1
|
Velde HM, Vaseghi-Shanjani M, Smits JJ, Ramakrishnan G, Oostrik J, Wesdorp M, Astuti G, Yntema HG, Hoefsloot L, Lanting CP, Huynen MA, Lehman A, Turvey SE, Pennings RJE, Kremer H. Exome variant prioritization in a large cohort of hearing-impaired individuals indicates IKZF2 to be associated with non-syndromic hearing loss and guides future research of unsolved cases. Hum Genet 2024; 143:1379-1399. [PMID: 39406892 PMCID: PMC11522133 DOI: 10.1007/s00439-024-02706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
Although more than 140 genes have been associated with non-syndromic hereditary hearing loss (HL), at least half of the cases remain unexplained in medical genetic testing. One reason is that pathogenic variants are located in 'novel' deafness genes. A variant prioritization approach was used to identify novel (candidate) genes for HL. Exome-wide sequencing data were assessed for subjects with presumed hereditary HL that remained unexplained in medical genetic testing by gene-panel analysis. Cases in group AD had presumed autosomal dominantly inherited HL (n = 124), and in group AR, presumed autosomal recessive HL (n = 337). Variants in known and candidate deafness genes were prioritized based on allele frequencies and predicted effects. Selected variants were tested for their co-segregation with HL. Two cases were solved by variants in recently identified deafness genes (ABHD12, TRRAP). Variant prioritization also revealed potentially causative variants in candidate genes associated with recessive and X-linked HL. Importantly, missense variants in IKZF2 were found to co-segregate with dominantly inherited non-syndromic HL in three families. These variants specifically affected Zn2+-coordinating cysteine or histidine residues of the zinc finger motifs 2 and 3 of the encoded protein Helios. This finding indicates a complex genotype-phenotype correlation for IKZF2 defects, as this gene was previously associated with non-syndromic dysfunction of the immune system and ICHAD syndrome, including HL. The designed strategy for variant prioritization revealed that IKZF2 variants can underlie non-syndromic HL. The large number of candidate genes for HL and variants therein stress the importance of inclusion of family members for variant prioritization.
Collapse
Affiliation(s)
- Hedwig M Velde
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Maryam Vaseghi-Shanjani
- Department of Pediatrics, The University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Jeroen J Smits
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jaap Oostrik
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - Mieke Wesdorp
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - Galuh Astuti
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Helger G Yntema
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Lies Hoefsloot
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cris P Lanting
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Anna Lehman
- Department of Pediatrics, The University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, The University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Ronald J E Pennings
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands.
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Kong C, Yin G, Wang X, Sun Y. In Utero Gene Therapy and its Application in Genetic Hearing Loss. Adv Biol (Weinh) 2024; 8:e2400193. [PMID: 39007241 DOI: 10.1002/adbi.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
For monogenic genetic diseases, in utero gene therapy (IUGT) shows the potential for early prevention against irreversible and lethal pathological changes. Moreover, animal models have also demonstrated the effectiveness of IUGT in the treatment of coagulation disorders, hemoglobinopathies, neurogenetic disorders, and metabolic and pulmonary diseases. For major alpha thalassemia and severe osteogenesis imperfecta, in utero stem cell transplantation has entered the phase I clinical trial stage. Within the realm of the inner ear, genetic hearing loss significantly hampers speech, cognitive, and intellectual development in children. Nowadays, gene therapies offer substantial promise for deafness, with the success of clinical trials in autosomal recessive deafness 9 using AAV-OTOF gene therapy. However, the majority of genetic mutations that cause deafness affect the development of cochlear structures before the birth of fetuses. Thus, gene therapy before alterations in cochlear structure leading to hearing loss has promising applications. In this review, addressing advances in various fields of IUGT, the progress, and application of IUGT in the treatment of genetic hearing loss are focused, in particular its implementation methods and unique advantages.
Collapse
Affiliation(s)
- Chenyang Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Miyanohara I, Ohori J, Tabuchi M, Nishio SY, Yamashita M, Usami SI. Comprehensive Genetic Evaluation in Patients with Special Reference to Late-Onset Sensorineural Hearing Loss. Genes (Basel) 2024; 15:571. [PMID: 38790200 PMCID: PMC11120787 DOI: 10.3390/genes15050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Hearing loss (HL) is a common and multi-complex etiological deficit that can occur at any age and can be caused by genetic variants, aging, toxic drugs, noise, injury, viral infection, and other factors. Recently, a high incidence of genetic etiologies in congenital HL has been reported, and the usefulness of genetic testing has been widely accepted in congenital-onset or early-onset HL. In contrast, there have been few comprehensive reports on the relationship between late-onset HL and genetic causes. In this study, we performed next-generation sequencing analysis for 91 HL patients mainly consisting of late-onset HL patients. As a result, we identified 23 possibly disease-causing variants from 29 probands, affording a diagnostic rate for this study of 31.9%. The highest diagnostic rate was observed in the congenital/early-onset group (42.9%), followed by the juvenile/young adult-onset group (31.7%), and the middle-aged/aged-onset group (21.4%). The diagnostic ratio decreased with age; however, genetic etiologies were involved to a considerable degree even in late-onset HL. In particular, the responsible gene variants were found in 19 (55.9%) of 34 patients with a familial history and progressive HL. Therefore, this phenotype is considered to be a good candidate for genetic evaluation based on this diagnostic panel.
Collapse
Affiliation(s)
- Ikuyo Miyanohara
- Department of Otolaryngology-Head and Neck Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; (J.O.); (M.T.); (M.Y.)
| | - Junichiro Ohori
- Department of Otolaryngology-Head and Neck Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; (J.O.); (M.T.); (M.Y.)
| | - Minako Tabuchi
- Department of Otolaryngology-Head and Neck Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; (J.O.); (M.T.); (M.Y.)
| | - Shin-ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan;
| | - Masaru Yamashita
- Department of Otolaryngology-Head and Neck Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; (J.O.); (M.T.); (M.Y.)
| | - Shin-ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan;
| |
Collapse
|
4
|
Rahman MM, Alam MI, Mansur M. Functional difficulty among young children in Bangladesh: An analysis of nationally representative data. PLoS One 2024; 19:e0300403. [PMID: 38512905 PMCID: PMC10956765 DOI: 10.1371/journal.pone.0300403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Functional difficulty in children is a crucial public health problem still undervalued in developing countries. This study explored the socio-demographic factors and anthropometry associated with children's functional difficulty in Bangladesh. Data for 2-4-year-old children, obtained from Multiple Indicator Cluster Survey 2019, were used in this study. The mixed-effects logistic regression model was used to analyse the data. Children whose mothers had functional difficulty were found to be 2.75 times more likely to have functional difficulty than children whose mothers had no functional difficulty (95% CI 1.63-4.63). Male children were more likely to experience functional difficulty than female children (OR = 1.48). Furthermore, stunting was found to be significantly associated with functional difficulty (OR = 1.50). The study also revealed that division and mother's education, specifically, children with mothers having higher secondary + education, had significant association with the outcome variable. The findings provided a vital overview of child disability in a developing country.
Collapse
Affiliation(s)
- Maisha Maliha Rahman
- Institute of Statistical Research and Training, University of Dhaka, Dhaka, Bangladesh
| | - M Iftakhar Alam
- Institute of Statistical Research and Training, University of Dhaka, Dhaka, Bangladesh
| | - Mohaimen Mansur
- Institute of Statistical Research and Training, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
5
|
Franz L, Incognito A, Gallo C, Turolla L, Scquizzato E, Cenedese R, Matarazzo A, Savegnago D, Zanatta P, Genovese E, de Filippis C, Marioni G. Audiological Phenotypes of Connexin Gene Mutation Patterns: A Glance at Different GJB2/GJB6 Gene Mutation Profiles. CHILDREN (BASEL, SWITZERLAND) 2024; 11:194. [PMID: 38397306 PMCID: PMC10887074 DOI: 10.3390/children11020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
GJB2 mutations are the most common cause of autosomal-recessive non-syndromic sensorineural hearing loss (SNHL). The available evidence shows large phenotypic variability across different genotypes and allelic variants. The aim of this study was to investigate the clinical and audiological features of a cohort of subjects with different GJB2/GJB6 gene mutation profiles from a tertiary referral center in Northeastern Italy. We considered 57 patients with GJB2/GJB6 mutations presenting with congenital, non-syndromic SNHL, mainly coming from the Veneto region (Italy). The samples were screened for mutations in exons 1 and 2 of the GJB2 gene and for the GJB6 gene deletion del (GJB6-D13S1830). Free-field and air-conduction frequency-specific thresholds and the pure-tone average (PTA) were considered in the statistical analysis. Five patients (8.87%) had connexin gene mutations in simple heterozygosis, 15 (26.31%) in compound heterozygosis, 34 (59.64%) in homozygosis, and 3 (5.26%) with digenic patterns. The frequency-specific air-conduction thresholds showed significantly different mean values across the different genotypes (Roy's largest-root test, p = 0.0473). Despite the evidence already available on genetic SNHL, many new insights are to be expected. Further large-scale prospective studies including different populations are necessary to confirm these preliminary findings about the clinical and audiological features of patients with different GJB2/GJB6 gene mutation patterns.
Collapse
Affiliation(s)
- Leonardo Franz
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Alessandro Incognito
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Chiara Gallo
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Licia Turolla
- Medical Genetics Unit, Treviso Hospital, 31100 Treviso, Italy;
| | - Elisa Scquizzato
- Molecular Pathology Laboratory, Unit of Pathological Anatomy, Treviso Hospital, 31100 Treviso, Italy;
| | - Roberta Cenedese
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Alessandro Matarazzo
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Daniel Savegnago
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Paolo Zanatta
- Department of Anesthesiology and Critical Care, Treviso Hospital, 31100 Treviso, Italy;
| | - Elisabetta Genovese
- Otorhinolaryngology Unit, Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Cosimo de Filippis
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Gino Marioni
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| |
Collapse
|
6
|
Liu Y, Wang L, Yuan L, Li Y, Chen Z, Yang B, Wang D, Sun Y. Hereditary deafness carrier screening in 9,993 Chinese individuals. Front Genet 2024; 14:1327258. [PMID: 38274112 PMCID: PMC10808513 DOI: 10.3389/fgene.2023.1327258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Preconception or prenatal carrier screening plays an important role in reproductive decision-making, but current research on hereditary deafness is limited. This study aimed to investigate the carrier frequencies of common deafness genes in the Chinese population who underwent carrier screening and to follow up on pregnancy outcomes in high-chance couples. Methods: Individual females or couples in preconception or early pregnancy were recruited from two hospitals in China. Carrier screening for common deafness genes in the Chinese population, including the GJB2 and SLC26A4 genes, was performed using next-generation sequencing technology. Genetic counseling was provided to subjects before and after testing. Results: Of the 9,993 subjects screened, the carrier rate was 2.86% for the GJB2 gene and 2.63% for the SLC26A4 gene. The variant with the highest carrier frequency in GJB2 was c.235delC (1.89%), and c.919-2A>G (1.08%) in SLC26A4. Of the six high-chance couples, four made alternative reproductive decisions (three with prenatal diagnosis and one with preimplantation genetic testing), with consequent termination of the birth of two affected fetuses. Conclusion: These findings confirmed the clinical utility of preconception or prenatal carrier screening for hereditary deafness.
Collapse
Affiliation(s)
- Yanqiu Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Lei Wang
- Dalian Women and Children’s Medical Center (Group), Dalian, China
| | - Lanlai Yuan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqing Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Bicheng Yang
- Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Daqing Wang
- Dalian Women and Children’s Medical Center (Group), Dalian, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Tisato V, Castiglione A, Ciorba A, Aimoni C, Silva JA, Gallo I, D'Aversa E, Salvatori F, Bianchini C, Pelucchi S, Secchiero P, Zauli G, Singh AV, Gemmati D. LINE-1 global DNA methylation, iron homeostasis genes, sex and age in sudden sensorineural hearing loss (SSNHL). Hum Genomics 2023; 17:112. [PMID: 38098073 PMCID: PMC10722762 DOI: 10.1186/s40246-023-00562-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Sudden sensorineural hearing loss (SSNHL) is an abrupt loss of hearing, still idiopathic in most of cases. Several mechanisms have been proposed including genetic and epigenetic interrelationships also considering iron homeostasis genes, ferroptosis and cellular stressors such as iron excess and dysfunctional mitochondrial superoxide dismutase activity. RESULTS We investigated 206 SSNHL patients and 420 healthy controls for the following genetic variants in the iron pathway: SLC40A1 - 8CG (ferroportin; FPN1), HAMP - 582AG (hepcidin; HEPC), HFE C282Y and H63D (homeostatic iron regulator), TF P570S (transferrin) and SOD2 A16V in the mitochondrial superoxide dismutase-2 gene. Among patients, SLC40A1 - 8GG homozygotes were overrepresented (8.25% vs 2.62%; P = 0.0015) as well SOD2 16VV genotype (32.0% vs 24.3%; P = 0.037) accounting for increased SSNHL risk (OR = 3.34; 1.54-7.29 and OR = 1.47; 1.02-2.12, respectively). Moreover, LINE-1 methylation was inversely related (r2 = 0.042; P = 0.001) with hearing loss score assessed as pure tone average (PTA, dB HL), and the trend was maintained after SLC40A1 - 8CG and HAMP - 582AG genotype stratification (ΔSLC40A1 = + 8.99 dB HL and ΔHAMP = - 6.07 dB HL). In multivariate investigations, principal component analysis (PCA) yielded PC1 (PTA, age, LINE-1, HAMP, SLC40A1) and PC2 (sex, HFEC282Y, SOD2, HAMP) among the five generated PCs, and logistic regression analysis ascribed to PC1 an inverse association with moderate/severe/profound HL (OR = 0.60; 0.42-0.86; P = 0.0006) and with severe/profound HL (OR = 0.52; 0.35-0.76; P = 0.001). CONCLUSION Recognizing genetic and epigenetic biomarkers and their mutual interactions in SSNHL is of great value and can help pharmacy science to design by pharmacogenomic data classical or advanced molecules, such as epidrugs, to target new pathways for a better prognosis and treatment of SSNHL.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121, Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121, Ferrara, Italy
| | | | - Andrea Ciorba
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Claudia Aimoni
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Juliana Araujo Silva
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ines Gallo
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Chiara Bianchini
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Stefano Pelucchi
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121, Ferrara, Italy.
- Centre Haemostasis and Thrombosis, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
8
|
Ketterer MC, Birkenhäger R, Beck R, Arndt S, Aschendorff A, Kunze M. Postnatal genetic umbilical cord analysis for earliest possible detection of inherited hearing impairment. Eur Arch Otorhinolaryngol 2023; 280:4811-4817. [PMID: 37093292 PMCID: PMC10562316 DOI: 10.1007/s00405-023-07986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION The most common sensorineural disorder in humans is hearing impairment and approximately 60% of prelingual hearing disorders are genetic. Especially parents with a congenital deaf child want to know as early as possible whether their second born child has the same genetic defect or not. The aim of this study is to demonstrate that postnatal genetic umbilical cord analysis is both the earliest detection possibility and sufficient. METHODS We included first born children with severe hearing impairment that underwent cochlear implantation. All included patients were analyzed genetically and exhibited mutations of either DFNB1 loci or SLC26A4 gene. Additionally, the umbilical cord of the sibling underwent genetic analysis to detect hereditary genetic mutations as early as possible. RESULTS 49 newborn children out of 22 families were included in this study. Genetic analysis revealed clinical relevant mutations in all first born children and in four siblings via umbilical cord analysis. All patients who have been diagnosed with a relevant genetic mutation that caused severe hearing impairment underwent hearing rehabilitation via cochlear implant surgery. CONCLUSION This study demonstrates the sufficient and early as possible detection of known genetically hearing disorders via umbilical cord analysis. In case of a known familial genetic hearing disorder, it is advisable to analyze newborn siblings for the corresponding genetic defect as soon as possible, to be able to plan and initiate clinical care for the patient as early as possible. It is also extremely important for the parents to obtain clear information about the auditory status of the newborn.
Collapse
Affiliation(s)
- Manuel Christoph Ketterer
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| | - Ralf Birkenhäger
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
- Molecular Biological Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| | - Rainer Beck
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Susan Arndt
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Antje Aschendorff
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Mirjam Kunze
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Jones M, Kovacevic B, Ionescu CM, Wagle SR, Quintas C, Wong EYM, Mikov M, Mooranian A, Al-Salami H. The applications of Targeted Delivery for Gene Therapies in Hearing Loss. J Drug Target 2023:1-22. [PMID: 37211674 DOI: 10.1080/1061186x.2023.2216900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/07/2022] [Accepted: 04/09/2023] [Indexed: 05/23/2023]
Abstract
Gene therapies are becoming more abundantly researched for use in a multitude of potential treatments, including for hearing loss. Hearing loss is a condition which impacts an increasing number of the population each year, with significant burdens associated. As such, this review will present the concept that delivering a gene effectively to the inner ear may assist in expanding novel treatment options and improving patient outcomes. Historically, several drawbacks have been associated with the use of gene therapies, some of which may be overcome via targeted delivery. Targeted delivery has the potential to alleviate off-target effects and permit a safer delivery profile. Viral vectors have often been described as a delivery method, however, there is an emerging depiction of the potential for nanotechnology to be used. Resulting nanoparticles may also be tuned to allow for targeted delivery. Therefore, this review will focus on hearing loss, gene delivery techniques and inner ear targets, including highlighting promising research. Targeted delivery is a key concept to permitting gene delivery in a safe effective manner, however, further research is required, both in the determination of genes to use in functional hearing recovery and formulating nanoparticles for targeted delivery.
Collapse
Affiliation(s)
- Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Christina Quintas
- School of human sciences, University of Western Australia, Crawley 6009, Perth, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Jonard L, Brotto D, Moreno-Pelayo MA, Del Castillo I, Kremer H, Pennings R, Caria H, Fialho G, Boudewyns A, Van Camp G, Ołdak M, Oziębło D, Deggouj N, De Siati RD, Gasparini P, Girotto G, Verstreken M, Dossena S, Roesch S, Battelino S, Trebušak Podkrajšek K, Warnecke A, Lenarz T, Lesinski-Schiedat A, Mondain M, Roux AF, Denoyelle F, Loundon N, Serey Gaut M, Trevisi P, Rubinato E, Martini A, Marlin S. Genetic Evaluation of Prelingual Hearing Impairment: Recommendations of an European Network for Genetic Hearing Impairment. Audiol Res 2023; 13:341-346. [PMID: 37218840 DOI: 10.3390/audiolres13030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 05/24/2023] Open
Abstract
The cause of childhood hearing impairment (excluding infectious pathology of the middle ear) can be extrinsic (embryofoetopathy, meningitis, trauma, drug ototoxicity, noise trauma, etc [...].
Collapse
Affiliation(s)
- Laurence Jonard
- Centre de Référence «Surdités Génétiques», Fédération de Génétique, Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Davide Brotto
- ENT Unit, Neurosciences Department, University of Padova, 35122 Padova, Italy
| | - Miguel A Moreno-Pelayo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto Ramón y Cajal deInvestigaciones Sani-tarias (IRYCIS), Genetics Department, University hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Ignacio Del Castillo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto Ramón y Cajal deInvestigaciones Sani-tarias (IRYCIS), Genetics Department, University hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Hannie Kremer
- Department of Otorhinolaryngology and Department of Human Genetics, Hearing & Genes, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Ronald Pennings
- Department of Otorhinolaryngology and Department of Human Genetics, Hearing & Genes, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Helena Caria
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1649-004 Lisboa, Portugal
- Biomedical Sciences Department, CIIAS-School of Health, Polytechnic Institute of Setubal, 2914-503 Setubal, Portugal
| | - Graça Fialho
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1649-004 Lisboa, Portugal
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, 2000 Edegem, Belgium
| | - Guy Van Camp
- Center for Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Naïma Deggouj
- ENT Department, UCLouvain, Academic Hospital Saint-Luc-Brussels, 1200 Bruxelles, Belgium
| | | | - Paolo Gasparini
- Medical Genetics, Institute for Ma-ternal and Child Health (IRCCS) "Burlo Garofolo", Department of Medical, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giorgia Girotto
- Medical Genetics, Institute for Ma-ternal and Child Health (IRCCS) "Burlo Garofolo", Department of Medical, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Saba Battelino
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Institute of Biochemistry and Molecular Genetics, Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Athanasia Warnecke
- Department of Otorhinolaryngology-Head and Neck Surgery, Hannover Medical School, D-30625 Hannover, Germany
- Cluster of Excellence Hearing4all, German Research Foundation, Oldenburg 26129, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology-Head and Neck Surgery, Hannover Medical School, D-30625 Hannover, Germany
- Cluster of Excellence Hearing4all, German Research Foundation, Oldenburg 26129, Germany
| | - Anke Lesinski-Schiedat
- Medical Head German Hearing Center, Department of Otorhinolaryngology, Medical University of Hannover, D-30625 Hannover, Germany
| | - Michel Mondain
- ENT Department, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Françoise Denoyelle
- Service d'ORL Pédiatrique et de Chirurgie Cervico-Faciale, INSERM UMR 1120, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Natalie Loundon
- Centre de Référence «Surdités Génétiques», Fédération de Génétique, Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Service d'ORL Pédiatrique et de Chirurgie Cervico-Faciale, INSERM UMR 1120, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Margaux Serey Gaut
- Centre de Référence «Surdités Génétiques», Fédération de Génétique, Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Patrizia Trevisi
- ENT Unit, Neurosciences Department, University of Padova, 35122 Padova, Italy
| | - Elisa Rubinato
- Medical Genetics, Institute for Ma-ternal and Child Health (IRCCS) "Burlo Garofolo", Department of Medical, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alessandro Martini
- ENT Unit, Neurosciences Department, University of Padova, 35122 Padova, Italy
| | - Sandrine Marlin
- Centre de Référence «Surdités Génétiques», Fédération de Génétique, Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France
| |
Collapse
|
11
|
Singh S, Penney C, Griffin A, Woodland G, Werdyani S, Benteau TA, Abdelfatah N, Squires J, King B, Houston J, Dyer MJ, Roslin NM, Vincent D, Marquis P, O'Rielly DD, Hodgkinson K, Burt T, Baker A, Stanton SG, Young TL. Highly variable hearing loss due to POU4F3 (c.37del) is revealed by longitudinal, frequency specific analyses. Eur J Hum Genet 2023:10.1038/s41431-023-01358-0. [PMID: 37072551 DOI: 10.1038/s41431-023-01358-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Genotype-phenotype correlations add value to the management of families with hereditary hearing loss (HL), where age-related typical audiograms (ARTAs) are generated from cross-sectional regression equations and used to predict the audiogram phenotype across the lifespan. A seven-generation kindred with autosomal dominant sensorineural HL (ADSNHL) was recruited and a novel pathogenic variant in POU4F3 (c.37del) was identified by combining linkage analysis with whole exome sequencing (WES). POU4F3 is noted for large intrafamilial variation including the age of onset of HL, audiogram configuration and presence of vestibular impairment. Sequential audiograms and longitudinal analyses reveal highly variable audiogram features among POU4F3 (c.37del) carriers, limiting the utility of ARTAs for clinical prognosis and management of HL. Furthermore, a comparison of ARTAs against three previously published families (1 Israeli Jewish, 2 Dutch) reveals significant interfamilial differences, with earlier onset and slower deterioration. This is the first published report of a North American family with ADSNHL due to POU4F3, the first report of the pathogenic c.37del variant, and the first study to conduct longitudinal analysis, extending the phenotypic spectrum of DFNA15.
Collapse
Affiliation(s)
- Sushma Singh
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada
| | - Cindy Penney
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Anne Griffin
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Geoffrey Woodland
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Salem Werdyani
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Tammy A Benteau
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Nelly Abdelfatah
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Jessica Squires
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | | | - Jim Houston
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Matthew J Dyer
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Nicole M Roslin
- The Centre for Applied Genomics, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, Canada
| | - Daniel Vincent
- Canadian Centre for Computational Genomics, McGill University, 740 Dr. Penfield Avenue, Montréal, QC, Canada
| | - Pascale Marquis
- Canadian Centre for Computational Genomics, McGill University, 740 Dr. Penfield Avenue, Montréal, QC, Canada
| | - Darren D O'Rielly
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Kathy Hodgkinson
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Taylor Burt
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Ashley Baker
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Susan G Stanton
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada
| | - Terry-Lynn Young
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada.
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada.
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada.
| |
Collapse
|
12
|
Jiang L, Wang D, He Y, Shu Y. Advances in gene therapy hold promise for treating hereditary hearing loss. Mol Ther 2023; 31:934-950. [PMID: 36755494 PMCID: PMC10124073 DOI: 10.1016/j.ymthe.2023.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gene therapy focuses on genetic modification to produce therapeutic effects or treat diseases by repairing or reconstructing genetic material, thus being expected to be the most promising therapeutic strategy for genetic disorders. Due to the growing attention to hearing impairment, an increasing amount of research is attempting to utilize gene therapy for hereditary hearing loss (HHL), an important monogenic disease and the most common type of congenital deafness. Several gene therapy clinical trials for HHL have recently been approved, and, additionally, CRISPR-Cas tools have been attempted for HHL treatment. Therefore, in order to further advance the development of inner ear gene therapy and promote its broad application in other forms of genetic disease, it is imperative to review the progress of gene therapy for HHL. Herein, we address three main gene therapy strategies (gene replacement, gene suppression, and gene editing), summarizing the strategy that is most appropriate for particular monogenic diseases based on different pathogenic mechanisms, and then focusing on their successful applications for HHL in preclinical trials. Finally, we elaborate on the challenges and outlooks of gene therapy for HHL.
Collapse
Affiliation(s)
- Luoying Jiang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China.
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
13
|
Biallelic mutations in pakistani families with autosomal recessive prelingual nonsyndromic hearing loss. Genes Genomics 2023; 45:145-156. [PMID: 36472766 DOI: 10.1007/s13258-022-01349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nonsyndromic autosomal recessive hearing loss (DFNB) is an etiologically heterogeneous disorder group showing a wide spectrum of onset ages and severity. DFNB genes are very diverse in their types and functions, making molecular diagnosis difficult. DFNB is particularly frequent in Pakistan, which may be partly due to consanguinity. OBJECTIVE This study was performed to determine the genetic causes in Pakistani DFNB families with prelingual onset and to establish genotype-phenotype correlation. METHODS Whole exome sequencing and subsequent genetic analysis were performed for 11 Pakistani DFNB families including eight consanguineous families. RESULTS We identified eight pathogenic or likely pathogenic mutations in LOXHD1, GJB2, SLC26A4, MYO15A, and TMC1 from six families. The GJB2 mutations were identified in two families each with compound heterozygous mutations and a homozygous mutation. The compound heterozygous mutations in LOXHD1 ([p.D278Y] + [p.D1219E]) and GJB2 [p.M1?] + [p.G12Vfs*2]) were novel. The four missense or start-loss mutations were located at well conserved residues, and most in silico analysis predicted their pathogenicity. In addition to causative mutations, we found compound heterozygous mutations in PTPRQ as variants of uncertain significance. CONCLUSION This study identified biallelic mutations as the underlying cause of early onset DFNB in six Pakistani families. This study will be helpful in providing an exact molecular diagnosis and treatment of prelingual onset deafness patients.
Collapse
|
14
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
15
|
Abbasi Z, Jafari Khamirani H, Tabei SMB, Manoochehri J, Dianatpour M, Dastgheib SA. EPS8 variant causes deafness, autosomal recessive 102 (DFNB102) and literature review. Hum Genome Var 2023; 10:1. [PMID: 36635257 PMCID: PMC9837036 DOI: 10.1038/s41439-023-00229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023] Open
Abstract
Pathogenic variants in the EPS8 gene result in nonsyndromic hearing loss. This gene encodes the EPS8 protein in cochlear inner hair cells and performs critical roles in stimulating actin polymerization and bundling. Thus far, only four pathogenic variations in EPS8 have been described. In this study, we report the fifth pathogenic variant in the EPS8 gene in an Iranian patient with DFNB102. Furthermore, we review literature cases with EPS8 mutations.
Collapse
Affiliation(s)
- Zahra Abbasi
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Manoochehri
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
16
|
Comprehensive Prediction Model, Including Genetic Testing, for the Outcomes of Cochlear Implantation. Ear Hear 2023; 44:223-231. [PMID: 35973050 DOI: 10.1097/aud.0000000000001269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Despite growing interest in the genetic contribution to cochlear implant (CI) outcomes, only a few studies with limited samples have examined the association of CI outcomes with genetic etiologies. We analyzed CI outcomes using known predictors and genetic testing results to obtain a comprehensive understanding of the impact of genetic etiologies. DESIGN We retrospectively reviewed the medical records and images of patients who underwent cochlear implantation and genetic testing at a single tertiary medical institution, between May 2008 and December 2020. After excluding those whose speech test results were unavailable, and those in whom the implant was removed due to complications, such as infection or device failure, 203 patients were included in this study. The participants were categorized into adult (≥19 years), child (2-18 years), and infant (<24 months) groups. Outcomes were measured based on categories of auditory perception, monosyllable, disyllable, and sentence scores. For the infant group, the Infant-Toddler Meaningful Auditory Integration Scale score was used. RESULTS Among the 203 participants, a causative genetic variant was identified in 117 (57.6%) individuals. The presence of a causative variant was significantly associated with better CI outcomes in the infant group (β = 0.23; 95% confidence interval, 0.01 to 0.47; p = 0.044), but not in the child and adult groups. In the genetically confirmed patients without cochlear malformation, genetic variants involving the spiral ganglion was a poor prognostic factor in the child group (β = -57.24; 95% confidence interval, -90.63 to -23.75; p = 0.004). CONCLUSIONS The presence of known genetic etiology of hearing loss was associated with better CI outcomes in the infant group, but not in the child and adult groups. A neural-type genetic variant was a poor prognostic factor in the genetically diagnosed child subgroup without cochlear malformation. Careful genetic counseling should be performed before cochlear implantation.
Collapse
|
17
|
Clabout T, Maes L, Acke F, Wuyts W, Van Schil K, Coucke P, Janssens S, De Leenheer E. Negative Molecular Diagnostics in Non-Syndromic Hearing Loss: What Next? Genes (Basel) 2022; 14:genes14010105. [PMID: 36672845 PMCID: PMC9859074 DOI: 10.3390/genes14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Congenital hearing loss has an impact on almost every facet of life. In more than 50% of cases, a genetic cause can be identified. Currently, extensive genetic testing is available, although the etiology of some patients with obvious familial hearing loss remains unknown. We selected a cohort of mutation-negative patients to optimize the diagnostic yield for genetic hearing impairment. In this retrospective study, 21 patients (17 families) with negative molecular diagnostics for non-syndromic hearing loss (gene panel analysis) were included based on a positive family history with a similar type of hearing loss. Additional genetic testing was performed using a whole exome sequencing panel (WESHL panel v2.0) in four families with the strongest likelihood of genetic hearing impairment. In this cohort (n = 21), the severity of hearing loss was most commonly moderate (52%). Additional genetic testing revealed pathogenic copy number variants in the STRC gene in two families. In summary, regular re-evaluation of hearing loss patients with presumably genetic etiology after negative molecular diagnostics is recommended, as we might miss newly discovered deafness genes. The switch from gene panel analysis to whole exome sequencing or whole genome sequencing for the testing of congenital hearing loss seems promising.
Collapse
Affiliation(s)
- Thomas Clabout
- Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Laurence Maes
- Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Frederic Acke
- Department of Otorhinolaryngology, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Wim Wuyts
- Center of Medical Genetics, Antwerp University Hospital and University of Antwerp, Prins Boudewijnlaan 43, B-2650 Edegem, Belgium
| | - Kristof Van Schil
- Center of Medical Genetics, Antwerp University Hospital and University of Antwerp, Prins Boudewijnlaan 43, B-2650 Edegem, Belgium
| | - Paul Coucke
- Center for Medical Genetics, Ghent University, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Sandra Janssens
- Center for Medical Genetics, Ghent University, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Els De Leenheer
- Department of Otorhinolaryngology, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-93322332
| |
Collapse
|
18
|
Riza AL, Alkhzouz C, Farcaș M, Pîrvu A, Miclea D, Mihuț G, Pleșea RM, Ștefan D, Drodar M, Lazăr C, Study OBOTHINT, Study OBOTFUSE, Ioana M, Popp R. Non-Syndromic Hearing Loss in a Romanian Population: Carrier Status and Frequent Variants in the GJB2 Gene. Genes (Basel) 2022; 14:69. [PMID: 36672810 PMCID: PMC9858611 DOI: 10.3390/genes14010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The genetic causes of autosomal recessive nonsyndromic hearing loss (ARNSHL) are heterogeneous and highly ethnic-specific. We describe GJB2 (connexin 26) variants and carrier frequencies as part of our study and summarize previously reported ones for the Romanian population. In total, 284 unrelated children with bilateral congenital NSHL were enrolled between 2009 and 2018 in northwestern Romania. A tiered diagnostic approach was used: all subjects were tested for c.35delG, c.71G>A and deletions in GJB6 (connexin 30) using PCR-based methods. Furthermore, 124 cases undiagnosed at this stage were analyzed by multiplex-ligation-dependent probe amplifications (MLPA), probe mix P163, and sequencing of GJB2 exon 2. Targeted allele-specific PCR/restriction fragment length polymorphism (RFLP) established definite ethio-pathogenical diagnosis for 72/284 (25.35%) of the cohort. Out of the 124 further analyzed, in 12 cases (9.67%), we found compound heterozygous point mutations in GJB2. We identified one case of deletion of exon 1 of the WFS1 (wolframin) gene. Carrier status evaluation used Illumina Infinium Global Screening Array (GSA) genotyping: the HINT cohort-416 individuals in northwest Romania, and the FUSE cohort-472 individuals in southwest Romania. GSA variants yielded a cumulated risk allele presence of 0.0284. A tiered diagnostic approach may be efficient in diagnosing ARNSHL. The summarized contributions to Romanian descriptive epidemiology of ARNSHL shows that pathogenic variants in the GJB2 gene are frequent among NSHL cases and have high carrier rates, especially for c.35delG and c.71G>A. These findings may serve in health strategy development.
Collapse
Affiliation(s)
- Anca-Lelia Riza
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Camelia Alkhzouz
- First Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | - Marius Farcaș
- Molecular Sciences Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Pîrvu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Diana Miclea
- First Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | - Gheorghe Mihuț
- ENT Department, Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | - Răzvan-Mihail Pleșea
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Delia Ștefan
- Molecular Sciences Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mihaela Drodar
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Călin Lazăr
- First Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | | | | | - Mihai Ioana
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Radu Popp
- Molecular Sciences Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Zhao J, Zhang S, Jiang Y, Liu Y, Wang J, Zhu Q. Mutation analysis of the WFS1 gene in a Chinese family with autosomal-dominant non-syndrome deafness. Sci Rep 2022; 12:22180. [PMID: 36564540 PMCID: PMC9789122 DOI: 10.1038/s41598-022-26850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
To analyse the pathogenic genes and mutations of a family with hereditary deafness. We recruited a three-generation family with NSHL. A detailed medical history inquiry and related examinations were performed. Next-generation sequencing (NGS) was used to confirm the gene mutation in the proband, and Sanger sequencing was used for verification. The effect of the WFS1 mutation on the function and structure of the wolframin protein was predicted by multiple computational software. From the Gene Expression Omnibus (GEO) database, we obtained GSE40585 dataset and performed enrichment analyses. The family clinically manifested as autosomal dominant NSHL. A novel WFS1 c.2421C>G (p.Ser807Arg) mutation was identified in four affected individuals in the pedigree . The p.Ser807Arg mutation is a highly conserved residue and causes an increase in protein stability. It had an important influence on not only amino acid size, charge and hydrophobicity but also protein intermolecular hydrogen bonding and spatial structure. There were differentially expressed genes (DEGs) in GSE40585 dataset. Enrichment analysis revealed that DEGs mainly functioned in amino acid metabolism, signal transduction and dephosphorylation. We reported a novel mutation c.2421C>G (p.Ser807Arg in WFS1. This study expands the mutation spectrum of WFS1.
Collapse
Affiliation(s)
- Jing Zhao
- grid.452209.80000 0004 1799 0194Department of Otolaryngology, The Third Hospital of Hebei Medical University, Hebei, China
| | - Siqi Zhang
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yuan Jiang
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yan Liu
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jiantao Wang
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| | - QingWen Zhu
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| |
Collapse
|
20
|
Robillard KN, de Vrieze E, van Wijk E, Lentz JJ. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear Res 2022; 426:108523. [PMID: 35649738 DOI: 10.1016/j.heares.2022.108523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022]
Abstract
Hearing loss affects more than 430 million people, worldwide, and is the third most common chronic physical condition in the United States and Europe (GBD Hearing Loss Collaborators, 2021; NIOSH, 2021; WHO, 2021). The loss of hearing significantly impacts motor and cognitive development, communication, education, employment, and overall quality of life. The inner ear houses the sensory organs for both hearing and balance and provides an accessible target for therapeutic delivery. Antisense oligonucleotides (ASOs) use various mechanisms to manipulate gene expression and can be tailor-made to treat disorders with defined genetic targets. In this review, we discuss the preclinical advancements within the field of the highly promising ASO-based therapies for hereditary hearing loss disorders. Particular focus is on ASO mechanisms of action, preclinical studies on ASO treatments of hearing loss, timing of therapeutic intervention, and delivery routes to the inner ear.
Collapse
Affiliation(s)
| | - Erik de Vrieze
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL.
| | - Jennifer J Lentz
- Neuroscience Center of Excellence, LSUHSC, New Orleans, LA, USA; Department of Otorhinolaryngology, LSUHSC, 2020 Gravier Street, Lions Building, Room 795, New Orleans, LA, USA.
| |
Collapse
|
21
|
Audiological Evidence of Frequent Hereditary Mild, Moderate and Moderate-to-Severe Hearing Loss. J Pers Med 2022; 12:jpm12111843. [PMID: 36579563 PMCID: PMC9698638 DOI: 10.3390/jpm12111843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Congenital and early onset bilateral sensorineural hearing loss (SNHL) is mainly caused by mutations in numerous genes. The introduction of universal newborn hearing screening (UNHS) has increased the number of infants with mild, moderate, and moderate-to-severe sensorineural hearing loss (SNHL) detected in the first year of life. We aimed to evaluate the audiological features in patients with mild, moderate, and moderate-to-severe SNHL according to genotype. Audiological and genetic data were analyzed for 251 patients and their relatives with congenital bilateral mild, moderate, and moderate-to-severe SNHL. Hearing loss severity, audiogram profile, interaural symmetry, and dynamics of hearing thresholds were analyzed. In this case, 165 patients had GJB2 gene mutations, 30 patients were identified with STRC mutations, and 16 patients had pathogenic or likely pathogenic USH2A mutations. The presence of at least one GJB2 non-truncating variant in genotype led to less severe hearing impairment. The flat and gently sloping audiogram profiles were mostly revealed in all groups. The follow-up revealed the stability of hearing thresholds. GJB2, STRC, and USH2A pathogenic variants were detected in most patients in our cohort and were congenital in most cases.
Collapse
|
22
|
Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells 2022; 11:cells11203331. [PMID: 36291196 PMCID: PMC9600035 DOI: 10.3390/cells11203331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is the most prevalent sensorineural impairment in humans. Yet despite very active research, no effective therapy other than the cochlear implant has reached the clinic. Main reasons for this failure are the multifactorial nature of the disorder, its heterogeneity, and a late onset that hinders the identification of etiological factors. Another problem is the lack of human samples such that practically all the work has been conducted on animals. Although highly valuable data have been obtained from such models, there is the risk that inter-species differences exist that may compromise the relevance of the gathered data. Human-based models are therefore direly needed. The irruption of human induced pluripotent stem cell technologies in the field of hearing research offers the possibility to generate an array of otic cell models of human origin; these may enable the identification of guiding signalling cues during inner ear development and of the mechanisms that lead from genetic alterations to pathology. These models will also be extremely valuable when conducting ototoxicity analyses and when exploring new avenues towards regeneration in the inner ear. This review summarises some of the work that has already been conducted with these cells and contemplates future possibilities.
Collapse
|
23
|
Molecular diagnose of a large hearing loss population from China by targeted genome sequencing. J Hum Genet 2022; 67:643-649. [PMID: 35982127 PMCID: PMC9592555 DOI: 10.1038/s10038-022-01066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Hereditary hearing loss is genetically heterogeneous, with diverse clinical manifestations. Here we performed targeted genome sequencing of 227 hearing loss related genes in 1027 patients with bilateral hearing loss and 520 healthy volunteers with normal hearing to comprehensively identify the molecular etiology of hereditary hearing loss in a large cohort from China. We obtained a diagnostic rate of 57.25% (588/1027) for the patients, while 4.67% (48/1027) of the patients were identified with uncertain diagnoses. Of the implicated 35 hearing loss genes, three common genes, including SLC26A4(278/588), GJB2(207/588), MT-RNR1(19/588), accounted for 85.54% (503/588) of the diagnosed cases, while 32 uncommon hearing loss genes, including MYO15A, MITF, OTOF, POU3F4, PTPN11, etc. accounted for the remaining diagnostic rate of 14.46% (85/588). Apart from Pendred syndrome, other eight types of syndromic hearing loss were also identified. Of the 64 uncertain significant variants and 244 pathogenic/likely pathogenic variants identified in the patients, 129 novel variants were also detected. Thus, the molecular etiology presented with high heterogeneity with the leading causes to be SLC26A4 and GJB2 genes in the Chinese hearing loss population. It’s urgent to develop a database of the ethnicity-matched healthy population as well as to perform functional studies for further classification of uncertain significant variants.
Collapse
|
24
|
Li MM, Tayoun AA, DiStefano M, Pandya A, Rehm HL, Robin NH, Schaefer AM, Yoshinaga-Itano C. Clinical evaluation and etiologic diagnosis of hearing loss: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2022; 24:1392-1406. [PMID: 35802133 DOI: 10.1016/j.gim.2022.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Hearing loss is a common and complex condition that can occur at any age, can be inherited or acquired, and is associated with a remarkably wide array of etiologies. The diverse causes of hearing loss, combined with the highly variable and often overlapping presentations of different forms of hearing loss, challenge the ability of traditional clinical evaluations to arrive at an etiologic diagnosis for many deaf and hard-of-hearing individuals. However, identifying the etiology of hearing loss may affect clinical management, improve prognostic accuracy, and refine genetic counseling and assessment of the likelihood of recurrence for relatives of deaf and hard-of-hearing individuals. Linguistic and cultural identities associated with being deaf or hard-of-hearing can complicate access to and the effectiveness of clinical care. These concerns can be minimized when genetic and other health care services are provided in a linguistically and culturally sensitive manner. This clinical practice resource offers information about the frequency, causes, and presentations of hearing loss and suggests approaches to the clinical and genetic evaluation of deaf and hard-of-hearing individuals aimed at identifying an etiologic diagnosis and providing informative and effective patient education and genetic counseling.
Collapse
Affiliation(s)
- Marilyn M Li
- Department of Pathology and Laboratory Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center, Al Jalila Children's Specialty Hospital, Mohammed Bin Rashid University, Dubai, United Arab Emirates
| | | | - Arti Pandya
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Nathaniel H Robin
- Departments of Genetics and Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Amanda M Schaefer
- Department of Otolaryngology-Head & Neck Surgery, Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA
| | | |
Collapse
|
25
|
Markova TG, Lalayants MR, Alekseeva NN, Ryzhkova OP, Shatokhina OL, Galeeva NM, Bliznetz EA, Weener ME, Belov OA, Chibisova SS, Polyakov AV, Tavartkiladze GA. Early audiological phenotype in patients with mutations in the USH2A gene. Int J Pediatr Otorhinolaryngol 2022; 157:111140. [PMID: 35452909 DOI: 10.1016/j.ijporl.2022.111140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Nowadays, due to universal newborn hearing screening (UNHS) the number of children with mild-to-moderate hearing loss diagnosed in the first year of life has increased significantly. Aside from that, identification of the genetic cause improves the genetic counselling of the families and allows to reveal possible comorbidities which may need a special approach. OBJECTIVE To present the characteristics of the early audiologic phenotype in hearing impaired patients with biallelic mutations in the USH2A gene based on systematic analysis of the audiological data. PATIENTS AND METHODS 13 patients with mutations in the USH2A gene underwent audiological examination. Most of them were found among a large group of infants with bilateral nonsyndromic sensorineural hearing loss (SNHL) examined under 12 months. RESULTS Eight out of eleven children failed UNHS and were initially diagnosed as having bilateral nonsyndromic SNHL. Seven children underwent an audiological assessment before the age of 9 months. The earliest audiological examination was carried out at 1 and 3 months. The children with pathogenic variants in the USH2A gene in our examined group were identified in the first year of life via UNHS. The hearing threshold levels (HTL) for the USH2A group are compactly distributed between 51.25 dB and 66.25 dB, quartiles are 54 dB and 63.4 dB, with a median of 60 dB. The audiological profile of patients with biallelic USH2A mutations differs from audiograms of patients who had STRC-related hearing loss. We have not found any significant elevation in hearing thresholds in the first decade of life. We also estimated the prevalence of the USH2A and STRC mutations among GJB2-negative infants with bilateral nonsyndromic SNHL examined under 12 months, and it was 7.5% and 16.1%, respectively. CONCLUSION According to our results, the early hearing phenotype in pediatric patients with biallelic mutations in the USH2A- gene is characterized by nonsyndromic mild-to-moderate SNHL in the first decade of life. Our results indicate that the presence of mutations in the USH2A or STRC genes can be expected in a child with congenital mild-to-moderate nonsyndromic SNHL. This information is of practical importance for parents, as they have to know the prognosis of hearing loss for their child from the very beginning. Post-screening follow-up should include adequate clinical, genetic, and social support for children and their parents.
Collapse
Affiliation(s)
- T G Markova
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, 117513, Russia; Russian Medical Academy of Continuing Professional Education, Moscow, 125993, Russia
| | - M R Lalayants
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, 117513, Russia; Russian Medical Academy of Continuing Professional Education, Moscow, 125993, Russia
| | - N N Alekseeva
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, 117513, Russia; Russian Medical Academy of Continuing Professional Education, Moscow, 125993, Russia
| | - O P Ryzhkova
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - O L Shatokhina
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - N M Galeeva
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - E A Bliznetz
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - M E Weener
- CRO LLC «Oftalmic», Moscow, 125167, Russia
| | - O A Belov
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, 117513, Russia
| | - S S Chibisova
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, 117513, Russia; Russian Medical Academy of Continuing Professional Education, Moscow, 125993, Russia
| | - A V Polyakov
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - G A Tavartkiladze
- National Research Centre for Audiology and Hearing Rehabilitation, Moscow, 117513, Russia; Russian Medical Academy of Continuing Professional Education, Moscow, 125993, Russia.
| |
Collapse
|
26
|
Searching for the Molecular Basis of Partial Deafness. Int J Mol Sci 2022; 23:ijms23116029. [PMID: 35682719 PMCID: PMC9181477 DOI: 10.3390/ijms23116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Hearing is an important human sense for communicating and connecting with others. Partial deafness (PD) is a common hearing problem, in which there is a down-sloping audiogram. In this study, we apply a practical system for classifying PD patients, used for treatment purposes, to distinguish two groups of patients: one with almost normal hearing thresholds at low frequencies (PDT-EC, n = 20), and a second group with poorer thresholds at those same low frequencies (PDT-EAS, n = 20). After performing comprehensive genetic testing with a panel of 237 genes, we found that genetic factors can explain a significant proportion of both PDT-EC and PDT-EAS hearing losses, accounting, respectively, for approx. one-fifth and one-half of all the cases in our cohort. Most of the causative variants were located in dominant and recessive genes previously linked to PD, but more than half of the variants were novel. Among the contributors to PDT-EC we identified OSBPL2 and SYNE4, two relatively new hereditary hearing loss genes with a low publication profile. Our study revealed that, for all PD patients, a postlingual hearing loss more severe in the low-frequency range is associated with a higher detection rate of causative variants. Isolating a genetic cause of PD is important in terms of prognosis, therapeutic effectiveness, and risk of recurrence.
Collapse
|
27
|
Zhang W, Song J, Tong B, Ma M, Guo L, Yuan Y, Yang J. Identification of a novel CNV at the EYA4 gene in a Chinese family with autosomal dominant nonsyndromic hearing loss. BMC Med Genomics 2022; 15:113. [PMID: 35578334 PMCID: PMC9109401 DOI: 10.1186/s12920-022-01269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hereditary hearing loss is a heterogeneous class of disorders that exhibits various patterns of inheritance and involves many genes. Variants in the EYA4 gene in DFNA10 are known to lead to postlingual, progressive, autosomal dominant nonsyndromic hereditary hearing loss. PATIENTS AND METHODS We collected a four-generation Chinese family with autosomal-dominant nonsyndromic hearing loss (ADNSHL). We applied targeted next-generation sequencing (TNGS) in three patients of this pedigree and whole-genome sequencing (WGS) in the proband. The intrafamilial cosegregation of the variant and the deafness phenotype were confirmed by PCR, gap-PCR and Sanger sequencing. RESULTS A novel CNV deletion at 6q23 in exons 8-11 of the EYA4 gene with a 10 bp insertion was identified by TNGS and WGS and segregated with the ADNSHL phenotypes. CONCLUSIONS Our results expanded the variant spectrum and genotype‒phenotype correlation of the EYA4 gene and autosomal dominant nonsyndromic hereditary hearing loss in Chinese Han individuals. WGS is an accurate and effective method for verifying the genomic features of CNVs.
Collapse
Affiliation(s)
- Weixun Zhang
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, 200031, China
- Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China, Shanghai, 20031, China
- Research Institute of Otolaryngology, Fudan University, Shanghai, 200031, China
- Lateral Skull Base Diagnosis and Treatment Center, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Jing Song
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, 200031, China
- Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China, Shanghai, 20031, China
- Research Institute of Otolaryngology, Fudan University, Shanghai, 200031, China
| | - Busheng Tong
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, Anhui, China
| | - Mengye Ma
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, 200031, China
- Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China, Shanghai, 20031, China
- Research Institute of Otolaryngology, Fudan University, Shanghai, 200031, China
| | - Luo Guo
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, 200031, China
- Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China, Shanghai, 20031, China
| | - Yasheng Yuan
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China.
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, 200031, China.
- Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China, Shanghai, 20031, China.
- Research Institute of Otolaryngology, Fudan University, Shanghai, 200031, China.
- Lateral Skull Base Diagnosis and Treatment Center, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China.
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China.
| | - Juanmei Yang
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China.
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, 200031, China.
- Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China, Shanghai, 20031, China.
- Research Institute of Otolaryngology, Fudan University, Shanghai, 200031, China.
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China.
| |
Collapse
|
28
|
Chen P, Wang L, Chai Y, Wu H, Yang T. Detection and Functional Verification of Noncanonical Splice Site Mutations in Hereditary Deafness. Front Genet 2021; 12:773922. [PMID: 34956325 PMCID: PMC8693380 DOI: 10.3389/fgene.2021.773922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Splice site mutations contribute to a significant portion of the genetic causes for mendelian disorders including deafness. By next-generation sequencing of 4 multiplex, autosomal dominant families and 2 simplex, autosomal recessive families with hereditary deafness, we identified a variety of candidate pathogenic variants in noncanonical splice sites of known deafness genes, which include c.1616+3A > T and c.580G > A in EYA4, c.322-57_322-8del in PAX3, c.991-15_991-13del in DFNA5, c.6087-3T > G in PTPRQ and c.164+5G > A in USH1G. All six variants were predicted to affect the RNA splicing by at least one of the computational tools Human Splicing Finder, NNSPLICE and NetGene2. Phenotypic segregation of the variants was confirmed in all families and is consistent with previously reported genotype-phenotype correlations of the corresponding genes. Minigene analysis showed that those splicing site variants likely have various negative impact including exon-skipping (c.1616+3A > T and c.580G > A in EYA4, c.991-15_991-13del in DFNA5), intron retention (c.322-57_322-8del in PAX3), exon skipping and intron retention (c.6087-3T > G in PTPRQ) and shortening of exon (c.164+5G > A in USH1G). Our study showed that the cryptic, noncanonical splice site mutations may play an important role in the molecular etiology of hereditary deafness, whose diagnosis can be facilitated by modified filtering criteria for the next-generation sequencing data, functional verification, as well as segregation, bioinformatics, and genotype-phenotype correlation analysis.
Collapse
Affiliation(s)
- Penghui Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Longhao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yongchuan Chai
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
29
|
Martini A, Sorrentino F, Sorrentino U, Cassina M. Genetics & Epigenetics of Hereditary Deafness: An Historical Overview. Audiol Res 2021; 11:629-635. [PMID: 34842610 PMCID: PMC8628574 DOI: 10.3390/audiolres11040057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Hearing loss (HL) is one of the most common sensory impairments worldwide and represents a critical medical and public health issue. Since the mid-1900s, great efforts have been aimed at understanding the etiology of both syndromic and non-syndromic HL and identifying correlations with specific audiological phenotypes. The extraordinary discoveries in the field of molecular genetics during the last three decades have contributed substantially to the current knowledge. Next-generation sequencing technologies have dramatically increased the diagnostic rate for genetic HL, enabling the detection of novel variants in known deafness-related genes and the discovery of new genes implicated in hearing disease. Overall, genetic factors account for at least 40% of the cases with HL, but a portion of affected patients still lack a definite molecular diagnosis. Important steps forward have been made, but many aspects still have to be clarified. In particular, the role of epigenetics in the development, function and pathology of hearing is a research field that still needs to be explored. This research is extremely challenging due to the time- and tissue-dependent variability of the epigenetic changes. Multisystem diseases are expected to be investigated at first: specific epi-signatures have been identified for several syndromic disorders and represent potential markers for molecular diagnostics.
Collapse
Affiliation(s)
- Alessandro Martini
- Padova University Research Center “International Auditory Processing Project in Venice (I-APPROVE)”, “Santi Giovanni e Paolo” Hospital, 30122 Venice, Italy
| | - Flavia Sorrentino
- Otolaryngology Unit, Department of Neurosciences, University of Padova, 35128 Padova, Italy;
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| |
Collapse
|
30
|
Botto C, Dalkara D, El-Amraoui A. Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Front Genome Ed 2021; 3:737632. [PMID: 34778871 PMCID: PMC8581640 DOI: 10.3389/fgeed.2021.737632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Blindness and deafness are the most frequent sensory disorders in humans. Whatever their cause - genetic, environmental, or due to toxic agents, or aging - the deterioration of these senses is often linked to irreversible damage to the light-sensing photoreceptor cells (blindness) and/or the mechanosensitive hair cells (deafness). Efforts are increasingly focused on preventing disease progression by correcting or replacing the blindness and deafness-causal pathogenic alleles. In recent years, gene replacement therapies for rare monogenic disorders of the retina have given positive results, leading to the marketing of the first gene therapy product for a form of childhood hereditary blindness. Promising results, with a partial restoration of auditory function, have also been reported in preclinical models of human deafness. Silencing approaches, including antisense oligonucleotides, adeno-associated virus (AAV)-mediated microRNA delivery, and genome-editing approaches have also been applied to various genetic forms of blindness and deafness The discovery of new DNA- and RNA-based CRISPR/Cas nucleases, and the new generations of base, prime, and RNA editors offers new possibilities for directly repairing point mutations and therapeutically restoring gene function. Thanks to easy access and immune-privilege status of self-contained compartments, the eye and the ear continue to be at the forefront of developing therapies for genetic diseases. Here, we review the ongoing applications and achievements of this new class of emerging therapeutics in the sensory organs of vision and hearing, highlighting the challenges ahead and the solutions to be overcome for their successful therapeutic application in vivo.
Collapse
Affiliation(s)
- Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
31
|
Yu S, Chen WX, Zhang YF, Ni Y, Lu P, Wang B, Wang Y, Wu B, Ni Q, Wang H, Xu ZM. Apparent homozygosity for a novel splicing variant in EPS8 causes congenital profound hearing loss. Eur J Med Genet 2021; 64:104362. [PMID: 34637946 DOI: 10.1016/j.ejmg.2021.104362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/17/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022]
Abstract
Autosomal recessive deafness-102 (DFNB102), a new profound prelingual non-syndromic hearing loss, is caused by mutations in the EPS8 gene. To date, only three such consanguineous families with three different homozygous variants in EPS8 have been reported. Here, we report the fourth case from a non-consanguineous Chinese family, an 11-month-old male infant presented with congenital profound non-syndromic hearing loss. Trio whole-exome sequencing initially identified the patient with a novel seemingly homozygous splicing variant NM_004447.5: c.1435-2A > T in intron 14 of the EPS8 gene and was inherited from his father; further CNVs analysis identified a novel 65.9 kb intragenic deletion and was inherited from his mother. The deletion is covering intron 14 that could account for the apparent homozygosity of the patient. In vitro splicing assay showed the variant c.1435-2A > T creates a new donor site at position c.1443, which is predicted to produce a stop codon after 14 additional amino acids (p.His479Cysfs*14). Furthermore, quantitative allele-specific expression assay showed that relative EPS8 gene expression in the patient significantly decreased (0-fold for the wild-type transcript and 0.25-0.27-fold for the mutant transcript) compared to the control (P < 0.05), indicating the pathogenicity of the identified variants. Overall, our study provides additional evidence that EPS8 is a causative gene for DFNB102 and highlights the clinical utility of simultaneous analysis of CNVs and SNVs to avoid potential errors in the diagnosis and interpretation of patients with apparent homozygosity.
Collapse
Affiliation(s)
- Sha Yu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wen-Xia Chen
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yun-Fei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yihua Ni
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ping Lu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bin Wang
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yan Wang
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qi Ni
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Zheng-Min Xu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
32
|
Yu S, Chen WX, Zhang YF, Chen C, Ni Y, Duan B, Wang H, Xu ZM. Recessive LOXHD1 variants cause a prelingual down-sloping hearing loss: genotype-phenotype correlation and three additional children with novel variants. Int J Pediatr Otorhinolaryngol 2021; 145:110715. [PMID: 33892339 DOI: 10.1016/j.ijporl.2021.110715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/06/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Biallelic mutations in LOXHD1 have been identified as the cause of DFNB77 (deafness, autosomal recessive 77). It is a new progressive, severe-to-profound, and late-onset nonsyndromic sensorineural hearing loss (NSHL), and is highly heterogeneous genetically and phenotypically. This study aimed to provide an additional three cases of DFNB77. METHODS We presented three unrelated children diagnosed with prelingual mild-to-severe NSHL, and their audiograms showed mild hearing loss at 250 Hz before downsloping to a moderate-to-severe degree. Trio whole-exome sequencing (WES) was conducted to identify the pathogenic variants. Additionally, we reviewed the literature to further analyze the relationships between the genotype and audiology phenotype of LOXHD1. RESULTS Six novel possible pathogenic LOXHD1 variants were identified, including three missense, one nonsense, and two splicing variants. The literature review showed that 68.5% of patients with DFNB77 onset before five years old; Most variants (62%) were associated with a down-sloping audiogram of mild-to-moderate hearing loss at low frequencies (200Hz, 500Hz), particularly variants in the protein domain of PLAT 9. We found that compared with homozygous LOXHD1 variants, individuals with heterozygous compound variants had a significantly milder phenotype, especially individuals carrying one missense and one splicing or bi-allelic missense variants (P < 0.05). Audiometric analysis at different ages showed that the hearing loss degree was aggravated at all frequencies by increasing age. CONCLUSIONS We report three children with prelingual NSHL carrying six novel LOXHD1 variants. Furthermore, our work indicates that DFNB77 may be milder than previously reported and recommends considering the genotype combination and mutation location of LOXHD1 and race-specificity in DFNB77 molecular diagnoses and management.
Collapse
Affiliation(s)
- Sha Yu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wen-Xia Chen
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yun-Fei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chao Chen
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yihua Ni
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bo Duan
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Zheng-Min Xu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
33
|
Bassani S, Beelen E, Rossel M, Voisin N, Morgan A, Arribat Y, Chatron N, Chrast J, Cocca M, Delprat B, Faletra F, Giannuzzi G, Guex N, Machavoine R, Pradervand S, Smits JJ, van de Kamp JM, Ziegler A, Amati F, Marlin S, Kremer H, Locher H, Maurice T, Gasparini P, Girotto G, Reymond A. Variants in USP48 encoding ubiquitin hydrolase are associated with autosomal dominant non-syndromic hereditary hearing loss. Hum Mol Genet 2021; 30:1785-1796. [PMID: 34059922 DOI: 10.1093/hmg/ddab145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Non-Syndromic Hereditary Hearing Loss (NSHHL) is a genetically heterogeneous sensory disorder with about 120 genes already associated. Through exome sequencing and data aggregation, we identified a family with six affected individuals and one unrelated NSHHL patient with predicted-to-be deleterious missense variants in USP48. We also uncovered an eighth patient presenting unilateral cochlear nerve aplasia and a de novo splice variant in the same gene. USP48 encodes a ubiquitin carboxyl-terminal hydrolase under evolutionary constraint. Pathogenicity of the variants is supported by in vitro assays that showed that the mutated proteins are unable to hydrolyze tetra-ubiquitin. Correspondingly, three-dimensional representation of the protein containing the familial missense variant affects a loop that controls binding to ubiquitin. Consistent with a contribution of USP48 to auditory function, immunohistology showed that the encoded protein is expressed in the developing human inner ear, specifically in the spiral ganglion neurons, outer sulcus, interdental cells of the spiral limbus, stria vascularis, Reissner's membrane, and in the transient Kolliker's organ that is essential for auditory development. Engineered zebrafish knocked-down for usp48, the USP48 ortholog, presented with a delayed development of primary motor neurons, less developed statoacoustic neurons innervating the ears, decreased swimming velocity and circling swimming behavior indicative of vestibular dysfunction and hearing impairment. Corroboratingly, acoustic startle response assays revealed a significant decrease of auditory response of zebrafish lacking usp48 at 600 Hz and 800 Hz wavelengths. In conclusion, we describe a novel autosomal dominant NSHHL gene through a multipronged approach combining exome sequencing, animal modeling, immunohistology and molecular assays.
Collapse
Affiliation(s)
- Sissy Bassani
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Edward Beelen
- Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Anna Morgan
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health, IRCCS, Burlo Garofolo, Trieste, Italy
| | - Yoan Arribat
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Chatron
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Massimiliano Cocca
- Institute for Maternal and Child Health, IRCCS, Burlo Garofolo, Trieste, Italy
| | | | - Flavio Faletra
- Institute for Maternal and Child Health, IRCCS, Burlo Garofolo, Trieste, Italy
| | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Roxane Machavoine
- Centre de référence Surdités Génétiques, Hôpital Necker, Institut Imagine, Paris, France
| | - Sylvain Pradervand
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Jeroen J Smits
- Department of Otorhinolaryngology and Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jiddeke M van de Kamp
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alban Ziegler
- Centre de référence Surdités Génétiques, Hôpital Necker, Institut Imagine, Paris, France
| | - Francesca Amati
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sandrine Marlin
- Centre de référence Surdités Génétiques, Hôpital Necker, Institut Imagine, Paris, France
| | - Hannie Kremer
- Department of Otorhinolaryngology and Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heiko Locher
- Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health, IRCCS, Burlo Garofolo, Trieste, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health, IRCCS, Burlo Garofolo, Trieste, Italy
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
TBC1D24 emerges as an important contributor to progressive postlingual dominant hearing loss. Sci Rep 2021; 11:10300. [PMID: 33986365 PMCID: PMC8119487 DOI: 10.1038/s41598-021-89645-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 11/08/2022] Open
Abstract
Several TBC1D24 variants are causally involved in the development of profound, prelingual hearing loss (HL) and different epilepsy syndromes inherited in an autosomal recessive manner. Only two TBC1D24 pathogenic variants have been linked with postlingual progressive autosomal dominant HL (ADHL). To determine the role of TBC1D24 in the development of ADHL and to characterize the TBC1D24-related ADHL, clinical exome sequencing or targeted multigene (n = 237) panel were performed for probands (n = 102) from multigenerational ADHL families. In four families, TBC1D24-related HL was found based on the identification of three novel, likely pathogenic (c.553G>A, p.Asp185Asn; c.1460A>T, p. His487Leu or c.1461C>G, p.His487Gln) and one known (c.533C>T, p.Ser178Leu) TBC1D24 variant. Functional consequences of these variants were characterized by analyzing the proposed homology models of the human TBC1D24 protein. Variants not only in the TBC (p.Ser178Leu, p.Asp185Asn) but also in the TLDc domain (p.His487Gln, p.His487Leu) are involved in ADHL development, the latter two mutations probably affecting interactions between the domains. Clinically, progressive HL involving mainly mid and high frequencies was observed in the patients (n = 29). The progression of HL was calculated by constructing age-related typical audiograms. TBC1D24-related ADHL originates from the cochlear component of the auditory system, becomes apparent usually in the second decade of life and accounts for approximately 4% of ADHL cases. Given the high genetic heterogeneity of ADHL, TBC1D24 emerges as an important contributor to this type of HL.
Collapse
|
35
|
Skarżyński H. The role of next generation sequencing in predicting hearing loss. Expert Rev Mol Diagn 2021; 21:347-348. [PMID: 33706655 DOI: 10.1080/14737159.2021.1902313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Henryk Skarżyński
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany/Warsaw, Poland
| |
Collapse
|
36
|
Abstract
Mitochondrial dysfunction has been suggested to be a risk factor for sensorineural hearing loss (SNHL) induced by aging, noise, ototoxic drugs, and gene. Reactive oxygen species (ROS) are mainly derived from mitochondria, and oxidative stress induced by ROS contributes to cochlear damage as well as mitochondrial DNA mutations, which may enhance the sensitivity and severity of hearing loss and disrupt ion homeostasis (e.g., Ca2+ homeostasis). The formation and accumulation of ROS further undermine mitochondrial components and ultimately lead to apoptosis and necrosis. SIRT3–5, located in mitochondria, belong to the family of sirtuins, which are highly conserved deacetylases dependent on nicotinamide adenine dinucleotide (NAD+). These deacetylases regulate diverse cellular biochemical activities. Recent studies have revealed that mitochondrial sirtuins, especially SIRT3, modulate ROS levels in hearing loss pathologies. Although the precise functions of SIRT4 and SIRT5 in the cochlea remain unclear, the molecular mechanisms in other tissues indicate a potential protective effect against hearing loss. In this review, we summarize the current knowledge regarding the role of mitochondrial dysfunction in hearing loss, discuss possible functional links between mitochondrial sirtuins and SNHL, and propose a perspective that SIRT3–5 have a positive effect on SNHL.
Collapse
|
37
|
Tang X, Liu L, Liang S, Liang M, Liao T, Luo S, Yan T, Chen J. Concurrent Newborn Hearing and Genetic Screening in a Multi-Ethnic Population in South China. Front Pediatr 2021; 9:734300. [PMID: 34917556 PMCID: PMC8669824 DOI: 10.3389/fped.2021.734300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Hearing loss is a common sensory deficit in humans with intricate genomic landscape and mutational signature. Approximately 1-3 out of 1,000 newborns have hearing loss and up to 60% of these cases have a genetic etiology. In this study, we conducted the concurrent newborn hearing and genetic screening in 20 mutations (18 pathogenic variants in GJB2, SLC26A4, and MT-RNR1 and 2 uncertain clinical significance variants in GJB3) for 9,506 normal newborns (4,977 [52.4%] males) from 22 ethnic population in South China. A total of 1,079 (11.4%) newborns failed to pass the initial hearing screening; 160 (1.7%) infants failed to pass the re-screening, and 135 (1.4%) infants presented the diagnostic hearing loss. For the genetic screening, 220 (2.3%) newborns who presented at least one of the screened mutations were more likely to fail the hearing screening and have diagnostic hearing loss than mutation-negative newborns. In comparison to the differences of distribution of mutations, we did not identify any significant difference in the prevalence of screened mutations between Han group (n = 5,265) and Zhuang group (n = 3,464), despite the lack of number of minority ethnic groups. Studies including larger number of minority ethnic populations are needed in the future.
Collapse
Affiliation(s)
- Xiangrong Tang
- Department of Otolaryngology-Head and Neck Surgery, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Lihua Liu
- Department of Otolaryngology-Head and Neck Surgery, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Sulan Liang
- Department of Otolaryngology-Head and Neck Surgery, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Meie Liang
- Department of Otolaryngology-Head and Neck Surgery, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Tao Liao
- Department of Obstetrics, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Shiqiang Luo
- Department of Medical Genetics, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Tizhen Yan
- Department of Medical Genetics, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Jianping Chen
- Department of Children's Health Care, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| |
Collapse
|
38
|
Improving the Management of Patients with Hearing Loss by the Implementation of an NGS Panel in Clinical Practice. Genes (Basel) 2020; 11:genes11121467. [PMID: 33297549 PMCID: PMC7762334 DOI: 10.3390/genes11121467] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
A cohort of 128 patients from 118 families diagnosed with non-syndromic or syndromic hearing loss (HL) underwent an exhaustive clinical evaluation. Molecular analysis was performed using targeted next-generation sequencing (NGS) with a custom panel that included 59 genes associated with non-syndromic HL or syndromic HL. Variants were prioritized according to the minimum allele frequency and classified according to the American College of Medical Genetics and Genomics guidelines. Variant(s) responsible for the disease were detected in a 40% of families including autosomal recessive (AR), autosomal dominant (AD) and X-linked patterns of inheritance. We identified pathogenic or likely pathogenic variants in 26 different genes, 15 with AR inheritance pattern, 9 with AD and 2 that are X-linked. Fourteen of the found variants are novel. This study highlights the clinical utility of targeted NGS for sensorineural hearing loss. The optimal panel for HL must be designed according to the spectrum of the most represented genes in a given population and the laboratory capabilities considering the pressure on healthcare.
Collapse
|
39
|
Homozygous mutations in Pakistani consanguineous families with prelingual nonsyndromic hearing loss. Mol Biol Rep 2020; 47:9979-9985. [PMID: 33269433 DOI: 10.1007/s11033-020-06037-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
Autosomal recessive nonsyndromic hearing loss (DFNB) is relatively frequent in Pakistan, which is thought to be mainly due to relatively frequent consanguinity. DFNB genes vary widely in their kinds and functions making molecular diagnosis difficult. This study determined the genetic causes in five Pakistani DFNB families with prelingual onset. The familial genetic analysis identified four pathogenic or likely pathogenic homozygous mutations by whole exome sequencing: two splicing donor site mutations of c.787+1G>A in ESRRB (DFNB35) and c.637+1G>T in CABP2 (DFNB93) and two missense mutations of c.7814A>G (p.Asn2605Ser) in CDH23 (DFNB12) and c.242G>A (p.Arg81His) in TMIE (DFNB6). The ESRRB and TMIE mutations were novel, and the TMIE mutation was observed in two families. The two missense mutations were located at well conserved sites and in silico analysis predicted their pathogenicity. This study identified four homozygous mutations as the underlying cause of DFNB including two novel mutations. This study will be helpful for the exact molecular diagnosis and treatment of deafness patients.
Collapse
|
40
|
Mittal R, Bencie N, Liu G, Eshraghi N, Nisenbaum E, Blanton SH, Yan D, Mittal J, Dinh CT, Young JI, Gong F, Liu XZ. Recent advancements in understanding the role of epigenetics in the auditory system. Gene 2020; 761:144996. [PMID: 32738421 PMCID: PMC8168289 DOI: 10.1016/j.gene.2020.144996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
Sensorineural deafness in mammals is most commonly caused by damage to inner ear sensory epithelia, or hair cells, and can be attributed to genetic and environmental causes. After undergoing trauma, many non-mammalian organisms, including reptiles, birds, and zebrafish, are capable of regenerating damaged hair cells. Mammals, however, are not capable of regenerating damaged inner ear sensory epithelia, so that hair cell damage is permanent and can lead to hearing loss. The field of epigenetics, which is the study of various phenotypic changes caused by modification of genetic expression rather than alteration of DNA sequence, has seen numerous developments in uncovering biological mechanisms of gene expression and creating various medical treatments. However, there is a lack of information on the precise contribution of epigenetic modifications in the auditory system, specifically regarding their correlation with development of inner ear (cochlea) and consequent hearing impairment. Current studies have suggested that epigenetic modifications influence differentiation, development, and protection of auditory hair cells in cochlea, and can lead to hair cell degeneration. The objective of this article is to review the existing literature and discuss the advancements made in understanding epigenetic modifications of inner ear sensory epithelial cells. The analysis of the emerging epigenetic mechanisms related to inner ear sensory epithelial cells development, differentiation, protection, and regeneration will pave the way to develop novel therapeutic strategies for hearing loss.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicole Bencie
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - George Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicolas Eshraghi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric Nisenbaum
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan I Young
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng Gong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
41
|
Clinical features of hearing loss caused by STRC gene deletions/mutations in Russian population. Int J Pediatr Otorhinolaryngol 2020; 138:110247. [PMID: 32705992 DOI: 10.1016/j.ijporl.2020.110247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
UNLABELLED Congenital sensorineural hearing loss is related to mutations in numerous genes encoding the structures of the inner ear in majority of the cases. Mutations in GJB2 gene are the most frequently identified causes of congenital nonsyndromal hearing loss. GJB2 gene testing became a routine clinical tool. For GJB2-negative patients new genetic approaches including methods based on new generation sequencing give a chance to identify mutations in other genes. The frequent reason of mild-to-moderate hearing loss such as the deletions/mutations of the gene STRC encoding stereocilin protein were recognized (OMIM: 606440). OBJECTIVES To evaluate the audiological features in hearing impaired patients with deletions and point mutations in the STRC gene. PATIENTS AND METHODS The group of 28 patients from 21 unrelated families with pathological mutations in the STRC gene underwent audiological examination. The description and analysis of the results of full audiological examination was provided. RESULTS All patients initially had bilateral nonsyndromal sensorineural hearing loss. Among 11 homozygotes of large deletion harboring STRC to CATSPER2 genes were 7 male individuals indicating the presence of male infertility syndrome. In general, 7 children failed audiological screening and 4 children underwent audiological assessment in the age of 3 and 6 months. The most frequently hearing thresholds were registered between 35 and 55 dB that corresponds to mild-to-moderate hearing impairment. The average age of diagnostics was 7.9 years (ranged from 3 months to 45 years). In the majority of patients the audiological profiles were flat or descending with elevation of thresholds at middle and high frequencies and relatively preserved thresholds at low frequencies. Hearing thresholds are symmetric and stable with age. CONCLUSION STRC-linked hearing loss is congenital, of mild and moderate severity. Special clinical and genetic approach for children who failed newborn hearing screening with mild-to-moderate hearing loss is necessary.
Collapse
|
42
|
Recent advancements in understanding the role of epigenetics in the auditory system. Gene 2020. [DOI: 10.1016/j.gene.2020.144996
expr 848609818 + 898508594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
43
|
Gallego-Martinez A, Lopez-Escamez JA. Genetic architecture of Meniere’s disease. Hear Res 2020; 397:107872. [DOI: 10.1016/j.heares.2019.107872] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 01/26/2023]
|
44
|
Zheng L, Yuan H, Zhang M, Wang C, Cai X, Liu J, Xu XQ. Rbm24 regulates inner-ear-specific alternative splicing and is essential for maintaining auditory and motor coordination. RNA Biol 2020; 18:468-480. [PMID: 32887533 DOI: 10.1080/15476286.2020.1817265] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tissue-specific alternative splicing (AS) is emerging as one of the most exciting types of mechanisms associated with organ development and disease. In the auditory system, many hearing-related genes undergo AS, and errors in this process result in syndromic or non-syndromic hearing loss. However, little is known about the factors and mechanisms directing AS in the inner ear. In the present study, we identified a novel RNA-binding protein, Rbm24, which was critically involved in regulating inner-ear-specific AS. Rbm24 deletion resulted in hearing loss and defects in motor coordination. Global splicing analysis showed Rbm24 was required for correct splicing of a subset of pre-mRNA transcripts with essential roles in stereocilia integrity and survival of hair cells. Furthermore, we identified that Rbm24 directly regulated the splicing of Cdh23, a known disease gene responsible for human Usher syndrome 1D and non-syndromic autosomal recessive deafness DFNB12. In conclusion, our findings demonstrated that Rbm24 was a critical factor in regulating inner-ear-specific splicing and maintaining the hearing and motor coordination function of the inner ear. Our data not only offer mechanistic insights but also provide functional annotation of Rbm24 splicing targets that contribute to hearing loss.
Collapse
Affiliation(s)
- Longqing Zheng
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Huijun Yuan
- Medical Genetics Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mengkai Zhang
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Cuicui Wang
- Medical Genetics Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xuemin Cai
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Jing Liu
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, China.,Shenzhen Research Institute, Xiamen University, P.R. China
| | - Xiu Qin Xu
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
45
|
Zhang L, Wu X, Lin X. Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hear Res 2020; 394:107858. [PMID: 31791650 DOI: 10.1016/j.heares.2019.107858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Congenital hearing loss (HL) affects about 1 in every 500 infants. Among those affected more than half are caused by genetic mutations. According to the cellular sites affected by mutations in the cochlea, deafness genes could be classified into three major groups: those affecting the function of hair cells and synapses, cochlear supporting cells, and cells in the stria vascularis (SV) as well as in the lateral wall. The second and third groups account for more than half of all sensorineural hearing loss (SNHL) cases caused by genetic mutations. Current major treatment options for SNHL patients are hearing aids and cochlear implants (CIs). Hearing aids can only help patients with moderate to severe HL. Resolution of CIs is still improving and these devices are quite expensive especially when lifetime rehabilitation and maintenance costs are included. Tremendous efforts have been made to find novel treatments that are expected to restore hearing with higher-resolution and more natural quality, and to have a significantly lower cost over the lifetime of uses. Gene therapy studies have made impressive progresses in preclinical trials. This review focuses on deafness genes that affect supporting cells and cells in the SV of the cochlea. We will discuss recent progresses and remaining challenges for gene therapies targeting mutations in deafness genes belonging to this category.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xuewen Wu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA.
| |
Collapse
|
46
|
Markova TG, Alekseeva NN, Mironovich OL, Bliznets EA, Lalayants MR, Polyakov AV, Tavartkiladze GA. [Hearing loss due to mutations or lack of the gene coding protein stereocillin]. Vestn Otorinolaringol 2020; 85:14-20. [PMID: 32476383 DOI: 10.17116/otorino20208502114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The description of a clinical picture and audiological features at the hearing loss caused by changes of a STRC gene, coding protein stereocillin (MIM: 606440). Mutations in the numerous genes responsible for the inner ear proteins are the reason for congenital sensorineural hearing loss. The main cause of congenital bilateral sensorineural hearing loss in the Russian Federation are mutations in GJB2 gene it reaches up 68% of cases identified in infancy. GJB2 gene tests already became routine around the world. Possibilities of new methods based on sequencing of new generation (NGS, next generation sequencing) allow to conduct a research of more rare genes connected with a hearing impairment. The most often among GJB2 negative patients reveal mutations and deletion of a gene of STRC. PATIENTS AND METHODS Full audiological examination of 5 children and one adult with a hearing loss from 2 unrelated families is provided. Mutations in STRC gene were identified. All children are examined aged before 8 years, and 3 children failed universal audiological screening in maternity hospital, to two children screening was not carried out as they were born till 2009. RESULTS The children with the sensorineural hearing loss connected with mutations and deletion of STRC gene failed hearing screening in maternity hospital because of the OAE is not registered, what indicates the congenital nature of a hearing loss. Recently it could not be noticed earlier because of slight increase of hearing thresholds and was regarded only as the early onset. Our data emphasize that the of thresholds from 35 to 60 dB in frequencies 0,5-4 kHz is common for mutations/deletions of STRC gene. CONCLUSION The development of molecular genetics methods confirms the hereditary causes of GJB2-negative patients and expands indications for family counseling. Special approach for child with hearing loss so early revealed is necessary and the consultation of parents frightened of screening results is very important.
Collapse
Affiliation(s)
- T G Markova
- National Resarch Center for Audiology and Hearing Rehabilitation, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education of the Ministry of Health of Russia, Moscow, Russia
| | - N N Alekseeva
- National Resarch Center for Audiology and Hearing Rehabilitation, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education of the Ministry of Health of Russia, Moscow, Russia
| | - O L Mironovich
- Academician N.P. Bochkov Medical and Genetic Research Center, Moscow, Russia
| | - E A Bliznets
- Academician N.P. Bochkov Medical and Genetic Research Center, Moscow, Russia
| | - M R Lalayants
- National Resarch Center for Audiology and Hearing Rehabilitation, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education of the Ministry of Health of Russia, Moscow, Russia
| | - A V Polyakov
- Academician N.P. Bochkov Medical and Genetic Research Center, Moscow, Russia
| | - G A Tavartkiladze
- National Resarch Center for Audiology and Hearing Rehabilitation, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education of the Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
47
|
Wang M, Li Q, Deng A, Zhu X, Yang J. Identification of a novel mutation in CRYM in a Chinese family with hearing loss using whole-exome sequencing. Exp Ther Med 2020; 20:1447-1454. [PMID: 32742378 PMCID: PMC7388290 DOI: 10.3892/etm.2020.8890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/07/2020] [Indexed: 12/26/2022] Open
Abstract
Previous studies have identified ~50 genes that contribute to non-syndromic autosomal dominant sensorineural deafness (DFNA). However, in numerous families with hearing loss, the specific gene mutation remains to be identified. In the present study, the clinical characteristics and gene mutations were analyzed in a Chinese pedigree with hereditary hearing loss. The clinical characteristics of the family members were assessed and a detailed audiology function examination was performed. Whole-exome sequencing (WES) was performed to identify the gene mutation responsible for the hearing loss. Sanger sequencing was used to verify the candidate mutation detected in the family. The family consisted of 31 members, seven of whom were diagnosed with sensorineural deafness of varying degrees. No mutation was identified by the general deafness gene chip. However, a novel heterozygous mutation in exon 3 (c.152C>T; Pro51Leu) of the gene crystallin µ (CRYM) was identified by WES. This result was further verified by Sanger sequencing. Co-segregation of genotypes and phenotypes suggested that this novel mutation was instrumental for the hearing loss/DFNA. In conclusion, the present study identified a novel pathogenic mutation, NM_001888.5(CRYM): c.152C>T(Pro51Leu), associated with DFNA. This mutation has not been reported previously and further functional studies are warranted.
Collapse
Affiliation(s)
- Min Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Qian Li
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Anchun Deng
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Xianbai Zhu
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Junjie Yang
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
48
|
Four Novel Variants in POU4F3 Cause Autosomal Dominant Nonsyndromic Hearing Loss. Neural Plast 2020; 2020:6137083. [PMID: 32684921 PMCID: PMC7349627 DOI: 10.1155/2020/6137083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
Hereditary hearing loss is one of the most common sensory disabilities worldwide. Mutation of POU domain class 4 transcription factor 3 (POU4F3) is considered the pathogenic cause of autosomal dominant nonsyndromic hearing loss (ADNSHL), designated as autosomal dominant nonsyndromic deafness 15. In this study, four novel variants in POU4F3, c.696G>T (p.Glu232Asp), c.325C>T (p.His109Tyr), c.635T>C (p.Leu212Pro), and c.183delG (p.Ala62Argfs∗22), were identified in four different Chinese families with ADNSHL by targeted next-generation sequencing and Sanger sequencing. Based on the American College of Medical Genetics and Genomics guidelines, c.183delG (p.Ala62Argfs∗22) is classified as a pathogenic variant, c.696G>T (p.Glu232Asp) and c.635T>C (p.Leu212Pro) are classified as likely pathogenic variants, and c.325C>T (p.His109Tyr) is classified as a variant of uncertain significance. Based on previous reports and the results of this study, we speculated that POU4F3 pathogenic variants are significant contributors to ADNSHL in the East Asian population. Therefore, screening of POU4F3 should be a routine examination for the diagnosis of hereditary hearing loss.
Collapse
|
49
|
Malesci R, Russo R, Monzillo C, Laria C, Corvino V, Auletta G, Iolascon A, Franzè A. Bimodal strategy for excellent audiological rehabilitation in a subject with a novel nonsense mutation of the SLC26A4 gene: A case report. Int J Pediatr Otorhinolaryngol 2020; 134:110018. [PMID: 32251972 DOI: 10.1016/j.ijporl.2020.110018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Sensorineural hearing loss is a heterogeneous disease caused by mutations in many genes. However, in the presence of enlarged vestibular aqueduct, it is frequently associated with mutations in the solute carrier family 26 member 4 (SLC26A4), a gene causative of a syndromic form (Pendred) as well as a non-syndromic form of hearing loss (DFNB4). We describe a clinical case presenting bilateral sensorineural hearing loss and enlarged vestibular aqueduct in which a novel homozygous SLC26A4 mutation was identified. Despite a late diagnosis of hearing loss, a peculiar rehabilitation therapy strategy was identified that provided excellent results.
Collapse
Affiliation(s)
- Rita Malesci
- Institute of Audiology, Dept. of Neurosciences, Reproductive and Odontostomatologic Sciences, University of Naples Federico II, Naples, Italy.
| | - Roberta Russo
- Dept. of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy; CEINGE- Advanced Biotechnologies, Naples, Italy.
| | - Carmela Monzillo
- Institute of Audiology, Dept. of Neurosciences, Reproductive and Odontostomatologic Sciences, University of Naples Federico II, Naples, Italy.
| | - Carla Laria
- Institute of Audiology, Dept. of Neurosciences, Reproductive and Odontostomatologic Sciences, University of Naples Federico II, Naples, Italy.
| | - Virginia Corvino
- Institute of Audiology, Dept. of Neurosciences, Reproductive and Odontostomatologic Sciences, University of Naples Federico II, Naples, Italy.
| | - Gennaro Auletta
- Institute of Audiology, Dept. of Neurosciences, Reproductive and Odontostomatologic Sciences, University of Naples Federico II, Naples, Italy.
| | - Achille Iolascon
- Dept. of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy; CEINGE- Advanced Biotechnologies, Naples, Italy.
| | - Annamaria Franzè
- Institute of Audiology, Dept. of Neurosciences, Reproductive and Odontostomatologic Sciences, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies, Naples, Italy.
| |
Collapse
|
50
|
IN RESPONSE TO THE LETTER TO THE EDITOR: AGE-RELATED HEARING LOSS IS STRONGLY ASSOCIATED WITH COGNITIVE DECLINE REGARDLESS OF THE APOE4 POLYMORPHISM. Otol Neurotol 2020; 41:718-719. [PMID: 32412726 DOI: 10.1097/mao.0000000000002663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|