size but smaller than spike-driven calyceal inputs, suggesting that non-calyceal inputs to MNTB might be responsible for the temporally patterned sEPSCs. Finally, immunocytochemical studies identified expression and localization of mGluR5 and mGluR1 in the VNTB-MNTB inhibitory pathway. Our results imply a potential central mechanism underlying the generation of patterned spontaneous spike activity in the brainstem sound localization circuit.
Collapse
Affiliation(s)
- Huimei Wang
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Kang Peng
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Rebecca J Curry
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Dong Li
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yuan Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Xiaoyu Wang
- Department of Biomedical Science, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Yong Lu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
5
|
Romero GE, Trussell LO. Central circuitry and function of the cochlear efferent systems. Hear Res 2022; 425:108516. [DOI: 10.1016/j.heares.2022.108516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
6
|
Bowen Z, Winkowski DE, Kanold PO. Functional organization of mouse primary auditory cortex in adult C57BL/6 and F1 (CBAxC57) mice. Sci Rep 2020; 10:10905. [PMID: 32616766 PMCID: PMC7331716 DOI: 10.1038/s41598-020-67819-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/05/2022] Open
Abstract
The primary auditory cortex (A1) plays a key role for sound perception since it represents one of the first cortical processing stations for sounds. Recent studies have shown that on the cellular level the frequency organization of A1 is more heterogeneous than previously appreciated. However, many of these studies were performed in mice on the C57BL/6 background which develop high frequency hearing loss with age making them a less optimal choice for auditory research. In contrast, mice on the CBA background retain better hearing sensitivity in old age. Since potential strain differences could exist in A1 organization between strains, we performed comparative analysis of neuronal populations in A1 of adult (~ 10 weeks) C57BL/6 mice and F1 (CBAxC57) mice. We used in vivo 2-photon imaging of pyramidal neurons in cortical layers L4 and L2/3 of awake mouse primary auditory cortex (A1) to characterize the populations of neurons that were active to tonal stimuli. Pure tones recruited neurons of widely ranging frequency preference in both layers and strains with neurons in F1 (CBAxC57) mice exhibiting a wider range of frequency preference particularly to higher frequencies. Frequency selectivity was slightly higher in C57BL/6 mice while neurons in F1 (CBAxC57) mice showed a greater sound-level sensitivity. The spatial heterogeneity of frequency preference was present in both strains with F1 (CBAxC57) mice exhibiting higher tuning diversity across all measured length scales. Our results demonstrate that the tone evoked responses and frequency representation in A1 of adult C57BL/6 and F1 (CBAxC57) mice are largely similar.
Collapse
Affiliation(s)
- Zac Bowen
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA.
| |
Collapse
|
7
|
Alamu O, Rado M, Ekpo O, Fisher D. Differential Sensitivity of Two Endothelial Cell Lines to Hydrogen Peroxide Toxicity: Relevance for In Vitro Studies of the Blood-Brain Barrier. Cells 2020; 9:cells9020403. [PMID: 32050666 PMCID: PMC7072657 DOI: 10.3390/cells9020403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress (OS) has been linked to blood–brain barrier (BBB) dysfunction which in turn has been implicated in the initiation and propagation of some neurological diseases. In this study, we profiled, for the first time, two endothelioma cell lines of mouse brain origin, commonly used as in vitro models of the blood–brain barrier, for their resistance against oxidative stress using viability measures and glutathione contents as markers. OS was induced by exposing cultured cells to varying concentrations of hydrogen peroxide and fluorescence microscopy/spectrometry was used to detect and estimate cellular glutathione contents. A colorimetric viability assay was used to determine changes in the viability of OS-exposed cells. Both the b.End5 and bEnd.3 cell lines investigated showed demonstrable content of glutathione with a statistically insignificant difference in glutathione quantity per unit cell, but with a statistically significant higher capacity for the b.End5 cell line for de novo glutathione synthesis. Furthermore, the b.End5 cells demonstrated greater oxidant buffering capacity to higher concentrations of hydrogen peroxide than the bEnd.3 cells. We concluded that mouse brain endothelial cells, derived from different types of cell lines, differ enormously in their antioxidant characteristics. We hereby recommend caution in making comparisons across BBB models utilizing distinctly different cell lines and require further prerequisites to ensure that in vitro BBB models involving these cell lines are reliable and reproducible.
Collapse
Affiliation(s)
- Olufemi Alamu
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7530, South Africa; (O.A.); (M.R.); (O.E.)
- Anatomy Department, Ladoke Akintola University of Technology, Ogbomoso 210241, Nigeria
| | - Mariam Rado
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7530, South Africa; (O.A.); (M.R.); (O.E.)
| | - Okobi Ekpo
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7530, South Africa; (O.A.); (M.R.); (O.E.)
| | - David Fisher
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7530, South Africa; (O.A.); (M.R.); (O.E.)
- Correspondence: ; Tel.: +27-21-959-2185
| |
Collapse
|
8
|
Generation of a ChAT Cre mouse line without the early onset hearing loss typical of the C57BL/6J strain. Hear Res 2020; 388:107896. [PMID: 31982642 DOI: 10.1016/j.heares.2020.107896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
The development of knockin mice with Cre recombinase expressed under the control of the promoter for choline acetyltransferase (ChAT) has allowed experimental manipulation of cholinergic circuits. However, currently available ChATCre mouse lines are on the C57BL/6J strain background, which shows early onset age-related hearing loss attributed to the Cdh23753A mutation (a.k.a., the ahl mutation). To develop ChATCre mice without accelerated hearing loss, we backcrossed ChATIRES-Cre mice with CBA/CaJ mice that have normal hearing. We used genotyping to obtain mice homozygous for ChATIRES-Cre and the wild-type allele at the Cdh23 locus (ChATCre,Cdh23WT). In the new line, auditory brainstem response thresholds were ∼20 dB lower than those in 9 month old ChATIRES-Cre mice at all frequencies tested (4-31.5 kHz). These thresholds were stable throughout the period of testing (3-12 months of age). We then bred ChATCre,Cdh23WT animals with Ai14 reporter mice to confirm the expression pattern of ChATCre. In these mice, tdTomato-labeled cells were observed in all brainstem regions known to contain cholinergic cells. We then stained the tissue with a neuron-specific marker, NeuN, to determine whether Cre expression was limited to neurons. Across several brainstem nuclei (pontomesencephalic tegmentum, motor trigeminal and facial nuclei), 100% of the tdTomato-labeled cells were double-labeled with anti-NeuN (n = 1896 cells), indicating Cre-recombinase was limited to neurons. Almost all of these cells (1867/1896 = 98.5%) also stained with antibodies against ChAT, indicating that reporter label was expressed almost exclusively in cholinergic neurons. Finally, an average 88.7% of the ChAT+ cells in these nuclei were labeled with tdTomato, indicating that the Cre is expressed in a large proportion of the cholinergic cells in these nuclei. We conclude that the backcrossed ChATCre,Cdh23WT mouse line has normal hearing and expresses Cre recombinase almost exclusively in cholinergic neurons. This ChATCre,Cdh23WT mouse line may provide an opportunity to manipulate cholinergic circuits without the confound of accelerated hearing loss associated with the C57BL/6J background. Furthermore, comparison with lines that do show early hearing loss may provide insight into possible cholinergic roles in age-related hearing loss.
Collapse
|
9
|
Yin TC, Smith PH, Joris PX. Neural Mechanisms of Binaural Processing in the Auditory Brainstem. Compr Physiol 2019; 9:1503-1575. [DOI: 10.1002/cphy.c180036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Lauer AM, Dent ML, Sun W, Xu-Friedman MA. Effects of Non-traumatic Noise and Conductive Hearing Loss on Auditory System Function. Neuroscience 2019; 407:182-191. [PMID: 30685543 DOI: 10.1016/j.neuroscience.2019.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/25/2023]
Abstract
The effects of traumatic noise-exposure and deafening on auditory system function have received a great deal of attention. However, lower levels of noise as well as temporary conductive hearing loss also have consequences on auditory physiology and hearing. Here we review how abnormal acoustic experience at early ages affects the ascending and descending auditory pathways, as well as hearing behavior.
Collapse
Affiliation(s)
- Amanda M Lauer
- Dept of Otolaryngology-HNS, Center for Hearing and Balance, Johns Hopkins University School of Medicine, United States
| | - Micheal L Dent
- Dept. Psychology, University at Buffalo, SUNY, United States
| | - Wei Sun
- Dept. Communicative Disorders and Sciences, University at Buffalo, SUNY, United States
| | | |
Collapse
|