1
|
Ma N, Xia L, Zheng Z, Chen X, Xing W, Feng Y. Silencing of TXNIP attenuates oxidative stress injury in HEI-OC1 by inhibiting the activation of NLRP3 and NF-κB. Heliyon 2024; 10:e37753. [PMID: 39381226 PMCID: PMC11458984 DOI: 10.1016/j.heliyon.2024.e37753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common type of hearing loss worldwide. The primary mechanism is oxidative injury to the cochlea as a result of oxidative stress. Therefore, exploring antioxidant strategies is particularly important in addressing SNHL.Thioredoxin-interacting protein (TXNIP) is an upstream target of oxidative stress-induced damage, and the NOD-like receptor protein 3 (NLRP3) and NF-κB pathways may be the main downstream molecular pathways, but this has not been reported in SNHL. Therefore, we investigated the molecular mechanism and role of TXNIP in oxidative stress injury induced by H2O2 in the HEI-OC1 auditory cells. To induce oxidative stress, HEI-OC1 cells were treated with H2O2. The TXNIP expression was measured by western blotting and Immunofluorescence. Intracellular TXNIP was knocked down using small interfering RNAs (siRNAs). Cell viability was measured by CCK8, total intracellular reactive oxygen species (ROS) by DCFH-DA, mitochondrial ROS by Mito-SOX, NLRP3, pro-caspase-1, total p65 NF-κB, and phospho-p65 NF-κB expression were measured by western blotting. Statistical analyses were performed using one-way analysis of variance, and p < 0.05 was considered statistically significant. We found that H2O2 treatment induced oxidative stress injury in HEI-OC1 cells, as evidenced by decreased cell viability and increased total intracellular and mitochondrial ROS levels (p < 0.05). TXNIP expression was elevated, and NLRP3 and NF-κB were activated (p < 0.05). Moreover, siRNA-TXINIP co-treatment reversed these changes and protected HEI-OC1 cells from oxidative stress (p < 0.05). We concluded that H2O2-induced oxidative stress in HEI-OC1 cells was alleviated by TXNIP inhibition. The finding may provide new insight into the prevention and treatment of SNHL.
Collapse
Affiliation(s)
- Ning Ma
- Post Graduate Training Base of Jinzhou Medical University in Shanghai Six People's Hospital, Jinzhou, China
| | - Liang Xia
- Department of Otolaryngology–Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhong Zheng
- Department of Otolaryngology–Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiaoyan Chen
- Department of Otolaryngology–Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Weiwei Xing
- Department of Otolaryngology–Head and Neck Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanmei Feng
- Department of Otolaryngology–Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
2
|
Pan J, Wang K, Qu J, Chen D, Chen A, You Y, Tang J, Zhang H. Activated tissue-resident macrophages contribute to hair cell insults in noise-induced hearing loss in mice. Commun Biol 2024; 7:1078. [PMID: 39223249 PMCID: PMC11368919 DOI: 10.1038/s42003-024-06768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages serve as the primary immune cell population and assume a pivotal role in the immune response within the damaged cochleae. Yet, the origin and role of macrophages in response to noise exposure remain controversial. Here, we take advantage of Ccr2RFP/+ Cx3cr1GFP/+ dual-reporter mice to identify the infiltrated and tissue-resident macrophages. After noise exposure, we reveal that activated resident macrophages change in morphology, increase in abundance, and migrate to the region of hair cells, leading to the loss of outer hair cells and the damage of ribbon synapses. Meanwhile, peripheral monocytes are not implicated in the noise-induced hair cell insults. These noise-induced activities of macrophages are abolished by inhibiting TLR4 signaling, resulting in alleviated insults of hair cells and partial recovery of hearing. Our findings indicate cochlear resident macrophages are pro-inflammatory and detrimental players in acoustic trauma and introduce a potential therapeutic target in noise-induced hearing loss.
Collapse
Affiliation(s)
- Jing Pan
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Kaiye Wang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jiaxi Qu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Dongxiu Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Anning Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yunyou You
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jie Tang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
3
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Sailor-Longsworth E, Lutze RD, Ingersoll MA, Kelmann RG, Ly K, Currier D, Chen T, Zuo J, Teitz T. Oseltamivir (Tamiflu), a Commonly Prescribed Antiviral Drug, Mitigates Hearing Loss in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592815. [PMID: 38765999 PMCID: PMC11100672 DOI: 10.1101/2024.05.06.592815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hearing loss affects up to 10% of all people worldwide, but currently there is only one FDA-approved drug for its prevention in a subgroup of cisplatin-treated pediatric patients. Here, we performed an unbiased screen of 1,300 FDA-approved drugs for protection against cisplatin-induced cell death in an inner ear cell line, and identified oseltamivir phosphate (brand name Tamiflu), a common influenza antiviral drug, as a top candidate. Oseltamivir phosphate was found to be otoprotective by oral delivery in multiple established cisplatin and noise exposure mouse models. The drug conferred permanent hearing protection of 15-25 dB SPL for both female and male mice. Oseltamivir treatment reduced in mice outer hair cells death after cisplatin treatment and mitigated cochlear synaptopathy after noise exposure. A potential binding protein, ERK1/2, associated with inflammation, was shown to be activated with cisplatin treatment and reduced by oseltamivir cotreatment in cochlear explants. Importantly, the number of infiltrating immune cells to the cochleae in mice post noise exposure, were significantly reduced with oseltamivir treatment, suggesting an anti-inflammatory mechanism of action. Our results support oseltamivir, a widespread drug for influenza with low side effects, as a promising otoprotective therapeutic candidate in both cisplatin chemotherapy and traumatic noise exposure.
Collapse
Affiliation(s)
- Emma Sailor-Longsworth
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Kristina Ly
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
5
|
YAMAGUCHI T, YONEYAMA M, ONAKA Y, OGITA K. A novel model of sensorineural hearing loss induced by repeated exposure to moderate noise in mice: the preventive effect of resveratrol. J Vet Med Sci 2024; 86:381-388. [PMID: 38369331 PMCID: PMC11061573 DOI: 10.1292/jvms.23-0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/04/2024] [Indexed: 02/20/2024] Open
Abstract
Sensorineural hearing loss (SNHL) induced by noise has increased in recent years due to personal headphone use and noisy urban environments. The study shows a novel model of gradually progressive SNHL induced by repeated exposure to moderate noise (8-kHz octave band noise, 90-dB sound pressure level) for 1 hr exposure per day in BALB/cCr mice. The results showed that the repeated exposure led to gradually progressive SNHL, which was dependent on the number of exposures, and resulted in permanent hearing loss after 5 exposures. Repeated exposure to noise causes a loss of synapses between the inner hair cells and the peripheral terminals of the auditory nerve fibers. Additionally, there is a reduction in the expression levels of c-fos and Arc, both of which are indicators of cochlear nerve responses to noise exposure. Oral administration of resveratrol (RSV, 50 mg/kg/day) during the noise exposure period significantly prevented the noise exposure-induced synapse loss and SNHL. Furthermore, the study found that RSV treatment prevented the noise-induced increase in the gene expression levels of the proinflammatory cytokine interleukin-1β in the cochlea. These results demonstrated the potential usefulness of RSV in preventing noise-induced SNHL in the animal model established as gradually progressive SNHL.
Collapse
Affiliation(s)
- Taro YAMAGUCHI
- Laboratory of Pharmacology, Faculty of Pharmaceutical
Sciences, Setsunan University, Osaka, Japan
| | - Masanori YONEYAMA
- Laboratory of Pharmacology, Faculty of Pharmaceutical
Sciences, Setsunan University, Osaka, Japan
| | - Yusuke ONAKA
- Laboratory of Pharmacology, Faculty of Pharmaceutical
Sciences, Setsunan University, Osaka, Japan
| | - Kiyokazu OGITA
- Faculty of Pharmaceutical Sciences, Setsunan University,
Osaka, Japan
| |
Collapse
|
6
|
Zhang X, Cao R, Li C, Zhao H, Zhang R, Che J, Xie J, Tang N, Wang Y, Liu X, Zheng Q. Caffeine Ameliorates Age-Related Hearing Loss by Downregulating the Inflammatory Pathway in Mice. Otol Neurotol 2024; 45:227-237. [PMID: 38320571 PMCID: PMC10922330 DOI: 10.1097/mao.0000000000004098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
OBJECTIVE Age-related hearing loss (ARHL), also known as presbycusis, is a debilitating sensory impairment that affects the elderly population. There is currently no ideal treatment for ARHL. Long-term caffeine intake was reported to have anti-aging effects in many diseases. This study is to identify whether caffeine could ameliorate ARHL in mice and analyze its mechanism. METHODS Caffeine was administered in drinking water to C57BL/6J mice from the age of 3 months to 12 months. The body weight, food intake and water intake of the mice were monitored during the experiment. The metabolic indicators of serum were detected by ELISA. The function of the hearing system was evaluated by ABR and hematoxylin and eosin staining of the cochlea. Genes' expression were detected by Q-PCR, immunofluorescencee and Western blot. RESULTS The results showed that the ARHL mice exhibited impaired hearing and cochlear tissue compared with the young mice. However, the caffeine-treated ARHL mice showed improved hearing and cochlear tissue morphology. The expression of inflammation-related genes, such as TLR4, Myd88, NF-κB, and IL-1β, was significantly increased in the cochleae of ARHL mice compared with young mice but was down-regulated in the caffeine-treated cochleae. CONCLUSIONS Inflammation is involved in ARHL of mice, and long-term caffeine supplementation could ameliorate ARHL through the down-regulation of the TLR4/NF-κB inflammation pathway. Our findings provide a new idea for preventing ARHL and suggest new drug targets for ARHL treatment.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Ruijuan Cao
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Changye Li
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Hongchun Zhao
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Ruyi Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Juan Che
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Jinwen Xie
- Shandong Binzhou Animal science and veterinary Medicine Academy, Binzhou, China, 256600
| | - Na Tang
- Shandong Binzhou Animal science and veterinary Medicine Academy, Binzhou, China, 256600
| | - Yanfei Wang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Xiuzhen Liu
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Qingyin Zheng
- Department of Otolaryngology-HNS, Case Western Reserve University
| |
Collapse
|
7
|
Zhou Y, Fang C, Yuan L, Guo M, Xu X, Shao A, Zhang A, Zhou D. Redox homeostasis dysregulation in noise-induced hearing loss: oxidative stress and antioxidant treatment. J Otolaryngol Head Neck Surg 2023; 52:78. [PMID: 38082455 PMCID: PMC10714662 DOI: 10.1186/s40463-023-00686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Noise exposure is an important cause of acquired hearing loss. Studies have found that noise exposure causes dysregulated redox homeostasis in cochlear tissue, which has been recognized as a signature feature of hearing loss. Oxidative stress plays a pivotal role in many diseases via very complex and diverse mechanisms and targets. Reactive oxygen species are products of oxidative stress that exert toxic effects on a variety of physiological activities and are considered significant in noise-induced hearing loss (NIHL). Endogenous cellular antioxidants can directly or indirectly counteract oxidative stress and regulate intracellular redox homeostasis, and exogenous antioxidants can complement and enhance this effect. Therefore, antioxidant therapy is considered a promising direction for NIHL treatment. However, drug experiments have been limited to animal models of NIHL, and these experiments and related observations are difficult to translate in humans; therefore, the mechanisms and true effects of these drugs need to be further analyzed. This review outlines the effects of oxidative stress in NIHL and discusses the main mechanisms and strategies of antioxidant treatment for NIHL.
Collapse
Affiliation(s)
- Yuhang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengchen Guo
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Danyang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Wang J, Lu L, Zou G, Ye Z, Jin F, Wang L, Ke G, Dong K, Tao L. Transcriptomic Analysis of Retinal Gene in Experimental Retinal Detachment Rats and Exploration of S100A9 and TLR4 in Human Vitreous. Curr Eye Res 2023; 48:1170-1178. [PMID: 37846082 DOI: 10.1080/02713683.2023.2254016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/28/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE To screen for the differentially expressed genes in experimental retinal detachment rats, and to explore the expression of S100 calcium-binding protein A9 and Toll-like receptor 4 in the vitreous of rhegmatogenous retinal detachment patients. METHODS Three rats of experimental retinal detachment and three normal rats were enrolled in the study. Transcriptomics (RNAseq) sequencing technology was used to screen differentially expressed genes in the retinas of the experimental retinal detachment group and the normal group. The selected differentially expressed genes for gene ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis were performed. In addition, the vitreous of 15 patients with rhegmatogenous retinal detachment and six patients with the control group were collected. The expressions of S100 calcium-binding protein A9 and Toll-like receptor 4 were detected by Elisa, and the differences in expression levels were analyzed statistically. RESULTS A total of 198 differentially expressed genes were screened by RNAseq sequencing, including 118 upregulated genes and 80 downregulated genes. Kyoto Encyclopedia of Genes and Genomes analysis confirmed that the most enriched pathway was the mitogen-activated protein kinase signaling pathway. Compared to the normal group, the expressions of suppressor of cytokine signaling-3, Storkhead box-2, S100 calcium-binding protein A9, Spi-1 proto-oncogene, phosphodiesterase 1B, and kinesin-light chain 1 mRNA in the retinas of the experimental retinal detachment rats were up-regulated, and the expressions of Max interacting protein 1 and the voltage-gated sodium 1 were down-regulated. Compared to the control group, the expressions of S100 calcium-binding protein A9 and Toll-like receptor 4 were upregulated by Elisa in the vitreous humor of rhegmatogenous retinal detachment patients with a statistically significant difference (p all <.05). CONCLUSION The differentially expressed genes of experimental retinal detachment rats were suppressor of cytokine signaling-3, Storkhead box-2, S100 calcium-binding protein A9, Spi-1 proto-oncogene, phosphodiesterase 1B, kinesin-light chain 1, Max interacting protein 1, voltage-gated sodium 1, etc. The differences of S100 calcium-binding protein A9 and Toll-like receptor 4 expressions between the rhegmatogenous retinal detachment patients and the control group were statistically significant, indicating that they may play a potential role in the inflammatory process of rhegmatogenous retinal detachment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Li Lu
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Gaocheng Zou
- Department of Ophthalmology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ziyang Ye
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Feiyu Jin
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Lin Wang
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Genjie Ke
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Kai Dong
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Liming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Chen JW, Shao JJ, Zhao SF, Lu PH, Li SY, Yuan H, Ma PW, Lun YQ, Wang WL, Liang R, Gao W, Yang Q, Lu LJ. Comparative transcriptome profiling reveals RNA splicing alterations and biological function in patients exposed to occupational noise. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107993-108004. [PMID: 37749466 DOI: 10.1007/s11356-023-29981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Genetic factors play an important role in susceptibility to noise-induced hearing loss (NIHL). Alternative splicing (AS) is an essential mechanism affecting gene expression associated with disease pathogenesis at the post-transcriptional level, but has rarely been studied in NIHL. To explore the role of AS in the development of NIHL, we performed a comprehensive analysis of RNA splicing alterations by comparing the RNA-seq data from blood samples from NIHL patients and subjects with normal hearing who were exposed to the same noise environment. A total of 356 differentially expressed genes, including 23 transcription factors, were identified between the two groups. Of particular note was the identification of 56 aberrant alternative splicing events generated by 41 differentially expressed genes between the two groups, with exon skipping events accounting for 54% of all the differentially alternative splicing (DAS) events. The results of functional enrichment analysis showed that these intersecting DAS genes and differentially expressed genes were significantly enriched in autophagy and mitochondria-related pathways. Together, our findings provide insights into the role of AS events in susceptibility and pathogenesis of NIHL.
Collapse
Affiliation(s)
- Jia-Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Otolaryngology Head and Neck Surgery, the Air Force Hospital From Eastern Theater of PLA, Nanjing, China
| | - Jun-Jie Shao
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shao-Fei Zhao
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei-Heng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Si-Yu Li
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng-Wei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Qiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei-Long Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lian-Jun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
10
|
Zhang G, Gao Y, Zhao Z, Pyykko I, Zou J. Low-Molecular-Weight Hyaluronic Acid Contributes to Noise-Induced Cochlear Inflammation. Audiol Neurootol 2023; 28:380-393. [PMID: 37231777 DOI: 10.1159/000530280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 03/16/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Our previous work indicated that the activation of the Toll-like receptor (TLR) 4 signaling pathway contributed to noise-induced cochlear inflammation. Previous studies have reported that low-molecular-weight hyaluronic acid (LMW-HA) accumulates during aseptic trauma and promotes inflammation by activating the TLR4 signaling pathway. We hypothesized that LMW-HA or enzymes synthesizing or degrading HA might be involved in noise-induced cochlear inflammation. METHODS The present study included two arms. The first arm was the noise exposure study, in which TLR4, proinflammatory cytokines, HA, hyaluronic acid synthases (HASs), and hyaluronidases (HYALs) in the cochlea as well as auditory brainstem response (ABR) thresholds were measured before and after noise exposure. The second arm was analysis of HA delivery-induced reactions, in which control solution, high-molecular-weight HA (HMW-HA), or LMW-HA was delivered into the cochlea by cochleostomy or intratympanic injection. Then, the ABR threshold and cochlear inflammation were measured. RESULTS After noise exposure, the expression of TLR4, proinflammatory cytokines, HAS1, and HAS3 in the cochlea significantly increased over the 3rd to 7th day post-noise exposure (PE3, PE7). The expression of HYAL2 and HYAL3 dramatically decreased immediately after noise exposure, gradually increased thereafter to levels significantly greater than the preexposure level on PE3, and then rapidly returned to the preexposure level on PE7. The expression of HA, HAS2, and HYAL1 in the cochlea remained unchanged after exposure. After cochleostomy or intratympanic injection, both the hearing threshold shifts and the expression of TLR4, TNF-α, and IL-1β in the cochleae of the LMW-HA group were obviously greater than those of the control group and HMW-HA group. The expression of proinflammatory cytokines in the LMW-HA and control groups on the 7th day (D7) after cochleostomy tended to increase compared to that on the 3rd day (D3), whereas levels in the HMW-HA group tended to decrease on D7 compared to D3. CONCLUSION HAS1, HAS3, HYAL2, and HYAL3 in the cochlea are involved in acoustic trauma-induced cochlear inflammation through the potential proinflammatory function of LMW-HA.
Collapse
Affiliation(s)
- Guoping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Centre for Otolaryngology-Head and Neck Surgery of the Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yiling Gao
- Department of Otolaryngology-Head and Neck Surgery, Centre for Otolaryngology-Head and Neck Surgery of the Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
- Department of Otolaryngology-Head and Neck Surgery, Shidong Hospital, Shanghai, China
| | - Zhen Zhao
- Department of Otolaryngology-Head and Neck Surgery, Centre for Otolaryngology-Head and Neck Surgery of the Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ilmari Pyykko
- Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jing Zou
- Department of Otolaryngology-Head and Neck Surgery, Centre for Otolaryngology-Head and Neck Surgery of the Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
- Department for Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Wang Y, Lyu J, Qian X, Chen B, Sun H, Luo W, Chi F, Li H, Ren D. Involvement of Dmp1 in the Precise Regulation of Hair Bundle Formation in the Developing Cochlea. BIOLOGY 2023; 12:biology12040625. [PMID: 37106825 PMCID: PMC10135853 DOI: 10.3390/biology12040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Dentin matrix protein 1 (Dmp1) is a highly phosphorylated, extracellular matrix protein that is extensively expressed in bone and teeth but also found in soft tissues, including brain and muscle. However, the functions of Dmp1 in the mice cochlea are unknown. Our study showed that Dmp1 was expressed in auditory hair cells (HCs), with the role of Dmp1 in those cells identified using Dmp1 cKD mice. Immunostaining and scanning electron microscopy of the cochlea at P1 revealed that Dmp1 deficiency in mice resulted in an abnormal stereociliary bundle morphology and the mispositioning of the kinocilium. The following experiments further demonstrated that the cell-intrinsic polarity of HCs was affected without apparent effect on the tissue planer polarity, based on the observation that the asymmetric distribution of Vangl2 was unchanged whereas the Gαi3 expression domain was enlarged and Par6b expression was slightly altered. Then, the possible molecular mechanisms of Dmp1 involvement in inner ear development were explored via RNA-seq analysis. The study suggested that the Fgf23-Klotho endocrine axis may play a novel role in the inner ear and Dmp1 may regulate the kinocilium-stereocilia interaction via Fgf23-Klotho signaling. Together, our results proved the critical role of Dmp1 in the precise regulation of hair bundle morphogenesis in the early development of HCs.
Collapse
Affiliation(s)
- Yanmei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jihan Lyu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Binjun Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Haojie Sun
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Wenwei Luo
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, South Medical University, Guangzhou 510080, China
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92350, USA
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| |
Collapse
|
12
|
He YQ, Luo LT, Wang TM, Xue WQ, Yang DW, Li DH, Diao H, Xiao RW, Deng CM, Zhang WL, Liao Y, Wu YX, Wang QL, Zhou T, Li XZ, Zheng XH, Zhang PF, Zhang SD, Hu YZ, Sun Y, Jia WH. Clinical and genome-wide association analysis of chemoradiation-induced hearing loss in nasopharyngeal carcinoma. Hum Genet 2023; 142:759-772. [PMID: 37062025 PMCID: PMC10182145 DOI: 10.1007/s00439-023-02554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Chemoradiation-induced hearing loss (CRIHL) is one of the most devasting side effects for nasopharyngeal carcinoma (NPC) patients, which seriously affects survivors' long-term quality of life. However, few studies have comprehensively characterized the risk factors for CRIHL. In this study, we found that age at diagnosis, tumor stage, and concurrent cisplatin dose were positively associated with chemoradiation-induced hearing loss. We performed a genome-wide association study (GWAS) in 777 NPC patients and identified rs1050851 (within the exon 2 of NFKBIA), a variant with a high deleteriousness score, to be significantly associated with hearing loss risk (HR = 5.46, 95% CI 2.93-10.18, P = 9.51 × 10-08). The risk genotype of rs1050851 was associated with higher NFKBIA expression, which was correlated with lower cellular tolerance to cisplatin. According to permutation-based enrichment analysis, the variants mapping to 149 hereditary deafness genes were significantly enriched among GWAS top signals, which indicated the genetic similarity between hereditary deafness and CRIHL. Pathway analysis suggested that synaptic signaling was involved in the development of CRIHL. Additionally, the risk score integrating genetic and clinical factors can predict the risk of hearing loss with a relatively good performance in the test set. Collectively, this study shed new light on the etiology of chemoradiation-induced hearing loss, which facilitates high-risk individuals' identification for personalized prevention and treatment.
Collapse
Affiliation(s)
- Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Lu-Ting Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Da-Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Hua Diao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Qiao-Ling Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying Sun
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China.
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
13
|
Xiao L, Zhang Z, Liu J, Zheng Z, Xiong Y, Li C, Feng Y, Yin S. HMGB1 accumulation in cytoplasm mediates noise-induced cochlear damage. Cell Tissue Res 2023; 391:43-54. [PMID: 36287265 DOI: 10.1007/s00441-022-03696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/05/2022] [Indexed: 01/18/2023]
Abstract
Damage-associated molecular pattern molecules (DAMPs) play a critical role in mediating cochlear cell death, which leads to noise-induced hearing loss (NIHL). High-mobility group box 1 (HMGB1), a prototypical DAMP released from cells, has been extensively studied in the context of various diseases. However, whether extracellular HMGB1 contributes to cochlear pathogenesis in NIHL and the potential signals initiating HMGB1 release from cochlear cells are not well understood. Here, through the transfection of the adeno-associated virus with HMGB1-HA-tag, we first investigated early cytoplasmic accumulation of HMGB1 in cochlear hair cells after noise exposure. We found that the cochlear administration of HMGB1-neutralizing antibody immediately after noise exposure significantly alleviated hearing loss and outer hair cells (OHCs) death induced by noise exposure. In addition, activation of signal transducer and activators of transcription 1 (STAT1) and cellular hyperacetylation were verified as potential canonical initiators of HMGB1 cytoplasmic accumulation. These findings reveal the adverse effects of extracellular HMGB1 on the cochlea and the potential signaling events mediating HMGB1 release in hair cells, indicating multiple potential pharmacotherapeutic targets for NIHL.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Jianju Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhong Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Yuanping Xiong
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Chunyan Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| |
Collapse
|
14
|
Chen XM, Xue XM, Yu N, Guo WW, Yuan SL, Jiang QQ, Yang SM. The Role of Genetic Variants in the Susceptibility of Noise-Induced Hearing Loss. Front Cell Neurosci 2022; 16:946206. [PMID: 35903368 PMCID: PMC9315435 DOI: 10.3389/fncel.2022.946206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Noised-induced hearing loss (NIHL) is an acquired, progressive neurological damage caused by exposure to intense noise in various environments including industrial, military and entertaining settings. The prevalence of NIHL is much higher than other occupational injuries in industrialized countries. Recent studies have revealed that genetic factors, together with environmental conditions, also contribute to NIHL. A group of genes which are linked to the susceptibility of NIHL had been uncovered, involving the progression of oxidative stress, potassium ion cycling, cilia structure, heat shock protein 70 (HSP70), DNA damage repair, apoptosis, and some other genes. In this review, we briefly summarized the studies primary in population and some animal researches concerning the susceptible genes of NIHL, intending to give insights into the further exploration of NIHL prevention and individual treatment.
Collapse
Affiliation(s)
- Xue-min Chen
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xin-miao Xue
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Ning Yu
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Wei-wei Guo
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shuo-long Yuan
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Qing-qing Jiang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shi-ming Yang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
15
|
Wang Z, Jiang M, Wu H, Li Y, Chen Y. A novel MPZL2 c.68delC variant is associated with progressive hearing loss in Chinese population and literature review. Laryngoscope Investig Otolaryngol 2022; 7:870-876. [PMID: 35734045 PMCID: PMC9194966 DOI: 10.1002/lio2.829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022] Open
Abstract
Objective The aim of this study was to identify genetic etiology in two unrelated Chinese probands with progressive sensorineural hearing loss. Methods Two unrelated Chinese families were recruited. Genetic etiology was identified by targeted next-generation sequencing (NGS) and verified by Sanger sequencing. Hearing evaluations included pure tone audiometry, auditory brainstem response to clicks, and otoscopic examination. Medical history and computerized tomography scan of temporal bone were also collected. In addition, linear regression was used to summarize all of the reported cases and estimate the progression of hearing loss. Results A 28-year-old man with variant c.68delC had progressive, moderately severe hearing loss and a suspicious history of renal impairment. His hearing result was 63.75 dB HL. The other proband was the youngest patient with MPZL2-related hearing loss reported so far in the literature (genotype: c.220C>T homozygote). Her hearing result by click-ABR was 25 dB nHL at 3 months of age, and deteriorated to 40 dB nHL at 15 months. Behavioral audiometry identified a hearing loss of 26.25 dB HL. In summarizing all of the reported cases, using linear regression, MPZL2-related hearing loss may deteriorate by 0.59 dB HL per year, and different MPZL2 variants may lead to different rates of progression. Conclusion In this study, we first identified two unrelated patients with MPZL2-related hearing loss in Chinese population, and a novel variant c.68delC. Our results expanded the mutation spectrum of deafness genes. Further studies are required to clarify the genotype-phenotype correlation and the progression of MPZL2-related hearing loss.
Collapse
Affiliation(s)
- Zhili Wang
- Department of Otolaryngology‐Head and Neck Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300)ShanghaiChina
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Wu
- Department of Otolaryngology‐Head and Neck Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300)ShanghaiChina
| | - Yun Li
- Department of Otolaryngology‐Head and Neck Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300)ShanghaiChina
| | - Ying Chen
- Department of Otolaryngology‐Head and Neck Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300)ShanghaiChina
| |
Collapse
|
16
|
Keithley EM. Inner ear immunity. Hear Res 2022; 419:108518. [DOI: 10.1016/j.heares.2022.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
|
17
|
Chen P, Hao JJ, Li MW, Bai J, Guo YT, Liu Z, Shi P. Integrative Functional Transcriptomic Analyses Implicate Shared Molecular Circuits in Sensorineural Hearing Loss. Front Cell Neurosci 2022; 16:857344. [PMID: 35370561 PMCID: PMC8964368 DOI: 10.3389/fncel.2022.857344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is referred to as the most common type of hearing loss and typically occurs when the inner ear or the auditory nerve is damaged. Aging, noise exposure, and ototoxic drugs represent three main causes of SNHL, leading to substantial similarities in pathophysiological characteristics of cochlear degeneration. Although the common molecular mechanisms are widely assumed to underlie these similarities, its validity lacks systematic examination. To address this question, we generated three SNHL mouse models from aging, noise exposure, and cisplatin ototoxicity, respectively. Through constructing gene co-expression networks for the cochlear transcriptome data across different hearing-damaged stages, the three models are found to significantly correlate with each other in multiple gene co-expression modules that implicate distinct biological functions, including apoptosis, immune, inflammation, and ion transport. Bioinformatics analyses reveal several potential hub regulators, such as IL1B and CCL2, both of which are verified to contribute to apoptosis accompanied by the increase of (ROS) in in vitro model system. Our findings disentangle the shared molecular circuits across different types of SNHL, providing potential targets for the broad effective therapeutic agents in SNHL.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jun-Jun Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meng-Wen Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing Bai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Ting Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Zhen Liu,
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Peng Shi,
| |
Collapse
|
18
|
Noble K, Brown L, Elvis P, Lang H. Cochlear Immune Response in Presbyacusis: a Focus on Dysregulation of Macrophage Activity. J Assoc Res Otolaryngol 2022; 23:1-16. [PMID: 34642854 PMCID: PMC8782976 DOI: 10.1007/s10162-021-00819-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/25/2021] [Indexed: 02/03/2023] Open
Abstract
Age-related hearing loss, or presbyacusis, is a prominent chronic degenerative disorder that affects many older people. Based on presbyacusis pathology, the degeneration occurs in both sensory and non-sensory cells, along with changes in the cochlear microenvironment. The progression of age-related neurodegenerative diseases is associated with an altered microenvironment that reflects chronic inflammatory signaling. Under these conditions, resident and recruited immune cells, such as microglia/macrophages, have aberrant activity that contributes to chronic neuroinflammation and neural cell degeneration. Recently, researchers identified and characterized macrophages in human cochleae (including those from older donors). Along with the age-related changes in cochlear macrophages in animal models, these studies revealed that macrophages, an underappreciated group of immune cells, may play a critical role in maintaining the functional integrity of the cochlea. Although several studies deciphered the molecular mechanisms that regulate microglia/macrophage dysfunction in multiple neurodegenerative diseases, limited studies have assessed the mechanisms underlying macrophage dysfunction in aged cochleae. In this review, we highlight the age-related changes in cochlear macrophage activities in mouse and human temporal bones. We focus on how complement dysregulation and the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 inflammasome could affect macrophage activity in the aged peripheral auditory system. By understanding the molecular mechanisms that underlie these regulatory systems, we may uncover therapeutic strategies to treat presbyacusis and other forms of sensorineural hearing loss.
Collapse
Affiliation(s)
- Kenyaria Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Akouos, Inc, Boston, MA, 02210, USA
| | - LaShardai Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Biology, Winthrop University, Rock Hill, SD, 29733, USA
| | - Phillip Elvis
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
19
|
Liang S, Dong S, Liu W, Wang M, Tian S, Ai Y, Wang H. Accumulated ROS Activates HIF-1α-Induced Glycolysis and Exerts a Protective Effect on Sensory Hair Cells Against Noise-Induced Damage. Front Mol Biosci 2022; 8:806650. [PMID: 35096971 PMCID: PMC8790562 DOI: 10.3389/fmolb.2021.806650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Noise exposure causes noise-induced hearing loss (NIHL). NIHL exhibits loss of inner ear sensory hair cells and is often irreparable. Although oxidative stress is involved in hearing loss, the complex mechanisms involved in NIHL are unclear. Hypoxia-inducible factor 1α (HIF-1α) has been suggested to be essential for protecting sensory hair cells. Additionally, it has been shown that ROS is involved in modulating the stability of HIF-1α. To investigate the NIHL pathogenesis, we established a tert-butyl hydroperoxide (t-BHP)-induced oxidative stress damage model in hair-like HEI-OC1 cells and an NIHL model in C57BL/6 mice. Protein and mRNA expression were determined, and biochemical parameters including reactive oxygen species (ROS) accumulation, glucose uptake, adenosine triphosphat (ATP) production, and mitochondrial content were evaluated. In HEI-OC1 cells, t-BHP induced ROS accumulation and reduced mitochondrial content and oxygen consumption, but the ATP level was unaffected. Additionally, there was increased glucose uptake and lactate release along with elevated expression of HIF-1α, glucose transporter 1, and several glycolytic enzymes. Consistently, noise trauma induced oxidative stress and the expression of HIF-1α and glycolytic enzymes in mice. Thus, we concluded that ROS induced HIF-1α expression, which promoted glycolysis, suggesting a metabolic shift maintained the ATP level to attenuate hair cell damage in NIHL.
Collapse
Affiliation(s)
- Shuo Liang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Ai
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yu Ai, ; Haibo Wang,
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yu Ai, ; Haibo Wang,
| |
Collapse
|
20
|
Wang Q, Shen Y, Pan Y, Chen K, Ding R, Zou T, Zhang A, Guo D, Ji P, Fan C, Mei L, Hu H, Ye B, Xiang M. Tlr2/4 Double Knockout Attenuates the Degeneration of Primary Auditory Neurons: Potential Mechanisms From Transcriptomic Perspectives. Front Cell Dev Biol 2021; 9:750271. [PMID: 34760891 PMCID: PMC8573328 DOI: 10.3389/fcell.2021.750271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
The transcriptomic landscape of mice with primary auditory neurons degeneration (PAND) indicates key pathways in its pathogenesis, including complement cascades, immune responses, tumor necrosis factor (TNF) signaling pathway, and cytokine-cytokine receptor interaction. Toll-like receptors (TLRs) are important immune and inflammatory molecules that have been shown to disrupt the disease network of PAND. In a PAND model involving administration of kanamycin combined with furosemide to destroy cochlear hair cells, Tlr 2/4 double knockout (DKO) mice had auditory preservation advantages, which were mainly manifested at 4–16 kHz. DKO mice and wild type (WT) mice had completely damaged cochlear hair cells on the 30th day, but the density of spiral ganglion neurons (SGN) in the Rosenthal canal was significantly higher in the DKO group than in the WT group. The results of immunohistochemistry for p38 and p65 showed that the attenuation of SGN degeneration in DKO mice may not be mediated by canonical Tlr signaling pathways. The SGN transcriptome of DKO and WT mice indicated that there was an inverted gene set enrichment relationship between their different transcriptomes and the SGN degeneration transcriptome, which is consistent with the morphology results. Core module analysis suggested that DKO mice may modulate SGN degeneration by activating two clusters, and the involved molecules include EGF, STAT3, CALB2, LOX, SNAP25, CAV2, SDC4, MYL1, NCS1, PVALB, TPM4, and TMOD4.
Collapse
Affiliation(s)
- Quan Wang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Pan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ding
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongye Guo
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Ji
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Mei
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Lysophosphatidylcholine Offsets the Protective Effects of Bone Marrow Mesenchymal Stem Cells on Inflammatory Response and Oxidative Stress Injury of Retinal Endothelial Cells via TLR4/NF- κB Signaling. J Immunol Res 2021; 2021:2389029. [PMID: 34692851 PMCID: PMC8531799 DOI: 10.1155/2021/2389029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR), as a major cause of blindness worldwide, is one common complication of diabetes mellitus. Inflammatory response and oxidative stress injury of endothelial cells play significant roles in the pathogenesis of DR. The study is aimed at investigating the effects of lysophosphatidylcholine (LPC) on the dysfunction of high glucose- (HG-) treated human retinal microvascular endothelial cells (HRMECs) after being cocultured with bone marrow mesenchymal stem cells (BMSCs) and the underlying regulatory mechanism. Coculture of BMSCs and HRMECs was performed in transwell chambers. The activities of antioxidant-related enzymes and molecules of oxidative stress injury and the contents of inflammatory cytokines were measured by ELISA. Flow cytometry analyzed the apoptosis of treated HRMECs. HRMECs were further treated with 10-50 μg/ml LPC to investigate the effect of LPC on the dysfunction of HRMECs. Western blotting was conducted to evaluate levels of TLR4 and p-NF-κB proteins. We found that BMSCs alleviated HG-induced inflammatory response and oxidative stress injury of HRMECs. Importantly, LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs. Furthermore, LPC upregulated the protein levels of TLR4 and p-NF-κB, activating the TLR4/NF-κB signaling pathway. Overall, our study demonstrated that LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs via TLR4/NF-κB signaling.
Collapse
|
22
|
Bazard P, Pineros J, Frisina RD, Bauer MA, Acosta AA, Paganella LR, Borakiewicz D, Thivierge M, Mannering FL, Zhu X, Ding B. Cochlear Inflammaging in Relation to Ion Channels and Mitochondrial Functions. Cells 2021; 10:2761. [PMID: 34685743 PMCID: PMC8534887 DOI: 10.3390/cells10102761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
The slow accumulation of inflammatory biomarker levels in the body-also known as inflammaging-has been linked to a myriad of age-related diseases. Some of these include neurodegenerative conditions such as Parkinson's disease, obesity, type II diabetes, cardiovascular disease, and many others. Though a direct correlation has not been established, research connecting age-related hearing loss (ARHL)-the number one communication disorder and one of the most prevalent neurodegenerative diseases of our aged population-and inflammaging has gained interest. Research, thus far, has found that inflammatory markers, such as IL-6 and white blood cells, are associated with ARHL in humans and animals. Moreover, studies investigating ion channels and mitochondrial involvement have shown promising relationships between their functions and inflammaging in the cochlea. In this review, we summarize key findings in inflammaging within the auditory system, the involvement of ion channels and mitochondrial functions, and lastly discuss potential treatment options focusing on controlling inflammation as we age.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Jennifer Pineros
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Robert D. Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
- Department Communication Sciences and Disorders, College of Behavioral & Communication Sciences, Tampa, FL 33620, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Mark A. Bauer
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Alejandro A. Acosta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Lauren R. Paganella
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Dominika Borakiewicz
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Mark Thivierge
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Freyda L. Mannering
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
23
|
Zhang Y, Li Y, Fu X, Wang P, Wang Q, Meng W, Wang T, Yang J, Chai R. The Detrimental and Beneficial Functions of Macrophages After Cochlear Injury. Front Cell Dev Biol 2021; 9:631904. [PMID: 34458249 PMCID: PMC8385413 DOI: 10.3389/fcell.2021.631904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Macrophages are the main intrinsic immune cells in the cochlea; they can be activated and play a complicated role after cochlear injury. Many studies have shown that the number of macrophages and their morphological characteristics within the major cochlear partitions undergo significant changes under various pathological conditions including acoustic trauma, ototoxic drug treatment, age-related cochlear degeneration, selective hair cell (HC) and spiral ganglion neuron (SGN) elimination, and surgery. However, the exact role of these macrophages after cochlear injury is still unclear. Regulating the migration and activity of macrophages may be a therapeutic approach to reduce the risk or magnitude of trauma-induced hearing loss, and this review highlights the role of macrophages on the peripheral auditory structures of the cochlea and elucidate the mechanisms of macrophage injury and the strategies to reduce the injury by regulating macrophage.
Collapse
Affiliation(s)
- Yuan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yiyuan Li
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xiaolong Fu
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Pengjun Wang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Meng
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianming Yang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Li HH, Livneh H, Chen WJ, Fan WL, Lu MC, Guo HR, Tsai TY. Effect of Chinese Herbal Medicines on Hearing Loss Risk in Rheumatoid Arthritis Patients: Retrospective Claims Analysis. Front Med (Lausanne) 2021; 8:683211. [PMID: 34355003 PMCID: PMC8329330 DOI: 10.3389/fmed.2021.683211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives: Patients with rheumatoid arthritis (RA) are at a higher risk of extra-articular manifestations, especially hearing loss (HL). Although Chinese herbal medicines (CHM) are proven safe and effective treatments for inflammatory conditions, the effect of CHM use on HL in RA patients is unknown. This cohort study aims to determine the relationship between CHM use and the subsequent risk of HL among RA patients. Methods: From health insurance claims data in Taiwan, a total of 6,905 persons aged 20-80 years with newly-diagnosed RA in 2000-2009 were identified. Of these, we recruited 2,765 CHM users and randomly selected 2,765 non-CHM users who matched with the users by the propensity score. Both cohorts were followed up until the end of 2012 to estimate the incidence of HL. Cox proportional hazards regression was used to estimate the adjusted hazard ratio (HR) for HL. Results: The incidence of HL was lower in the CHM users than in the comparison cohort (8.06 vs. 10.54 per 1,000 person-years) (adjusted HR, 0.77; 95% CI, 0.63-0.94). Those who received CHM for more than 2 years had the greatest benefit against the onset of HL, with over 50% risk reduction. Prescriptions of Hai Piao Xiao, Yan Hu Suo, San-Qi, Huang Qin, Dang Shen, Jia-Wei-Xiao-Yao-San, Shu-Jing-Huo-Xue-Tang, and Dang-Gui-Nian-Tong-Tang were found to be associated with a reduced risk of HL. Conclusions: Our findings suggest that adding CHM to conventional therapy may reduce the subsequent risk of HL in RA patients. Prospective randomized trials are recommended to further clarify whether the association revealed in this study supports such a causal relationship.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan.,Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, OR, United States
| | - Wei-Jen Chen
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan.,Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan.,School of Post-baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.,Center of Sports Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Wen-Lin Fan
- Emergency Department, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Occupational Safety, Health, and Medicine Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Tzung-Yi Tsai
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
25
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
26
|
Fetoni AR, Paciello F, Rolesi R, Pisani A, Moleti A, Sisto R, Troiani D, Paludetti G, Grassi C. Styrene targets sensory and neural cochlear function through the crossroad between oxidative stress and inflammation. Free Radic Biol Med 2021; 163:31-42. [PMID: 33307165 DOI: 10.1016/j.freeradbiomed.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Although styrene is an established ototoxic agent at occupational exposure levels, the mechanisms of styrene toxicity in the auditory system are still unclear. OBJECTIVES The aim of this study was to identify the consequences of styrene chronic exposure in cochlear structures, looking for the mechanisms of ototoxicity of this organic compound and focusing on cell targets and oxidative stress/inflammatory processes. METHODS Male adult Wistar rats were exposed to styrene (400 mg/kg by gavage for 5 days/week, 3 consecutive weeks). Hearing loss was evaluated by measuring auditory brainstem responses (ABR), morphological analysis were performed to evaluate hair cell and spiral ganglion neuron survival, as well as synaptic damage. Analysis of apoptotic (p53) and inflammatory (NF-κB, TNF-α, IL-1β and IL-10) mediators were performed by immunofluorescence analysis and western blot. RESULTS Styrene ototoxic effects induced a hearing loss of about 35-40 dB. Immunofluorescence and western blotting analyses demonstrated that styrene administration induced redox imbalance and activated inflammatory processes, targeting sensory hair cell and neural dysfunction by a cross-talk between oxidative and inflammatory mediators. DISCUSSION Major findings connect styrene ototoxicity to an interplay between redox imbalance and inflammation, leading to the intriguing assumption of a mixed sensory and neural styrene-induced ototoxicity. Thus, in a clinical perspective, data reported here have important implications for styrene risk assessment in humans.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department of Head and Neck Surgery, Università Cattolica Del Sacro Cuore, Roma, Italy.
| | - Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department of Neuroscience, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department of Head and Neck Surgery, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Anna Pisani
- Department of Head and Neck Surgery, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Arturo Moleti
- Department of Physics, University of Roma Tor Vergata, Roma, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone (RM), Italy
| | - Diana Troiani
- Department of Neuroscience, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department of Head and Neck Surgery, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department of Neuroscience, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
27
|
Xiong H, Lai L, Ye Y, Zheng Y. Glucose Protects Cochlear Hair Cells Against Oxidative Stress and Attenuates Noise-Induced Hearing Loss in Mice. Neurosci Bull 2021; 37:657-668. [PMID: 33415566 DOI: 10.1007/s12264-020-00624-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is the key determinant in the pathogenesis of noise-induced hearing loss (NIHL). Given that cellular defense against oxidative stress is an energy-consuming process, the aim of the present study was to investigate whether increasing energy availability by glucose supplementation protects cochlear hair cells against oxidative stress and attenuates NIHL. Our results revealed that glucose supplementation reduced the noise-induced formation of reactive oxygen species (ROS) and consequently attenuated noise-induced loss of outer hair cells, inner hair cell synaptic ribbons, and NIHL in CBA/J mice. In cochlear explants, glucose supplementation increased the levels of ATP and NADPH, as well as attenuating H2O2-induced ROS production and cytotoxicity. Moreover, pharmacological inhibition of glucose transporter type 1 activity abolished the protective effects of glucose against oxidative stress in HEI-OC1 cells. These findings suggest that energy availability is crucial for oxidative stress resistance and glucose supplementation offers a simple and effective approach for the protection of cochlear hair cells against oxidative stress and NIHL.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yongyi Ye
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
28
|
Perin P, Mabou Tagne A, Enrico P, Marino F, Cosentino M, Pizzala R, Boselli C. Cannabinoids, Inner Ear, Hearing, and Tinnitus: A Neuroimmunological Perspective. Front Neurol 2020; 11:505995. [PMID: 33329293 PMCID: PMC7719758 DOI: 10.3389/fneur.2020.505995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cannabis has been used for centuries for recreational and therapeutic purposes. Whereas, the recreative uses are based on the psychotropic effect of some of its compounds, its therapeutic effects range over a wide spectrum of actions, most of which target the brain or the immune system. Several studies have found cannabinoid receptors in the auditory system, both at peripheral and central levels, thus raising the interest in cannabinoid signaling in hearing, and especially in tinnitus, which is affected also by anxiety, memory, and attention circuits where cannabinoid effects are well described. Available studies on animal models of tinnitus suggest that cannabinoids are not likely to be helpful in tinnitus treatment and could even be harmful. However, the pharmacology of cannabinoids is very complex, and most studies focused on neural CB1R-based responses. Cannabinoid effects on the immune system (where CB2Rs predominate) are increasingly recognized as essential in understanding nervous system pathological responses, and data on immune cannabinoid targets have emerged in the auditory system as well. In addition, nonclassical cannabinoid targets (such as TRP channels) appear to play an important role in the auditory system as well. This review will focus on neuroimmunological mechanisms for cannabinoid effects and their possible use as protective and therapeutic agents in the ear and auditory system, especially in tinnitus.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
29
|
Peeleman N, Verdoodt D, Ponsaerts P, Van Rompaey V. On the Role of Fibrocytes and the Extracellular Matrix in the Physiology and Pathophysiology of the Spiral Ligament. Front Neurol 2020; 11:580639. [PMID: 33193034 PMCID: PMC7653186 DOI: 10.3389/fneur.2020.580639] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
The spiral ligament in the cochlea has been suggested to play a significant role in the pathophysiology of different etiologies of strial hearing loss. Spiral ligament fibrocytes (SLFs), the main cell type in the lateral wall, are crucial in maintaining the endocochlear potential and regulating blood flow. SLF dysfunction can therefore cause cochlear dysfunction and thus hearing impairment. Recent studies have highlighted the role of SLFs in the immune response of the cochlea. In contrast to sensory cells in the inner ear, SLFs (more specifically type III fibrocytes) have also demonstrated the ability to regenerate after different types of trauma such as drug toxicity and noise. SLFs are responsible for producing proteins, such as collagen and cochlin, that create an adequate extracellular matrix to thrive in. Any dysfunction of SLFs or structural changes to the extracellular matrix can significantly impact hearing function. However, SLFs may prove useful in restoring hearing by their potential to regenerate cells in the spiral ligament.
Collapse
Affiliation(s)
- Noa Peeleman
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Dorien Verdoodt
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
30
|
Chen D, Wang Z, Jia G, Mao H, Ni Y. The Role of Anti-Endothelial Cell Autoantibodies and Immune Response in Acute Low-Tone Hearing Loss. EAR, NOSE & THROAT JOURNAL 2020; 100:292S-300S. [PMID: 32865463 DOI: 10.1177/0145561320952501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Immunity is associated with acute low tone hearing loss. However, the exact pathophysiology of immunity-mediated acute low tone hearing loss remains unknown. In this study, we evaluated the presence, therapeutic effectiveness, and immunopathological mechanisms of anti-endothelial cell autoantibodies (AECEs) in patients with acute low-frequency hearing loss. MATERIAL AND METHODS Forty-nine patients who were treated as inpatients having acute low-frequency hearing loss and additional symptoms, such as ear fullness, tinnitus, dizziness, or hyperacusis, were enrolled in this study. Serum samples from these patients were collected for laboratory serum autoimmunity detection, including AECAs, antinuclear antibodies, immunoglobulin, and circular immune complex. Therapeutic responses to combination therapy in short-term outcome and serum cytokine levels were compared between AECA-positive and AECA-negative patients. RESULTS Anti-endothelial cell autoantibodies-positive patients tended to show significantly less response to standard therapy compared with AECAs controls (P < .05). Moreover, some serum cytokine levels elevated in both AECAs- and AECAs+ groups. Positive ratio of interleukin-8 and concentrations of macrophage inflammatory protein-1α were found higher in AECAs+ groups (P < .05). CONCLUSION The results supported that AECAs might wield influence on the short-term outcome of acute low-tone hearing loss (ALHL) treatment. Furthermore, AECA-mediated acute low-frequency hearing loss possibly involved dysregulation of inflammation process and release of cytokines.
Collapse
Affiliation(s)
- Diyan Chen
- ENT institute and Otorhinolaryngology Department of Shanghai Medical School, 159395Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine, 12478Fudan University, Shanghai, People's Republic of China
| | - Zhujian Wang
- 159395Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Gaogan Jia
- ENT institute and Otorhinolaryngology Department of Shanghai Medical School, 159395Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine, 12478Fudan University, Shanghai, People's Republic of China
| | - Huanyu Mao
- ENT institute and Otorhinolaryngology Department of Shanghai Medical School, 159395Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine, 12478Fudan University, Shanghai, People's Republic of China
| | - Yusu Ni
- ENT institute and Otorhinolaryngology Department of Shanghai Medical School, 159395Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine, 12478Fudan University, Shanghai, People's Republic of China.,Otology and Skull Base Surgery Department, ENT Institute of Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Wei W, Shi X, Xiong W, He L, Du ZD, Qu T, Qi Y, Gong SS, Liu K, Ma X. RNA-seq Profiling and Co-expression Network Analysis of Long Noncoding RNAs and mRNAs Reveal Novel Pathogenesis of Noise-induced Hidden Hearing Loss. Neuroscience 2020; 434:120-135. [PMID: 32201268 DOI: 10.1016/j.neuroscience.2020.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 12/16/2022]
Abstract
Noise-induced hidden hearing loss (NIHHL), one of the family of conditions described as noise-induced hearing loss (NIHL), is characterized by synaptopathy following moderate noise exposure that causes only temporary threshold elevation. Long noncoding RNAs (lncRNAs) mediate several essential regulatory functions in a wide range of biological processes and diseases, but their roles in NIHHL remain largely unknown. In order to determine the potential roles of these lncRNAs in the pathogenesis of NIHHL, we first evaluated their expression in NIHHL mice model and mapped possible regulatory functions and targets using RNA-sequencing (RNA-seq). In total, we identified 133 lncRNAs and 522 mRNAs that were significantly dysregulated in the NIHHL model. Gene Ontology (GO) showed that these lncRNAs were involved in multiple cell components and systems including synapses and the nervous and sensory systems. In addition, a lncRNA-mRNA network was constructed to identify core regulatory lncRNAs and transcription factors. KEGG analysis was also used to identify the potential pathways being affected in NIHHL. These analyses allowed us to identify the guanine nucleotide binding protein alpha stimulating (GNAS) gene as a key transcription factor and the adrenergic signaling pathway as a key pathway in the regulation of NIHHL pathogenesis. Our study is the first, to our knowledge, to isolate a lncRNA mediated regulatory pathway associated with NIHHL pathogenesis; these observations may provide fresh insight into the pathogenesis of NIHHL and may pave the way for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Wei Wei
- Department of Otology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Xi Shi
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; The Institute of Audiology and Speech Science of Xuzhou Medical College, Xuzhou 221004, China
| | - Wei Xiong
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lu He
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zheng-De Du
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Tengfei Qu
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yue Qi
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Xiulan Ma
- Department of Otology, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| |
Collapse
|
32
|
Fan B, Wang J, Zha D, Qiu J, Chen F. ATP depletion induced cochlear hair cells death through histone deacetylation in vitro. Neurosci Lett 2020; 727:134918. [PMID: 32200029 DOI: 10.1016/j.neulet.2020.134918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/19/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023]
Abstract
Previous studies have shown histone modifications being present in cochlear hair cells in animal models of hearing loss. Our past studies have shown that ATP depletion, histone deacetylase (HDAC) upregulation, and histone deacetylation occur in cochlea after noise exposure, and these are linked to hair cell death. Whether ATP depletion correlates with the expression level of HDACs and acetylation of histones is still unknown. In this study, we investigated the changes in the expression of HDACs and the level of histone acetylation in cochlear hair cells using an ATP-depleted explant culture of mouse organ of Corti. We found that the expression of HDAC3 and HDAC6 increased and hair cells were lost after oligomycin A (OA) treatment. Meanwhile, the acetylation level of histone H2B reduced. However, when oligomycin was combined with an HDAC inhibitor, trichostatin A (TSA), the acetylation level of histone H3 was restored. Moreover, combined treatment of oligomycin and TSA or sodium butyrate (NaB) attenuated oligomycin-induced cochlear hair cell loss. In conclusion, our results indicated that ATP depletion led to histone deacetylation and eventually resulted in hair cell death.
Collapse
Affiliation(s)
- Bei Fan
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Wang
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianhua Qiu
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fuquan Chen
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|