1
|
Patro C, Singer A, Monfiletto A, Peitsch K, Bologna WJ. Effects of Noise Exposure on Peripheral Auditory Function, Binaural Envelope Coding, and Speech Perception in Student Musicians With Normal Hearing. Ear Hear 2024:00003446-990000000-00367. [PMID: 39705606 DOI: 10.1097/aud.0000000000001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
OBJECTIVES Musicians face an increased risk of hearing loss due to prolonged and repetitive exposure to high-noise levels. Detecting early signs of hearing loss, which are subtle and often elusive to traditional clinical tests like pure-tone audiometry, is essential. The objective of this study was to investigate the impact of noise exposure on the electrophysiological and perceptual aspects of subclinical hearing damage in young musicians with normal audiometric thresholds. DESIGN The study included 33 musicians and 33 nonmusicians, all aged between 21 and 35 years, with normal audiometric thresholds. Participants underwent a comprehensive test battery, which encompassed standard and extended high-frequency (EHF) pure-tone audiometry (0.25 to 16 kHz), a Noise Exposure Structured Interview, auditory brainstem responses (ABRs) to clicks at various presentation rates and levels, thresholds for detecting interaural envelope time difference, and a spatial release from masking (SRM) paradigm in which the target speech was presented in the presence of either colocated or spatially separated time-reversed two-talker babble. RESULTS The results indicated the musician group reported greater lifetime noise exposure than the nonmusician group, but the Noise Exposure Structured Interview scores were neither correlated with the ABR results nor with the speech perception outcomes. The ABR analyses indicated diminished level-dependent growth and increased rate-dependent decline in wave I amplitudes among musicians compared with nonmusicians. The student musicians exhibited better binaural envelope processing skills than nonmusicians, emphasizing their perceptual advantages in auditory processing associated with musicianship. Speech perception results indicated no significant differences in SRM between student musicians and nonmusicians. However, in both groups, individuals with poorer EHF hearing exhibited reduced SRM compared with those with normal EHF hearing, underscoring the importance of assessing and addressing EHF hearing. CONCLUSIONS Student musicians exhibit peripheral neural deficits; however, no clear relation was found between these neural deficits and their perceptual skills. Notably, reduced EHF thresholds were clearly related to reduced SRM, which poses a challenge for speech perception in complex multi-talker environments, affecting both musicians and nonmusicians alike.
Collapse
Affiliation(s)
- Chhayakanta Patro
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Aviya Singer
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
- VA Boston Healthcare System, Audiology 523/126, Boston, Massachusetts, USA
| | - Angela Monfiletto
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Katherine Peitsch
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - William J Bologna
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| |
Collapse
|
2
|
De Poortere N, Keshishzadeh S, Keppler H, Dhooge I, Verhulst S. Intrasubject variability in potential early markers of sensorineural hearing damage. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:3480-3495. [PMID: 39565141 DOI: 10.1121/10.0034423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/27/2024] [Indexed: 11/21/2024]
Abstract
The quest for noninvasive early markers for sensorineural hearing loss (SNHL) has yielded diverse measures of interest. However, comprehensive studies evaluating the test-retest reliability of multiple measures and stimuli within a single study are scarce, and a standardized clinical protocol for robust early markers of SNHL remains elusive. To address these gaps, this study explores the intra-subject variability of various potential electroencephalogram- (EEG-) biomarkers for cochlear synaptopathy (CS) and other SNHL-markers in the same individuals. Fifteen normal-hearing young adults underwent repeated measures of (extended high-frequency) pure-tone audiometry, speech-in-noise intelligibility, distortion-product otoacoustic emissions (DPOAEs), and auditory evoked potentials; comprising envelope following responses (EFR) and auditory brainstem responses (ABR). Results confirm high reliability in pure-tone audiometry, whereas the matrix sentence-test exhibited a significant learning effect. The reliability of DPOAEs varied across three evaluation methods, each employing distinct SNR-based criteria for DPOAE-datapoints. EFRs exhibited superior test-retest reliability compared to ABR-amplitudes. Our findings emphasize the need for careful interpretation of presumed noninvasive SNHL measures. While tonal-audiometry's robustness was corroborated, we observed a confounding learning effect in longitudinal speech audiometry. The variability in DPOAEs highlights the importance of consistent ear probe replacement and meticulous measurement techniques, indicating that DPOAE test-retest reliability is significantly compromised under less-than-ideal conditions. As potential EEG-biomarkers of CS, EFRs are preferred over ABR-amplitudes based on the current study results.
Collapse
Affiliation(s)
- Nele De Poortere
- Department of Rehabilitation Sciences-Audiology, Ghent University, Ghent, Belgium
| | - Sarineh Keshishzadeh
- Department of Information Technology-Hearing Technology @ WAVES, Ghent University, Ghent, Belgium
| | - Hannah Keppler
- Department of Rehabilitation Sciences-Audiology, Ghent University, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Ingeborg Dhooge
- Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Ear, Nose and Throat, Ghent University Hospital, Ghent, Belgium
| | - Sarah Verhulst
- Department of Information Technology-Hearing Technology @ WAVES, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Helfer KS, Maldonado L, Matthews LJ, Simpson AN, Dubno JR. Extended High-Frequency Thresholds: Associations With Demographic and Risk Factors, Cognitive Ability, and Hearing Outcomes in Middle-Aged and Older Adults. Ear Hear 2024; 45:1427-1443. [PMID: 38987892 PMCID: PMC11493509 DOI: 10.1097/aud.0000000000001531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
OBJECTIVES This study had two objectives: to examine associations between extended high-frequency (EHF) thresholds, demographic factors (age, sex, race/ethnicity), risk factors (cardiovascular, smoking, noise exposure, occupation), and cognitive abilities; and to determine variance explained by EHF thresholds for speech perception in noise, self-rated workload/effort, and self-reported hearing difficulties. DESIGN This study was a retrospective analysis of a data set from the MUSC Longitudinal Cohort Study of Age-related Hearing Loss. Data from 347 middle-aged adults (45 to 64 years) and 694 older adults (≥ 65 years) were analyzed for this study. Speech perception was quantified using low-context Speech Perception In Noise (SPIN) sentences. Self-rated workload/effort was measured using the effort prompt from the National Aeronautics and Space Administration-Task Load Index. Self-reported hearing difficulty was assessed using the Hearing Handicap Inventory for the Elderly/Adults. The Wisconsin Card Sorting Task and the Stroop Neuropsychological Screening Test were used to assess selected cognitive abilities. Pure-tone averages representing conventional and EHF thresholds between 9 and 12 kHz (PTA (9 - 12 kHz) ) were utilized in simple linear regression analyses to examine relationships between thresholds and demographic and risk factors or in linear regression models to assess the contributions of PTA (9 - 12 kHz) to the variance among the three outcomes of interest. Further analyses were performed on a subset of individuals with thresholds ≤ 25 dB HL at all conventional frequencies to control for the influence of hearing loss on the association between PTA (9 - 12 kHz) and outcome measures. RESULTS PTA (9 - 12 kHz) was higher in males than females, and was higher in White participants than in racial Minority participants. Linear regression models showed the associations between cardiovascular risk factors and PTA (9 - 12 kHz) were not statistically significant. Older adults who reported a history of noise exposure had higher PTA (9 - 12 kHz) than those without a history, while associations between noise history and PTA (9 - 12 kHz) did not reach statistical significance for middle-aged participants. Linear models adjusting for age, sex, race and noise history showed that higher PTA (9 - 12 kHz) was associated with greater self-perceived hearing difficulty and poorer speech recognition scores in noise for both middle-aged and older participants. Workload/effort was significantly related to PTA (9 - 12 kHz) for middle-aged, but not older, participants, while cognitive task performance was correlated with PTA (9 - 12 kHz) only for older participants. In general, PTA (9 - 12 kHz) did not account for additional variance in outcome measures as compared to conventional pure-tone thresholds, with the exception of self-reported hearing difficulties in older participants. Linear models adjusting for age and accounting for subject-level correlations in the subset analyses revealed no association between PTA (9 - 12 kHz) and outcomes of interest. CONCLUSIONS EHF thresholds show age-, sex-, and race-related patterns of elevation that are similar to what is observed for conventional thresholds. The current results support the need for more research to determine the utility of adding EHF thresholds to routine audiometric assessment with middle-aged and older adults.
Collapse
|
4
|
McIntire A, Miller T, Thapa S, Joseph A, Carlson KF, Reavis KM, Hughes CK. Blast Exposure Associations With Hearing Loss and Self-Reported Hearing Difficulty. Otolaryngol Head Neck Surg 2024; 171:1370-1378. [PMID: 38984918 DOI: 10.1002/ohn.890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Examine associations between military blast exposures on hearing loss and self-reported hearing difficulties among Active-Duty Service Members (ADSM) and Veterans from the Noise Outcomes in Servicemembers Epidemiology (NOISE) study. STUDY DESIGN Cross-sectional. SETTING Multi-institutional tertiary referral centers. METHODS Blast exposure was assessed with a comprehensive blast questionnaire. Outcome measures included pure-tone hearing thresholds; Speech Recognition in Noise Test; Hearing Handicap Inventory for Adults (HHIA); and Speech, Spatial and Qualities of Hearing Scale (SSQ)-12. RESULTS Twenty-one percent (102/494) of ADSM and 36.8% (196/533) of Veterans self-reported blast exposure. Compared to ADSM without blast exposure, blast-exposed ADSM had increased odds of high frequency (3-8 kHz) and extended-high frequency (9-16 kHz) hearing loss (odds ratio [OR] = 2.5, CI: 1.3, 4.7; OR = 3.7, CI: 1.9, 7.0, respectively). ADSM and Veterans with blast exposure were more likely than their nonblast exposed counterparts to report hearing difficulty on the HHIA (OR = 1.9, CI: 1.1, 3.3; OR = 2.1, CI: 1.4, 3.2, respectively). Those with self-reported blast exposure also had lower SSQ-12 scores (ADSM mean difference = -0.6, CI: -1.0, -0.1; Veteran mean difference: -0.9, CI: -1.3, -0.5). CONCLUSION Results suggest that blast exposure is a prevalent source of hearing injury in the military. We found that among ADSM, blast exposure was associated with hearing loss, predominately in the higher frequencies. Blast exposure was associated with poorer self-perceived hearing ability in ADSM and Veterans. IRB: #FWH20180143H Joint Base San Antonio (JBSA) Military Healthcare System; #3159/9495 Joint VA Portland Health Care System (VAPORHCS) Oregon Health and Science University (OHSU).
Collapse
Affiliation(s)
- Aaron McIntire
- Department of Otolaryngology, Naval Medical Center San Diego, San Diego, California, USA
| | - Tanner Miller
- Department of Otolaryngology, Naval Hospital Camp Pendleton, Camp Pendleton, California, USA
| | - Samrita Thapa
- VA RR&D, National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
- Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon, USA
| | - Antony Joseph
- Hearing Loss Prevention Laboratory, Communication Sciences and Disorders, Illinois State University, Normal, Illinois, USA
| | - Kathleen F Carlson
- VA RR&D, National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
- VA HSR&D, Center to Improve Veteran Involvement in Care (CIVIC), VA Portland Health Care System, Portland, Oregon, USA
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| | - Kelly M Reavis
- VA RR&D, National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| | - Charlotte K Hughes
- Department of Otolaryngology, Naval Medical Center San Diego, San Diego, California, USA
- Department of Otolaryngology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
5
|
Jiang K, Albert MS, Coresh J, Couper DJ, Gottesman RF, Hayden KM, Jack CR, Knopman DS, Mosley TH, Pankow JS, Pike JR, Reed NS, Sanchez VA, Sharrett AR, Lin FR, Deal JA. Cross-Sectional Associations of Peripheral Hearing, Brain Imaging, and Cognitive Performance With Speech-in-Noise Performance: The Aging and Cognitive Health Evaluation in Elders Brain Magnetic Resonance Imaging Ancillary Study. Am J Audiol 2024; 33:683-694. [PMID: 38748919 PMCID: PMC11427419 DOI: 10.1044/2024_aja-23-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
PURPOSE Population-based evidence in the interrelationships among hearing, brain structure, and cognition is limited. This study aims to investigate the cross-sectional associations of peripheral hearing, brain imaging measures, and cognitive function with speech-in-noise performance among older adults. METHOD We studied 602 participants in the Aging and Cognitive Health Evaluation in Elders (ACHIEVE) brain magnetic resonance imaging (MRI) ancillary study, including 427 ACHIEVE baseline (2018-2020) participants with hearing loss and 175 Atherosclerosis Risk in Communities Neurocognitive Study Visit 6/7 (2016-2017/2018-2019) participants with normal hearing. Speech-in-noise performance, as outcome of interest, was assessed by the Quick Speech-in-Noise (QuickSIN) test (range: 0-30; higher = better). Predictors of interest included (a) peripheral hearing assessed by pure-tone audiometry; (b) brain imaging measures: structural MRI measures, white matter hyperintensities, and diffusion tensor imaging measures; and (c) cognitive performance assessed by a battery of 10 cognitive tests. All predictors were standardized to z scores. We estimated the differences in QuickSIN associated with every standard deviation (SD) worse in each predictor (peripheral hearing, brain imaging, and cognition) using multivariable-adjusted linear regression, adjusting for demographic variables, lifestyle, and disease factors (Model 1), and, additionally, for other predictors to assess independent associations (Model 2). RESULTS Participants were aged 70-84 years, 56% female, and 17% Black. Every SD worse in better-ear 4-frequency pure-tone average was associated with worse QuickSIN (-4.89, 95% confidence interval, CI [-5.57, -4.21]) when participants had peripheral hearing loss, independent of other predictors. Smaller temporal lobe volume was associated with worse QuickSIN, but the association was not independent of other predictors (-0.30, 95% CI [-0.86, 0.26]). Every SD worse in global cognitive performance was independently associated with worse QuickSIN (-0.90, 95% CI [-1.30, -0.50]). CONCLUSIONS Peripheral hearing and cognitive performance are independently associated with speech-in-noise performance among dementia-free older adults. The ongoing ACHIEVE trial will elucidate the effect of a hearing intervention that includes amplification and auditory rehabilitation on speech-in-noise understanding in older adults. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.25733679.
Collapse
Affiliation(s)
- Kening Jiang
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - David J Couper
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill
| | - Rebecca F Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD
| | - Kathleen M Hayden
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC
| | | | | | - Thomas H Mosley
- The MIND Center, University of Mississippi Medical Center, Jackson, MS
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis
| | - James R Pike
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill
| | - Nicholas S Reed
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Victoria A Sanchez
- Department of Otolaryngology, Morsani College of Medicine, University of South Florida, Tampa
| | - A Richey Sharrett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Frank R Lin
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jennifer A Deal
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Patro C, Monfiletto A, Singer A, Srinivasan NK, Mishra SK. Midlife Speech Perception Deficits: Impact of Extended High-Frequency Hearing, Peripheral Neural Function, and Cognitive Abilities. Ear Hear 2024; 45:1149-1164. [PMID: 38556645 DOI: 10.1097/aud.0000000000001504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
OBJECTIVES The objectives of the present study were to investigate the effects of age-related changes in extended high-frequency (EHF) hearing, peripheral neural function, working memory, and executive function on speech perception deficits in middle-aged individuals with clinically normal hearing. DESIGN We administered a comprehensive assessment battery to 37 participants spanning the age range of 20 to 56 years. This battery encompassed various evaluations, including standard and EHF pure-tone audiometry, ranging from 0.25 to 16 kHz. In addition, we conducted auditory brainstem response assessments with varying stimulation rates and levels, a spatial release from masking (SRM) task, and cognitive evaluations that involved the Trail Making test (TMT) for assessing executive function and the Abbreviated Reading Span test (ARST) for measuring working memory. RESULTS The results indicated a decline in hearing sensitivities at EHFs and an increase in completion times for the TMT with age. In addition, as age increased, there was a corresponding decrease in the amount of SRM. The declines in SRM were associated with age-related declines in hearing sensitivity at EHFs and TMT performance. While we observed an age-related decline in wave I responses, this decline was primarily driven by age-related reductions in EHF thresholds. In addition, the results obtained using the ARST did not show an age-related decline. Neither the auditory brainstem response results nor ARST scores were correlated with the amount of SRM. CONCLUSIONS These findings suggest that speech perception deficits in middle age are primarily linked to declines in EHF hearing and executive function, rather than cochlear synaptopathy or working memory.
Collapse
Affiliation(s)
- Chhayakanta Patro
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Angela Monfiletto
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Aviya Singer
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Nirmal Kumar Srinivasan
- Department of Speech Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Srikanta Kumar Mishra
- Department of Speech, Language and Hearing Sciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
7
|
Dias JW, McClaskey CM, Alvey AP, Lawson A, Matthews LJ, Dubno JR, Harris KC. Effects of age and noise exposure history on auditory nerve response amplitudes: A systematic review, study, and meta-analysis. Hear Res 2024; 447:109010. [PMID: 38744019 PMCID: PMC11135078 DOI: 10.1016/j.heares.2024.109010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r = -0.407), but noise exposure effects are weak (r = -0.152). We conclude that noise exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.
Collapse
Affiliation(s)
- James W Dias
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States.
| | - Carolyn M McClaskey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - April P Alvey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Abigail Lawson
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Lois J Matthews
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Judy R Dubno
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Kelly C Harris
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| |
Collapse
|
8
|
McFarlane KA, Sanchez JT. Effects of Temporal Processing on Speech-in-Noise Perception in Middle-Aged Adults. BIOLOGY 2024; 13:371. [PMID: 38927251 PMCID: PMC11200514 DOI: 10.3390/biology13060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Auditory temporal processing is a vital component of auditory stream segregation, or the process in which complex sounds are separated and organized into perceptually meaningful objects. Temporal processing can degrade prior to hearing loss, and is suggested to be a contributing factor to difficulties with speech-in-noise perception in normal-hearing listeners. The current study tested this hypothesis in middle-aged adults-an under-investigated cohort, despite being the age group where speech-in-noise difficulties are first reported. In 76 participants, three mechanisms of temporal processing were measured: peripheral auditory nerve function using electrocochleography, subcortical encoding of periodic speech cues (i.e., fundamental frequency; F0) using the frequency following response, and binaural sensitivity to temporal fine structure (TFS) using a dichotic frequency modulation detection task. Two measures of speech-in-noise perception were administered to explore how contributions of temporal processing may be mediated by different sensory demands present in the speech perception task. This study supported the hypothesis that temporal coding deficits contribute to speech-in-noise difficulties in middle-aged listeners. Poorer speech-in-noise perception was associated with weaker subcortical F0 encoding and binaural TFS sensitivity, but in different contexts, highlighting that diverse aspects of temporal processing are differentially utilized based on speech-in-noise task characteristics.
Collapse
Affiliation(s)
- Kailyn A. McFarlane
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA;
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA;
- Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Dias JW, McClaskey CM, Alvey AP, Lawson A, Matthews LJ, Dubno JR, Harris KC. Effects of Age and Noise Exposure History on Auditory Nerve Response Amplitudes: A Systematic Review, Study, and Meta-Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585882. [PMID: 38585917 PMCID: PMC10996537 DOI: 10.1101/2024.03.20.585882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r=-0.407), but noise-exposure effects are weak (r=-0.152). We conclude that noise-exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.
Collapse
Affiliation(s)
- James W Dias
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Carolyn M McClaskey
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - April P Alvey
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Abigail Lawson
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Lois J Matthews
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Judy R Dubno
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Kelly C Harris
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| |
Collapse
|
10
|
Balan JR, Rodrigo H, Saxena U, Mishra SK. Explainable machine learning reveals the relationship between hearing thresholds and speech-in-noise recognition in listeners with normal audiograms. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2278-2288. [PMID: 37823779 DOI: 10.1121/10.0021303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
Some individuals complain of listening-in-noise difficulty despite having a normal audiogram. In this study, machine learning is applied to examine the extent to which hearing thresholds can predict speech-in-noise recognition among normal-hearing individuals. The specific goals were to (1) compare the performance of one standard (GAM, generalized additive model) and four machine learning models (ANN, artificial neural network; DNN, deep neural network; RF, random forest; XGBoost; eXtreme gradient boosting), and (2) examine the relative contribution of individual audiometric frequencies and demographic variables in predicting speech-in-noise recognition. Archival data included thresholds (0.25-16 kHz) and speech recognition thresholds (SRTs) from listeners with clinically normal audiograms (n = 764 participants or 1528 ears; age, 4-38 years old). Among the machine learning models, XGBoost performed significantly better than other methods (mean absolute error; MAE = 1.62 dB). ANN and RF yielded similar performances (MAE = 1.68 and 1.67 dB, respectively), whereas, surprisingly, DNN showed relatively poorer performance (MAE = 1.94 dB). The MAE for GAM was 1.61 dB. SHapley Additive exPlanations revealed that age, thresholds at 16 kHz, 12.5 kHz, etc., on the order of importance, contributed to SRT. These results suggest the importance of hearing in the extended high frequencies for predicting speech-in-noise recognition in listeners with normal audiograms.
Collapse
Affiliation(s)
- Jithin Raj Balan
- Department of Speech, Language and Hearing Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Hansapani Rodrigo
- School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA
| | - Udit Saxena
- Department of Audiology and Speech-Language Pathology, Gujarat Medical Education and Research Society, Medical College and Hospital, Ahmedabad, 380060, India
| | - Srikanta K Mishra
- Department of Speech, Language and Hearing Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
11
|
Bhatt IS, Ramadugu SK, Goodman S, Bhagavan SG, Ingalls V, Dias R, Torkamani A. Polygenic Risk Score-Based Association Analysis of Speech-in-Noise and Hearing Threshold Measures in Healthy Young Adults with Self-reported Normal Hearing. J Assoc Res Otolaryngol 2023; 24:513-525. [PMID: 37783963 PMCID: PMC10695896 DOI: 10.1007/s10162-023-00911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023] Open
Abstract
PURPOSE Speech-in-noise (SIN) traits exhibit high inter-subject variability, even for healthy young adults reporting normal hearing. Emerging evidence suggests that genetic variability could influence inter-subject variability in SIN traits. Genome-wide association studies (GWAS) have uncovered the polygenic architecture of various adult-onset complex human conditions. Polygenic risk scores (PRS) summarize complex genetic susceptibility to quantify the degree of genetic risk for health conditions. The present study conducted PRS-based association analyses to identify PRS risk factors for SIN and hearing threshold measures in 255 healthy young adults (18-40 years) with self-reported normal hearing. METHODS Self-reported SIN perception abilities were assessed by the Speech, Spatial, and Qualities of Hearing Scale (SSQ12). QuickSIN and audiometry (0.25-16 kHz) were performed on 218 participants. Saliva-derived DNA was used for low-pass whole genome sequencing, and 2620 PRS variables for various traits were calculated using the models derived from the polygenic risk score (PGS) catalog. The regression analysis was conducted to identify predictors for SSQ12, QuickSIN, and better ear puretone averages at conventional (PTA0.5-2), high (PTA4-8), and extended-high (PTA12.5-16) frequency ranges. RESULTS Participants with a higher genetic predisposition to HDL cholesterol reported better SSQ12. Participants with high PRS to dementia revealed significantly elevated PTA4-8, and those with high PRS to atrial fibrillation and flutter revealed significantly elevated PTA12.5-16. CONCLUSION These results indicate that healthy individuals with polygenic risk of certain health conditions could exhibit a subclinical decline in hearing health measures at young ages, decades before clinically meaningful SIN deficits and hearing loss could be observed. PRS could be used to identify high-risk individuals to prevent hearing health conditions by promoting a healthy lifestyle.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences & Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA.
| | - Sai Kumar Ramadugu
- Department of Communication Sciences & Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Shawn Goodman
- Department of Communication Sciences & Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Srividya Grama Bhagavan
- Department of Communication Sciences & Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Valerie Ingalls
- Department of Communication Sciences & Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32608, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Science Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
12
|
Koerner TK, Gallun FJ. Speech understanding and extended high-frequency hearing sensitivity in blast-exposed veteransa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:379-387. [PMID: 37462921 DOI: 10.1121/10.0020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Auditory difficulties reported by normal-hearing Veterans with a history of blast exposure are primarily thought to stem from processing deficits in the central nervous system. However, previous work on speech understanding in noise difficulties in this patient population have only considered peripheral hearing thresholds in the standard audiometric range. Recent research suggests that variability in extended high-frequency (EHF; >8 kHz) hearing sensitivity may contribute to speech understanding deficits in normal-hearing individuals. Therefore, this work was designed to identify the effects of blast exposure on several common clinical speech understanding measures and EHF hearing sensitivity. This work also aimed to determine whether variability in EHF hearing sensitivity contributes to speech understanding difficulties in normal-hearing blast-exposed Veterans. Data from 41 normal- or near-normal-hearing Veterans with a history of blast exposure and 31 normal- or near-normal-hearing control participants with no history of head injury were employed in this study. Analysis identified an effect of blast exposure on several speech understanding measures but showed no statistically significant differences in EHF thresholds between participant groups. Data showed that variability in EHF hearing sensitivity did not contribute to group-related differences in speech understanding, although study limitations impact interpretation of these results.
Collapse
Affiliation(s)
- Tess K Koerner
- Department of Veterans Affairs (VA) Rehabilitation Research and Development (RR & D), National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon 97239, USA
| | - Frederick J Gallun
- Department of Veterans Affairs (VA) Rehabilitation Research and Development (RR & D), National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon 97239, USA
| |
Collapse
|
13
|
Monson BB, Trine A. Extending the High-Frequency Bandwidth and Predicting Speech-in-Noise Recognition: Building on the Work of Pat Stelmachowicz. Semin Hear 2023; 44:S64-S74. [PMID: 36970650 PMCID: PMC10033195 DOI: 10.1055/s-0043-1764133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Recent work has demonstrated that high-frequency (>6 kHz) and extended high-frequency (EHF; >8 kHz) hearing is valuable for speech-in-noise recognition. Several studies also indicate that EHF pure-tone thresholds predict speech-in-noise performance. These findings contradict the broadly accepted "speech bandwidth" that has historically been limited to below 8 kHz. This growing body of work is a tribute to the work of Pat Stelmachowicz, whose research was instrumental in revealing the limitations of the prior speech bandwidth work, particularly for female talkers and child listeners. Here, we provide a historical review that demonstrates how the work of Stelmachowicz and her colleagues paved the way for subsequent research to measure effects of extended bandwidths and EHF hearing. We also present a reanalysis of previous data collected in our lab, the results of which suggest that 16-kHz pure-tone thresholds are consistent predictors of speech-in-noise performance, regardless of whether EHF cues are present in the speech signal. Based on the work of Stelmachowicz, her colleagues, and those who have come afterward, we argue that it is time to retire the notion of a limited speech bandwidth for speech perception for both children and adults.
Collapse
Affiliation(s)
- Brian B. Monson
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, Illinois
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, Illinois
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, Illinois
| | - Allison Trine
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, Illinois
| |
Collapse
|
14
|
Van Der Biest H, Keshishzadeh S, Keppler H, Dhooge I, Verhulst S. Envelope following responses for hearing diagnosis: Robustness and methodological considerations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:191. [PMID: 36732231 DOI: 10.1121/10.0016807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Recent studies have found that envelope following responses (EFRs) are a marker of age-related and noise- or ototoxic-induced cochlear synaptopathy (CS) in research animals. Whereas the cochlear injury can be well controlled in animal research studies, humans may have an unknown mixture of sensorineural hearing loss [SNHL; e.g., inner- or outer-hair-cell (OHC) damage or CS] that cannot be teased apart in a standard hearing evaluation. Hence, a direct translation of EFR markers of CS to a differential CS diagnosis in humans might be compromised by the influence of SNHL subtypes and differences in recording modalities between research animals and humans. To quantify the robustness of EFR markers for use in human studies, this study investigates the impact of methodological considerations related to electrode montage, stimulus characteristics, and presentation, as well as analysis method on human-recorded EFR markers. The main focus is on rectangularly modulated pure-tone stimuli to evoke the EFR based on a recent auditory modelling study that showed that the EFR was least affected by OHC damage and most sensitive to CS in this stimulus configuration. The outcomes of this study can help guide future clinical implementations of electroencephalography-based SNHL diagnostic tests.
Collapse
Affiliation(s)
- Heleen Van Der Biest
- Hearing Technology at Wireless, Acoustics, Environment and Expert Systems, Department of Information Technology, Ghent, Belgium
| | - Sarineh Keshishzadeh
- Hearing Technology at Wireless, Acoustics, Environment and Expert Systems, Department of Information Technology, Ghent, Belgium
| | - Hannah Keppler
- Department of Rehabilitation Sciences-Audiology, Ghent University, Ghent, Belgium
| | - Ingeborg Dhooge
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Sarah Verhulst
- Hearing Technology at Wireless, Acoustics, Environment and Expert Systems, Department of Information Technology, Ghent, Belgium
| |
Collapse
|
15
|
Burleson AM, Souza PE. Cognitive and linguistic abilities and perceptual restoration of missing speech: Evidence from online assessment. Front Psychol 2022; 13:1059192. [PMID: 36571056 PMCID: PMC9773209 DOI: 10.3389/fpsyg.2022.1059192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
When speech is clear, speech understanding is a relatively simple and automatic process. However, when the acoustic signal is degraded, top-down cognitive and linguistic abilities, such as working memory capacity, lexical knowledge (i.e., vocabulary), inhibitory control, and processing speed can often support speech understanding. This study examined whether listeners aged 22-63 (mean age 42 years) with better cognitive and linguistic abilities would be better able to perceptually restore missing speech information than those with poorer scores. Additionally, the role of context and everyday speech was investigated using high-context, low-context, and realistic speech corpi to explore these effects. Sixty-three adult participants with self-reported normal hearing completed a short cognitive and linguistic battery before listening to sentences interrupted by silent gaps or noise bursts. Results indicated that working memory was the most reliable predictor of perceptual restoration ability, followed by lexical knowledge, and inhibitory control and processing speed. Generally, silent gap conditions were related to and predicted by a broader range of cognitive abilities, whereas noise burst conditions were related to working memory capacity and inhibitory control. These findings suggest that higher-order cognitive and linguistic abilities facilitate the top-down restoration of missing speech information and contribute to individual variability in perceptual restoration.
Collapse
|
16
|
Pinsonnault-Skvarenina A, Soucy W, Noël J, Doucet F, Lévesque É, Fuente A, Leroux T. Supra-threshold deficits in normal hearing military recruits exposed to impulse noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2419. [PMID: 36319241 DOI: 10.1121/10.0014829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to determine the effect of impulse noise exposure on various proxy measures of cochlear synaptopathy in young military recruits. A total of 27 military recruits with exposure to firearm and artillery noise and 13 non exposed participants were recruited. All presented with normal hearing thresholds and the presence of distortion product otoacoustic emissions (DPOAEs). The Noise Exposure Structured Interview (NESI) was used to quantify noise exposure. Speech perception in noise (SPiN), equivalent rectangular bandwidth (ERB) of auditory filters, auditory brainstem response wave I amplitude, wave I amplitude growth function, wave I/V amplitude ratio, wave V latency, wave V latency shift with ipsilateral noise, and the summating potential/action potential ratio of the electrocochleography were measured. In military participants, SPiN was worse, ERB at 4 kHz was larger, wave I amplitude at 75 dBnHL was reduced, and wave V latency was delayed. However, no significant correlations were observed between NESI and auditory measures, once multiplicity of tests was controlled for. These results suggest that military recruits may exhibit supra-threshold deficits, despite presenting with normal hearing thresholds and presence of DPOAEs. Future studies should include a measure of auditory filters in their test battery.
Collapse
Affiliation(s)
| | - William Soucy
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Jonathan Noël
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Félicia Doucet
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Élise Lévesque
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Adrian Fuente
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Tony Leroux
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
17
|
Stahl AN, Mondul JA, Alek KA, Hackett TA, Ramachandran R. Audiologic characterization using clinical physiological measures: Normative data from macaque monkeys. Hear Res 2022; 424:108568. [PMID: 35896044 PMCID: PMC9529828 DOI: 10.1016/j.heares.2022.108568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 12/16/2022]
Abstract
Clinical auditory physiological measures (e.g., auditory brainstem responses, ABRs, and distortion product otoacoustic emissions, DPOAEs) provide diagnostic specificity for differentially diagnosing overt hearing impairments, but they remain limited in their ability to detect specific sites of lesion and subtle levels of cochlear damage. Studies in animal models may hold the key to improve differential diagnosis due to the ability to induce tightly controlled and histologically verifiable subclinical cochlear pathologies. Here, we present a normative set of traditional and clinically novel physiological measures using ABRs and DPOAEs measured in a large cohort of male macaque monkeys. Given the high similarities between macaque and human auditory anatomy, physiology, and susceptibility to hearing damage, this normative data set will serve as a crucial baseline to investigate novel physiological measures to improve diagnostics. DPOAE amplitudes were robust at f2 = 1.22, L1/L2 = 65/55, increased with frequency up to 10 kHz, and exhibited high test re-test reliability. DPOAE thresholds were lowest from 2-10 kHz and highest < 2 kHz. ABRs with a standard clinical electrode montage (vertex-to-mastoid, VM) produced Waves I-IV with a less frequently observed Wave-I, and lower thresholds. ABRs with a vertex-to-tympanic membrane (VT) electrode montage produced a more robust Wave-I, but absent Waves II-IV and higher thresholds. Further study with the VM montage revealed amplitudes that increased with stimulus level and were largest in response to click stimuli, with Wave-II showing the largest ABR amplitude, followed by -IV and -I, with high inter- and intra-subject variability. ABR wave latencies decreased with stimulus level and frequency. When stimulus presentation rate increased or stimuli were presented in close temporal proximity, ABR amplitude decreased, and latency increased. These findings expand upon existing literature of normative clinical physiological data in nonhuman primates and lay the groundwork for future studies investigating the effects of noise-induced pathologies in macaques.
Collapse
Affiliation(s)
- Amy N Stahl
- Vanderbilt Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37212; Vanderbilt Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37212.
| | - Jane A Mondul
- Vanderbilt Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37212; Vanderbilt Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37212.
| | - Katy A Alek
- Vanderbilt Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37212.
| | - Troy A Hackett
- Vanderbilt Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37212.
| | - Ramnarayan Ramachandran
- Vanderbilt Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37212.
| |
Collapse
|
18
|
Monson BB, Buss E. On the use of the TIMIT, QuickSIN, NU-6, and other widely used bandlimited speech materials for speech perception experiments. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:1639. [PMID: 36182310 PMCID: PMC9473723 DOI: 10.1121/10.0013993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/20/2022] [Accepted: 08/20/2022] [Indexed: 05/29/2023]
Abstract
The use of spectrally degraded speech signals deprives listeners of acoustic information that is useful for speech perception. Several popular speech corpora, recorded decades ago, have spectral degradations, including limited extended high-frequency (EHF) (>8 kHz) content. Although frequency content above 8 kHz is often assumed to play little or no role in speech perception, recent research suggests that EHF content in speech can have a significant beneficial impact on speech perception under a wide range of natural listening conditions. This paper provides an analysis of the spectral content of popular speech corpora used for speech perception research to highlight the potential shortcomings of using bandlimited speech materials. Two corpora analyzed here, the TIMIT and NU-6, have substantial low-frequency spectral degradation (<500 Hz) in addition to EHF degradation. We provide an overview of the phenomena potentially missed by using bandlimited speech signals, and the factors to consider when selecting stimuli that are sensitive to these effects.
Collapse
Affiliation(s)
- Brian B Monson
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, Illinois 61820, USA
| | - Emily Buss
- Department of Otolaryngology/HNS, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
19
|
Vasudevamurthy S, Kumar U A. Effect of Occupational Noise Exposure on Cognition and Suprathreshold Auditory Skills in Normal-Hearing Individuals. Am J Audiol 2022; 31:1098-1115. [PMID: 35998292 DOI: 10.1044/2022_aja-22-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Adverse effects of noise exposure on hearing and cognition are well documented in the literature. Recently, it has becoming increasingly evident that noise exposure deteriorates suprathreshold auditory skills, even though the hearing sensitivity is intact. This condition is termed as cochlear synaptopathy or hidden hearing loss, which is apparent in animal models. However, equivocal findings are reported in humans. This study aimed at assessing the working memory, attention abilities, and suprathreshold hearing abilities in normal-hearing individuals with and without occupational noise exposure. We also explored the relationship between cognitive measures and suprathreshold auditory measures. DESIGN The study participants were divided into two groups. All the participants had normal-hearing thresholds. The control group consisted of 25 individuals with no occupational noise exposure, whereas the noise exposure group had 25 individuals exposed to occupational noise of 85 dBA for a minimum period of 1 year. Working memory was assessed using auditory digit span (forward and backward), operation span, and reading span. The Erikson flanker test was used to evaluate attention abilities. The suprathreshold hearing was assessed in terms of gap detection thresholds and sentence identification in noise. RESULTS The results showed that the noise exposure group performed poorly compared to the control group on all auditory and cognitive tasks except the reading span. CONCLUSION The results of the study suggest that occupational noise exposure may hamper the cognitive skills and suprathreshold hearing abilities of the individual despite having normal peripheral hearing.
Collapse
Affiliation(s)
| | - Ajith Kumar U
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru
| |
Collapse
|
20
|
Pinsonnault-Skvarenina A, Moïn-Darbari K, Zhao W, Zhang M, Qiu W, Fuente A. No effect of occupational noise exposure on auditory brainstem response and speech perception in noise. Front Neurosci 2022; 16:915211. [PMID: 35937884 PMCID: PMC9354017 DOI: 10.3389/fnins.2022.915211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The primary aim of this study was to investigate whether auditory brainstem response (ABR) and speech perception in noise (SPiN) were associated with occupational noise exposure in normal hearing young factory workers. Forty young adults occupationally exposed to noise and 40 non-exposed young adults (control group) from Zhejiang province in China were selected. All participants presented with normal hearing thresholds and distortion product otoacoustic emissions. Participants were evaluated with the Mandarin Bamford-Kowal-Bench (BKB) test and ABR. The latter was obtained for click stimulus at 50, 60, 70, 80, and 90 dBnHL. Peak-to-trough amplitudes and latencies for waves I and V were obtained. The ABR wave I amplitude, the wave I/V amplitude ratio, the slope of the wave I amplitude growth as a function of stimulus intensity (AMP-ISlope), and the wave V latency shift with ipsilateral noise (LAT-VSlope) were used as ABR outcomes. Finally, equivalent continuous average sound pressure level normalized to 8 h (LAeq.8h) and cumulative noise exposure (CNE) were obtained for noise-exposed participants. No significant differences between groups were found for any ABR outcomes. Noise-exposed participants exhibited worse BKB scores than control group participants. A multivariate regression model showed that 23.3% of the variance in BKB scores was explained by group category (exposed vs. non-exposed) and hearing thresholds. However, since none of the ABR outcomes exploring cochlear synaptopathy were associated with noise exposure, we cannot conclude that cochlear synaptopathy was the contributing factor for the differences between groups for BKB scores. Factors that go beyond sensory processing may explain such results, especially given socio-economic differences between the noise-exposed and control groups. We conclude that in this sample of participants, occupational noise exposure was not associated with signs of cochlear synaptopathy as measured by ABR and BKB.
Collapse
Affiliation(s)
- Alexis Pinsonnault-Skvarenina
- École d’Orthophonie et d’Audiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche Interdisciplinaire en Réadaptation du Montréal Métropolitain – CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montréal, QC, Canada
- Centre for Interdisciplinary Research in Music Media and Technology, McGill University, Montréal, QC, Canada
| | - Karina Moïn-Darbari
- École d’Orthophonie et d’Audiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal – CIUSSS du Centre-Sud-de-l’ÎIe-de-Montréal, Montréal, QC, Canada
| | - Wulan Zhao
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Meibian Zhang
- National Institute of Occupational Health and Poison Control, Beijing, China
| | - Wei Qiu
- Auditory Research Laboratory, State University of New York at Plattsburgh, Plattsburgh, NY, United States
| | - Adrian Fuente
- École d’Orthophonie et d’Audiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal – CIUSSS du Centre-Sud-de-l’ÎIe-de-Montréal, Montréal, QC, Canada
- *Correspondence: Adrian Fuente,
| |
Collapse
|
21
|
Jahn KN. Clinical and investigational tools for monitoring noise-induced hyperacusis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:553. [PMID: 35931527 PMCID: PMC9448410 DOI: 10.1121/10.0012684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hyperacusis is a recognized perceptual consequence of acoustic overexposure that can lead to debilitating psychosocial effects. Despite the profound impact of hyperacusis on quality of life, clinicians and researchers lack objective biomarkers and standardized protocols for its assessment. Outcomes of conventional audiologic tests are highly variable in the hyperacusis population and do not adequately capture the multifaceted nature of the condition on an individual level. This presents challenges for the differential diagnosis of hyperacusis, its clinical surveillance, and evaluation of new treatment options. Multiple behavioral and objective assays are emerging as contenders for inclusion in hyperacusis assessment protocols but most still await rigorous validation. There remains a pressing need to develop tools to quantify common nonauditory symptoms, including annoyance, fear, and pain. This review describes the current literature on clinical and investigational tools that have been used to diagnose and monitor hyperacusis, as well as those that hold promise for inclusion in future trials.
Collapse
Affiliation(s)
- Kelly N Jahn
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
22
|
Land R, Kral A. Temporal acuity is preserved in the auditory midbrain of aged mice. Neurobiol Aging 2022; 110:47-60. [PMID: 34852306 DOI: 10.1016/j.neurobiolaging.2021.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022]
Abstract
Impaired temporal resolution of the central auditory system has long been suggested to contribute to speech understanding deficits in the elderly. However, it has been difficult to differentiate between direct age-related central deficits and indirect effects of confounding peripheral age-related hearing loss on temporal resolution. To differentiate this, we measured temporal acuity in the inferior colliculus (IC) of aged CBA/J and C57BL/6 mice, as a model of aging with and without concomitant hearing loss. We used two common measures of auditory temporal processing: gap detection as a measure of temporal fine structure and amplitude-modulated noise as a measure of envelope sensitivity. Importantly, auditory temporal acuity remained precise in the IC of old CBA/J mice when no or only minimal age-related hearing loss was present. In contrast, temporal acuity was only indirectly reduced by the presence of age-related hearing loss in aged C57BL/6 mice, not by affecting the brainstem precision, but by affecting the signal-to-noise ratio of the neuronal activity in the IC. This demonstrates that indirect effects of age-related peripheral hearing loss likely remain an important factor for temporal processing in aging in comparison to 'pure' central auditory decline itself. It also draws attention to the issue that the threshold difference between 'nearly normal' or 'clinically normal' hearing aging subjects in comparison to normal hearing young subjects still can have indirect effects on central auditory neural representations of temporal processing.
Collapse
Affiliation(s)
- Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hannover, Lower Saxony, Germany.
| | - Andrej Kral
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hannover, Lower Saxony, Germany; Department of Biomedical Sciences, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
23
|
Cutting Through the Noise: Noise-Induced Cochlear Synaptopathy and Individual Differences in Speech Understanding Among Listeners With Normal Audiograms. Ear Hear 2022; 43:9-22. [PMID: 34751676 PMCID: PMC8712363 DOI: 10.1097/aud.0000000000001147] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Following a conversation in a crowded restaurant or at a lively party poses immense perceptual challenges for some individuals with normal hearing thresholds. A number of studies have investigated whether noise-induced cochlear synaptopathy (CS; damage to the synapses between cochlear hair cells and the auditory nerve following noise exposure that does not permanently elevate hearing thresholds) contributes to this difficulty. A few studies have observed correlations between proxies of noise-induced CS and speech perception in difficult listening conditions, but many have found no evidence of a relationship. To understand these mixed results, we reviewed previous studies that have examined noise-induced CS and performance on speech perception tasks in adverse listening conditions in adults with normal or near-normal hearing thresholds. Our review suggests that superficially similar speech perception paradigms used in previous investigations actually placed very different demands on sensory, perceptual, and cognitive processing. Speech perception tests that use low signal-to-noise ratios and maximize the importance of fine sensory details- specifically by using test stimuli for which lexical, syntactic, and semantic cues do not contribute to performance-are more likely to show a relationship to estimated CS levels. Thus, the current controversy as to whether or not noise-induced CS contributes to individual differences in speech perception under challenging listening conditions may be due in part to the fact that many of the speech perception tasks used in past studies are relatively insensitive to CS-induced deficits.
Collapse
|
24
|
Effect of Masker Head Orientation, Listener Age, and Extended High-Frequency Sensitivity on Speech Recognition in Spatially Separated Speech. Ear Hear 2022; 43:90-100. [PMID: 34260434 PMCID: PMC8712343 DOI: 10.1097/aud.0000000000001081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Masked speech recognition is typically assessed as though the target and background talkers are all directly facing the listener. However, background speech in natural environments is often produced by talkers facing other directions, and talker head orientation affects the spectral content of speech, particularly at the extended high frequencies (EHFs; >8 kHz). This study investigated the effect of masker head orientation and listeners' EHF sensitivity on speech-in-speech recognition and spatial release from masking in children and adults. DESIGN Participants were 5- to 7-year-olds (n = 15) and adults (n = 34), all with normal hearing up to 8 kHz and a range of EHF hearing thresholds. Speech reception thresholds (SRTs) were measured for target sentences recorded from a microphone directly in front of the talker's mouth and presented from a loudspeaker directly in front of the listener, simulating a target directly in front of and facing the listener. The maskers were two streams of concatenated words recorded from a microphone located at either 0° or 60° azimuth, simulating masker talkers facing the listener or facing away from the listener, respectively. Maskers were presented in one of three spatial conditions: co-located with the target, symmetrically separated on either side of the target (+54° and -54° on the horizontal plane), or asymmetrically separated to the right of the target (both +54° on the horizontal plane). RESULTS Performance was poorer for the facing than for the nonfacing masker head orientation. This benefit of the nonfacing masker head orientation, or head orientation release from masking (HORM), was largest under the co-located condition, but it was also observed for the symmetric and asymmetric masker spatial separation conditions. SRTs were positively correlated with the mean 16-kHz threshold across ears in adults for the nonfacing conditions but not for the facing masker conditions. In adults with normal EHF thresholds, the HORM was comparable in magnitude to the benefit of a symmetric spatial separation of the target and maskers. Although children benefited from the nonfacing masker head orientation, their HORM was reduced compared to adults with normal EHF thresholds. Spatial release from masking was comparable across age groups for symmetric masker placement, but it was larger in adults than children for the asymmetric masker. CONCLUSIONS Masker head orientation affects speech-in-speech recognition in children and adults, particularly those with normal EHF thresholds. This is important because masker talkers do not all face the listener under most natural listening conditions, and assuming a midline orientation would tend to overestimate the effect of spatial separation. The benefits associated with EHF audibility for speech-in-speech recognition may warrant clinical evaluation of thresholds above 8 kHz.
Collapse
|
25
|
Carcagno S, Plack CJ. Relations between speech-reception, psychophysical temporal processing, and subcortical electrophysiological measures of auditory function in humans. Hear Res 2022; 417:108456. [PMID: 35149333 PMCID: PMC8935383 DOI: 10.1016/j.heares.2022.108456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
|
26
|
Maele TV, Keshishzadeh S, Poortere ND, Dhooge I, Keppler H, Verhulst S. The Variability in Potential Biomarkers for Cochlear Synaptopathy After Recreational Noise Exposure. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:4964-4981. [PMID: 34670099 DOI: 10.1044/2021_jslhr-21-00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PURPOSE Speech-in-noise tests and suprathreshold auditory evoked potentials are promising biomarkers to diagnose cochlear synaptopathy (CS) in humans. This study investigated whether these biomarkers changed after recreational noise exposure. METHOD The baseline auditory status of 19 normal-hearing young adults was analyzed using questionnaires, pure-tone audiometry, speech audiometry, and auditory evoked potentials. Nineteen subjects attended a music festival and completed the same tests again at Day 1, Day 3, and Day 5 after the music festival. RESULTS No significant relations were found between lifetime noise-exposure history and the hearing tests. Changes in biomarkers from the first session to the follow-up sessions were nonsignificant, except for speech audiometry, which showed a significant learning effect (performance improvement). CONCLUSIONS Despite the individual variability in prefestival biomarkers, we did not observe changes related to the noise-exposure dose caused by the attended event. This can indicate the absence of noise exposure-driven CS in the study cohort, or reflect that biomarkers were not sensitive enough to detect mild CS. Future research should include a more diverse study cohort, dosimetry, and results from test-retest reliability studies to provide more insight into the relationship between recreational noise exposure and CS. Supplemental Material https://doi.org/10.23641/asha.16821283.
Collapse
Affiliation(s)
- Tine Vande Maele
- Department of Rehabilitation Sciences, Ghent University, Belgium
| | - Sarineh Keshishzadeh
- Hearing Technology, WAVES, Department of Information Technology, Ghent University, Belgium
| | - Nele De Poortere
- Department of Rehabilitation Sciences, Ghent University, Belgium
| | - Ingeborg Dhooge
- Department of Head and Skin, Ghent University, Belgium
- Department of Ear, Nose and Throat, Ghent University Hospital, Belgium
| | - Hannah Keppler
- Department of Rehabilitation Sciences, Ghent University, Belgium
- Department of Ear, Nose and Throat, Ghent University Hospital, Belgium
| | - Sarah Verhulst
- Hearing Technology, WAVES, Department of Information Technology, Ghent University, Belgium
| |
Collapse
|
27
|
AudioChip: A Deep Phenotyping Approach for Deconstructing and Quantifying Audiological Phenotypes of Self-Reported Speech Perception Difficulties. Ear Hear 2021; 43:1023-1036. [PMID: 34860719 PMCID: PMC9010350 DOI: 10.1097/aud.0000000000001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES About 15% of U.S. adults report speech perception difficulties despite showing normal audiograms. Recent research suggests that genetic factors might influence the phenotypic spectrum of speech perception difficulties. The primary objective of the present study was to describe a conceptual framework of a deep phenotyping method, referred to as AudioChipping, for deconstructing and quantifying complex audiometric phenotypes. DESIGN In a sample of 70 females 18 to 35 years of age with normal audiograms (from 250 to 8000 Hz), the study measured behavioral hearing thresholds (250 to 16,000 Hz), distortion product otoacoustic emissions (1000 to 16,000 Hz), click-evoked auditory brainstem responses (ABR), complex ABR (cABR), QuickSIN, dichotic digit test score, loudness discomfort level, and noise exposure background. The speech perception difficulties were evaluated using the Speech, Spatial, and Quality of Hearing Scale-12-item version (SSQ). A multiple linear regression model was used to determine the relationship between SSQ scores and audiometric measures. Participants were categorized into three groups (i.e., high, mid, and low) using the SSQ scores before performing the clustering analysis. Audiometric measures were normalized and standardized before performing unsupervised k-means clustering to generate AudioChip. RESULTS The results showed that SSQ and noise exposure background exhibited a significant negative correlation. ABR wave I amplitude, cABR offset latency, cABR response morphology, and loudness discomfort level were significant predictors for SSQ scores. These predictors explained about 18% of the variance in the SSQ score. The k-means clustering was used to split the participants into three major groups; one of these clusters revealed 53% of participants with low SSQ. CONCLUSIONS Our study highlighted the relationship between SSQ and auditory coding precision in the auditory brainstem in normal-hearing young females. AudioChip was useful in delineating and quantifying internal homogeneity and heterogeneity in audiometric measures among individuals with a range of SSQ scores. AudioChip could help identify the genotype-phenotype relationship, document longitudinal changes in auditory phenotypes, and pair individuals in case-control groups for the genetic association analysis.
Collapse
|
28
|
Extended High-frequency Hearing Impairment Despite a Normal Audiogram: Relation to Early Aging, Speech-in-noise Perception, Cochlear Function, and Routine Earphone Use. Ear Hear 2021; 43:822-835. [PMID: 34700326 DOI: 10.1097/aud.0000000000001140] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Humans can hear up to 20 kHz. Emerging evidence suggests that hearing in the extended high frequencies (EHFs; >8 kHz) contributes to speech perception in noise. The objective of the present study was to describe the features of EHF hearing impairment in young adults with normal standard audiograms (0.25-8 kHz). Specifically, the study goals were to: (1) characterize the EHF hearing impairment and identify potential risk factors; (2) elucidate the age-related changes in EHF hearing; (3) determine the effect of EHF hearing impairment on speech-in-noise recognition; and (4) examine the extent to which EHF hearing impairment influences cochlear functioning in the standard frequencies. DESIGN Hearing thresholds at standard frequencies and EHFs (10, 12.5, 14, and 16 kHz), and speech recognition thresholds (SRTs) using digit triplets in multi-talker babble were measured in both ears from 222 participants (19-38 years; n = 444 ears) with normal audiograms (≤20 dB HL at standard frequencies). Test-retest measurement of hearing thresholds was obtained in a subset of 50 participants (100 ears), and clinical distortion product otoacoustic emissions (f2 frequency = 2, 3, 4, and 5 kHz) were recorded in 49 participants (98 ears). RESULTS Forty-two of 222 participants had EHF hearing impairment (>20 dB HL for at least one EHF in either ear). Only seven individuals with EHF impairment had significant case history and/or listening-in-noise complaints. A breakpoint in the threshold-age function was observed for the EHFs for males but not for females. Linear mixed models revealed a significant effect of age, pure-tone averages for speech frequencies (0.5, 1, 2, and 4 kHz), and EHFs and group (NH versus EHF hearing impairment) independent of each other on the SRTs. Individuals with EHF hearing impairment had less measurable emissions and when present, had a lower magnitude of otoacoustic emissions relative to NH controls. There was no difference in hearing thresholds, SRTs, or otoacoustic emissions between earphone users and nonusers. CONCLUSIONS The hearing thresholds for the EHFs exhibit signs of early auditory aging. Age-related deterioration in auditory function can be observed in the third decade of human life. A breakpoint in the threshold-age function suggests that rapid aging processes are operational at a relatively younger age (21 years) for males. The audibility of EHFs contributes to speech-in-noise recognition. EHF hearing impairment independent of age and speech frequencies can affect speech-in-noise recognition. Reduced distortion product otoacoustic emissions in the standard frequencies may suggest preclinical cochlear degeneration in individuals with EHF hearing impairment.
Collapse
|
29
|
Martins-Moreira GM, Durante AS. Frequency-Following Response (FFR) in Military Pilots. Int Arch Otorhinolaryngol 2021; 25:e517-e521. [PMID: 34737822 PMCID: PMC8558961 DOI: 10.1055/s-0040-1718525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/05/2020] [Indexed: 12/01/2022] Open
Abstract
Introduction Good hearing in pilots, including central auditory skills, is critical for flight safety and the prevention of aircraft accidents. Pure tone audiometry alone may not be enough to assess hearing in the members of this population who, in addition to high noise levels, routinely face speech recognition tasks in non-ideal conditions. Objective To characterize the frequency-following response (FFR) of a group of military pilots compared with a control group. Methods Twenty military pilots in the Study Group and 20 non-pilot military personnel, not exposed to noise in their work, in the Control Group, all with normal hearing, aged between 30 and 40 years old, completed a questionnaire to assess their hearing habits, and their FFRs were measured with a /da/ syllable (duration 40 milliseconds, speed 10.9/s), at 80 dB NA in the right ear. All procedures were approved by the ethical committee of the institution. Statistical analysis was performed using the t-Student or Mann-Whitney tests for quantitative variables, and the Fisher or chi-squared tests for qualitative variables, and a value of p < 0.05 was considered to be statistically significant. Results There was no significant difference between the groups regarding auditory habits. In the FFR, wave amplitudes A ( p = 0.01) and C ( p = 0.04) were significantly lower in the Study Group. Conclusion Working as a military pilot can be a crucial factor in determining an individual's typical FFR pattern, demonstrated in the present study by statistically significant reductions in the amplitudes of the A and C waves.
Collapse
|
30
|
Vander Ghinst M, Bourguignon M, Wens V, Naeije G, Ducène C, Niesen M, Hassid S, Choufani G, Goldman S, De Tiège X. Inaccurate cortical tracking of speech in adults with impaired speech perception in noise. Brain Commun 2021; 3:fcab186. [PMID: 34541530 PMCID: PMC8445395 DOI: 10.1093/braincomms/fcab186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/17/2023] Open
Abstract
Impaired speech perception in noise despite normal peripheral auditory function is a common problem in young adults. Despite a growing body of research, the pathophysiology of this impairment remains unknown. This magnetoencephalography study characterizes the cortical tracking of speech in a multi-talker background in a group of highly selected adult subjects with impaired speech perception in noise without peripheral auditory dysfunction. Magnetoencephalographic signals were recorded from 13 subjects with impaired speech perception in noise (six females, mean age: 30 years) and matched healthy subjects while they were listening to 5 different recordings of stories merged with a multi-talker background at different signal to noise ratios (No Noise, +10, +5, 0 and −5 dB). The cortical tracking of speech was quantified with coherence between magnetoencephalographic signals and the temporal envelope of (i) the global auditory scene (i.e. the attended speech stream and the multi-talker background noise), (ii) the attended speech stream only and (iii) the multi-talker background noise. Functional connectivity was then estimated between brain areas showing altered cortical tracking of speech in noise in subjects with impaired speech perception in noise and the rest of the brain. All participants demonstrated a selective cortical representation of the attended speech stream in noisy conditions, but subjects with impaired speech perception in noise displayed reduced cortical tracking of speech at the syllable rate (i.e. 4–8 Hz) in all noisy conditions. Increased functional connectivity was observed in subjects with impaired speech perception in noise in Noiseless and speech in noise conditions between supratemporal auditory cortices and left-dominant brain areas involved in semantic and attention processes. The difficulty to understand speech in a multi-talker background in subjects with impaired speech perception in noise appears to be related to an inaccurate auditory cortex tracking of speech at the syllable rate. The increased functional connectivity between supratemporal auditory cortices and language/attention-related neocortical areas probably aims at supporting speech perception and subsequent recognition in adverse auditory scenes. Overall, this study argues for a central origin of impaired speech perception in noise in the absence of any peripheral auditory dysfunction.
Collapse
Affiliation(s)
- Marc Vander Ghinst
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Service, d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Laboratory of Neurophysiology and Movement Biomechanics, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Basque Center on Cognition, Brain and Language (BCBL), Donostia/San Sebastian 20009, Spain
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Service de Neurologie, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Cecile Ducène
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Service, d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Maxime Niesen
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Service, d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Sergio Hassid
- Service, d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Georges Choufani
- Service, d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| |
Collapse
|
31
|
Bieber RE, Fernandez K, Zalewski C, Cheng H, Brewer CC. Stability of Early Auditory Evoked Potential Components Over Extended Test-Retest Intervals in Young Adults. Ear Hear 2021; 41:1461-1469. [PMID: 33136623 PMCID: PMC8849594 DOI: 10.1097/aud.0000000000000872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Synaptic damage from noise exposures can occur even in the absence of changes in hearing sensitivity in animal models. There is an unmet clinical need for measurements sensitive to such damage to the human auditory system that can augment the pure-tone audiogram. Early components (i.e., <10 msec) of the auditory evoked potential (AEP) may be useful noninvasive indicators of synaptic integrity. Wave I is a measure of synchronous neural activity at the level of the synapse between cochlear inner hair cells and the auditory nerve and may be of particular clinical utility. This amplitude measure has historically been classified as too variable in humans to be used for clinical waveform interpretation, though several recent reliability studies have challenged this view. The focus of the present study is to examine across-session stability of early AEP amplitude measures. DESIGN In this study, amplitudes of early components (wave I, wave V, summating potential [SP]) of the AEP were measured in a cohort of 38 young adults aged 19 to 33 years (21 female). Stability of these amplitude measures was examined in a subset of 12 young adults (8 female), at time intervals ranging from 15 hr to 328 days between tests. Eligibility criteria included normal pure-tone hearing sensitivity, normal tympanometry, and intact acoustic reflexes. Participants were tested at up to four time points. Each evaluation included pure-tone thresholds, tympanometry, speech-in-noise testing, distortion-product otoacoustic emissions (DPOAE), and early AEPs. AEPs were collected in response to click and tone burst stimuli, with both ear canal and mastoid electrode montages. RESULTS No clinical changes in pure-tone hearing were found between baseline and follow-up visits. Intraclass correlation coefficients (ICCs) indicated good to excellent reliability for wave I and wave V peak-to-trough amplitudes within individuals across time, with greatest reliability (0.92, 95% confidence interval [0.81 to 0.96]) and largest amplitudes for wave I when measured from the ear canal in response to a click stimulus. Other measures such as amplitude ratios of waves V/I and the SP and action potential (AP) showed lower ICC values when measured from the ear canal, with SP/AP ratio demonstrating the lowest reliability. CONCLUSIONS The results of this study suggest that, when recorded under certain conditions, wave I amplitude can be a stable measure in humans. These findings are consistent with previous work and may inform the development of clinical protocols that utilize wave I amplitude to infer inner ear integrity.
Collapse
Affiliation(s)
- Rebecca E. Bieber
- University of Maryland College Park, College Park MD
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Katharine Fernandez
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Chris Zalewski
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Hui Cheng
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Carmen C. Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| |
Collapse
|
32
|
Efficacy of behavioral audiological tests in identifying cochlear synaptopathy: a systematic review. Eur Arch Otorhinolaryngol 2021; 279:577-594. [PMID: 34106328 DOI: 10.1007/s00405-021-06927-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Cochlear synaptopathy or hidden hearing loss is difficult to assess due to the lack of sensitivity with standard audiological tests. Poor speech perception, especially in the presence of noise or tinnitus, is the most common complaint of these patients. The purpose of this systematic review is to identify articles in peer-reviewed journals that used behavioral measures in the effective assessment of cochlear synaptopathy or hidden hearing loss. METHODS The manuscripts were searched in various international databases, and the manuscripts were screened based on titles, abstracts, and full-length content. A total of 14 human studies were selected after the appropriate exclusion of other articles. RESULTS Results showed that high-frequency audiometry could be used for the early identification of cochlear synaptopathy. The tone in noise detection test can also be added in the test battery along with speech perception in noise. The amplitude modulation detection test, interaural phase difference, and differential sensitivity tests require more research before using them for the assessment of cochlear synaptopathy or hidden hearing loss. CONCLUSIONS Self-reports and questionnaires also help in determining the extent of noise exposure.
Collapse
|
33
|
Mesik J, Ray L, Wojtczak M. Effects of Age on Cortical Tracking of Word-Level Features of Continuous Competing Speech. Front Neurosci 2021; 15:635126. [PMID: 33867920 PMCID: PMC8047075 DOI: 10.3389/fnins.2021.635126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/12/2021] [Indexed: 01/17/2023] Open
Abstract
Speech-in-noise comprehension difficulties are common among the elderly population, yet traditional objective measures of speech perception are largely insensitive to this deficit, particularly in the absence of clinical hearing loss. In recent years, a growing body of research in young normal-hearing adults has demonstrated that high-level features related to speech semantics and lexical predictability elicit strong centro-parietal negativity in the EEG signal around 400 ms following the word onset. Here we investigate effects of age on cortical tracking of these word-level features within a two-talker speech mixture, and their relationship with self-reported difficulties with speech-in-noise understanding. While undergoing EEG recordings, younger and older adult participants listened to a continuous narrative story in the presence of a distractor story. We then utilized forward encoding models to estimate cortical tracking of four speech features: (1) word onsets, (2) "semantic" dissimilarity of each word relative to the preceding context, (3) lexical surprisal for each word, and (4) overall word audibility. Our results revealed robust tracking of all features for attended speech, with surprisal and word audibility showing significantly stronger contributions to neural activity than dissimilarity. Additionally, older adults exhibited significantly stronger tracking of word-level features than younger adults, especially over frontal electrode sites, potentially reflecting increased listening effort. Finally, neuro-behavioral analyses revealed trends of a negative relationship between subjective speech-in-noise perception difficulties and the model goodness-of-fit for attended speech, as well as a positive relationship between task performance and the goodness-of-fit, indicating behavioral relevance of these measures. Together, our results demonstrate the utility of modeling cortical responses to multi-talker speech using complex, word-level features and the potential for their use to study changes in speech processing due to aging and hearing loss.
Collapse
Affiliation(s)
- Juraj Mesik
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | | | | |
Collapse
|
34
|
Anderson S, Bieber R, Schloss A. Peripheral deficits and phase-locking declines in aging adults. Hear Res 2021; 403:108188. [PMID: 33581668 DOI: 10.1016/j.heares.2021.108188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Age-related difficulties in speech understanding may arise from a decrease in the neural representation of speech sounds. A loss of outer hair cells or decrease in auditory nerve fibers may lead to a loss of temporal precision that can affect speech clarity. This study's purpose was to evaluate the peripheral contributors to phase-locking strength, a measure of temporal precision, in recordings to a sustained vowel in 30 younger and 30 older listeners with normal to near normal audiometric thresholds. Thresholds were obtained for pure tones and distortion-product otoacoustic emissions (DPOAEs). Auditory brainstem responses (ABRs) were recorded in quiet and in three levels of continuous white noise (+30, +20, and +10 dB SNR). Absolute amplitudes and latencies of Wave I in quiet and of Wave V across presentation conditions, in addition to the slope of Wave V amplitude and latency changes in noise, were calculated from these recordings. Frequency-following responses (FFRs) were recorded to synthesized /ba/ syllables of two durations, 170 and 260 ms, to determine whether age-related phase-locking deficits are more pronounced for stimuli that are sustained for longer durations. Phase locking was calculated for the early and late regions of the steady-state vowel for both syllables. Group differences were found for nearly every measure except for the slopes of Wave V latency and amplitude changes in noise. We found that outer hair cell function (DPOAEs) contributed to the variance in phase locking. However, the ABR and FFR differences were present after covarying for DPOAEs, suggesting the existence of temporal processing deficits in older listeners that are somewhat independent of outer hair cell function.
Collapse
Affiliation(s)
- Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742, United States.
| | - Rebecca Bieber
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742, United States.
| | - Alanna Schloss
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
35
|
Causon A, Munro KJ, Plack CJ, Prendergast G. The Role of the Clinically Obtained Acoustic Reflex as a Research Tool for Subclinical Hearing Pathologies. Trends Hear 2020; 24:2331216520972860. [PMID: 33357018 PMCID: PMC7768875 DOI: 10.1177/2331216520972860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The acoustic reflex (AR) shows promise as an objective test for the presence of cochlear synaptopathy in rodents. The AR has also been shown to be reduced in humans with tinnitus compared to those without. The aim of the present study was twofold: (a) to determine if AR strength (quantified as both threshold and growth) varied with lifetime noise exposure, and thus provided an estimate of the degree of synaptopathy and (b) to identify which factors should be considered when using the AR as a quantitative measure rather than just present/absent responses. AR thresholds and growth functions were measured using ipsilateral and contralateral, broadband and tonal elicitors in adults with normal hearing and varying levels of lifetime noise exposure. Only the clinical standard 226 Hz probe tone was used. AR threshold and growth were not related to lifetime noise exposure, suggesting that routine clinical AR measures are not a sensitive measure when investigating the effects of noise exposure in audiometrically normal listeners. Our secondary, exploratory analyses revealed that AR threshold and growth were significantly related to middle-ear compliance. Listeners with higher middle-ear compliance (though still in the clinically normal range) showed lower AR thresholds and steeper AR growth functions. Furthermore, there was a difference in middle-ear compliance between the sexes, with males showing higher middle-ear compliance values than females. Therefore, it may be necessary to factor middle-ear compliance values into any analysis that uses the AR as an estimate of auditory function.
Collapse
Affiliation(s)
- Andrew Causon
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, England
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, England
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK.,Department of Psychology, Lancaster University, Lancaster, England
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK
| |
Collapse
|
36
|
Trine A, Monson BB. Extended High Frequencies Provide Both Spectral and Temporal Information to Improve Speech-in-Speech Recognition. Trends Hear 2020; 24:2331216520980299. [PMID: 33345755 PMCID: PMC7756042 DOI: 10.1177/2331216520980299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Several studies have demonstrated that extended high frequencies (EHFs; >8 kHz) in speech are not only audible but also have some utility for speech recognition, including for speech-in-speech recognition when maskers are facing away from the listener. However, the contribution of EHF spectral versus temporal information to speech recognition is unknown. Here, we show that access to EHF temporal information improved speech-in-speech recognition relative to speech bandlimited at 8 kHz but that additional access to EHF spectral detail provided an additional small but significant benefit. Results suggest that both EHF spectral structure and the temporal envelope contribute to the observed EHF benefit. Speech recognition performance was quite sensitive to masker head orientation, with a rotation of only 15° providing a highly significant benefit. An exploratory analysis indicated that pure-tone thresholds at EHFs are better predictors of speech recognition performance than low-frequency pure-tone thresholds.
Collapse
Affiliation(s)
- Allison Trine
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Brian B Monson
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, United States
| |
Collapse
|
37
|
Brainstem correlates of cochlear nonlinearity measured via the scalp-recorded frequency-following response. Neuroreport 2020; 31:702-707. [PMID: 32453027 DOI: 10.1097/wnr.0000000000001452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The frequency-following response (FFR) is an EEG-based potential used to characterize the brainstem encoding of complex sounds. Adopting techniques from auditory signal processing, we assessed the degree to which FFRs encode important properties of cochlear processing (e.g. nonlinearities) and their relation to speech-in-noise (SIN) listening skills. Based on the premise that normal cochlear transduction is characterized by rectification and compression, we reasoned these nonlinearities would create measurable harmonic distortion in FFRs in response to even pure tone input. We recorded FFRs to nonspeech (pure- and amplitude-modulated-tones) stimuli in normal-hearing individuals. We then compared conventional indices of cochlear nonlinearity, via distortion product otoacoustic emission (DPOAE) I/O functions, to total harmonic distortion measured from neural FFRs (FFRTHD). Analysis of DPOAE growth and the FFRTHD revealed listeners with higher cochlear compression thresholds had lower neural FFRTHD distortion (i.e. more linear FFRs), thus linking cochlear and brainstem correlates of auditory nonlinearity. Importantly, FFRTHD was also negatively correlated with SIN perception whereby listeners with higher FFRTHD (i.e. more nonlinear responses) showed better performance on the QuickSIN. We infer individual differences in SIN perception and FFR nonlinearity even in normal-hearing individuals may reflect subtle differences in auditory health and suprathreshold hearing skills not captured by normal audiometric evaluation. Future studies in hearing-impaired individuals and animal models are necessary to confirm the diagnostic utility of FFRTHD and its relation to cochlear hearing loss or peripheral neurodegeneration in humans.
Collapse
|
38
|
Bharadwaj HM, Mai AR, Simpson JM, Choi I, Heinz MG, Shinn-Cunningham BG. Non-Invasive Assays of Cochlear Synaptopathy - Candidates and Considerations. Neuroscience 2019; 407:53-66. [PMID: 30853540 DOI: 10.1016/j.neuroscience.2019.02.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
Studies in multiple species, including in post-mortem human tissue, have shown that normal aging and/or acoustic overexposure can lead to a significant loss of afferent synapses innervating the cochlea. Hypothetically, this cochlear synaptopathy can lead to perceptual deficits in challenging environments and can contribute to central neural effects such as tinnitus. However, because cochlear synaptopathy can occur without any measurable changes in audiometric thresholds, synaptopathy can remain hidden from standard clinical diagnostics. To understand the perceptual sequelae of synaptopathy and to evaluate the efficacy of emerging therapies, sensitive and specific non-invasive measures at the individual patient level need to be established. Pioneering experiments in specific mice strains have helped identify many candidate assays. These include auditory brainstem responses, the middle-ear muscle reflex, envelope-following responses, and extended high-frequency audiograms. Unfortunately, because these non-invasive measures can be also affected by extraneous factors other than synaptopathy, their application and interpretation in humans is not straightforward. Here, we systematically examine six extraneous factors through a series of interrelated human experiments aimed at understanding their effects. Using strategies that may help mitigate the effects of such extraneous factors, we then show that these suprathreshold physiological assays exhibit across-individual correlations with each other indicative of contributions from a common physiological source consistent with cochlear synaptopathy. Finally, we discuss the application of these assays to two key outstanding questions, and discuss some barriers that still remain. This article is part of a Special Issue entitled: Hearing Loss, Tinnitus, Hyperacusis, Central Gain.
Collapse
Affiliation(s)
- Hari M Bharadwaj
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN.
| | - Alexandra R Mai
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN
| | - Jennifer M Simpson
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN
| | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA
| | - Michael G Heinz
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | | |
Collapse
|
39
|
Prendergast G, Couth S, Millman RE, Guest H, Kluk K, Munro KJ, Plack CJ. Effects of Age and Noise Exposure on Proxy Measures of Cochlear Synaptopathy. Trends Hear 2019; 23:2331216519877301. [PMID: 31558119 PMCID: PMC6767746 DOI: 10.1177/2331216519877301] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Although there is strong histological evidence for age-related synaptopathy in humans, evidence for the existence of noise-induced cochlear synaptopathy in humans is inconclusive. Here, we sought to evaluate the relative contributions of age and noise exposure to cochlear synaptopathy using a series of electrophysiological and behavioral measures. We extended an existing cohort by including 33 adults in the age range 37 to 60, resulting in a total of 156 participants, with the additional older participants resulting in a weakening of the correlation between lifetime noise exposure and age. We used six independent regression models (corrected for multiple comparisons), in which age, lifetime noise exposure, and high-frequency audiometric thresholds were used to predict measures of synaptopathy, with a focus on differential measures. The models for auditory brainstem responses, envelope-following responses, interaural phase discrimination, and the co-ordinate response measure of speech perception were not statistically significant. However, both age and noise exposure were significant predictors of performance on the digit triplet test of speech perception in noise, with greater noise exposure (unexpectedly) predicting better performance in the 80 dB sound pressure level (SPL) condition and greater age predicting better performance in the 40 dB SPL condition. Amplitude modulation detection thresholds were also significantly predicted by age, with older listeners performing better than younger listeners at 80 dB SPL. Overall, the results are inconsistent with the predicted effects of synaptopathy.
Collapse
Affiliation(s)
- Garreth Prendergast
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
| | - Samuel Couth
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
| | - Rebecca E. Millman
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
- NIHR Manchester Biomedical Research
Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester
Academic Health Science Centre, Manchester, UK
| | - Hannah Guest
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
| | - Karolina Kluk
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
- NIHR Manchester Biomedical Research
Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester
Academic Health Science Centre, Manchester, UK
| | - Kevin J. Munro
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
- NIHR Manchester Biomedical Research
Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester
Academic Health Science Centre, Manchester, UK
| | - Christopher J. Plack
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
- NIHR Manchester Biomedical Research
Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester
Academic Health Science Centre, Manchester, UK
- Department of Psychology, Lancaster
University, UK
| |
Collapse
|