1
|
Kanemaru SI, Kita SI, Kanai R, Yamaguchi T, Kumazawa A, Yuki R, Yoshida M, Miwa T, Harada H, Maetani T. Tympanic Membrane Regeneration Therapy for Pediatric Tympanic Membrane Perforation. Otol Neurotol 2024; 45:1030-1036. [PMID: 39165098 DOI: 10.1097/mao.0000000000004285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
OBJECTIVE To evaluate tympanic membrane regeneration therapy (TMRT) for pediatric tympanic membrane perforations (TMPs). STUDY DESIGN Intervention study. SETTING Research institute hospital. PATIENTS In this study, 20 patients with chronic TMP (M/F: 13/7, 13/8 ears, age 0-15 years) treated with TMRT were evaluated. As comparison, 20 pediatric patients with chronic TMP who underwent myringoplasty/tympanoplasty were included. INTERVENTIONS For the TM repair procedure, the edge of the TMP was disrupted mechanically, and gelatin sponge immersed in basic fibroblast growth factor was placed inside and outside the tympanic cavity and covered with fibrin glue. The TMP was examined 4 ± 1 weeks later. The protocol was repeated up to four times until closure was complete. MAIN OUTCOME MEASURES Closure of the TMP and hearing improvement were evaluated at 16 weeks after the final regenerative procedure. Adverse events were monitored. RESULTS The mean follow-up period was 427.1 days. The TM regenerated in all cases, but pinhole reperforation occurred in two cases, and the final closure rate was 90.5% (19 of 21). Hearing improved to 24.9 ± 7.6 dB on average before surgery and to 13.8 ± 5.4 dB after surgery. The AB gap improved from 12.9 ± 8.0 to 5.2 ± 3.5 dB.The myringoplasty/tympanoplasty group had significantly lower AB gap improvement compared with the TMRT group. There were no adverse events. CONCLUSIONS TMRT can be expected to regenerate near-normal TMs with a high closure ratio, resulting in better-hearing improvement compared with the myringoplasty/tympanoplasty group, and is an effective treatment for children with long life expectancy.
Collapse
Affiliation(s)
| | - Shin-Ichiro Kita
- Department of Otolaryngology and HNS, Hearing Disturbance and Eardrum Regeneration Center, Medical Research Institute, Kitano Hospital, Public Interest Incorporated Foundation, Tazuke Kofukai, Osaka, Japan
| | - Rie Kanai
- Department of Otolaryngology and HNS, Hearing Disturbance and Eardrum Regeneration Center, Medical Research Institute, Kitano Hospital, Public Interest Incorporated Foundation, Tazuke Kofukai, Osaka, Japan
| | - Tomoya Yamaguchi
- Department of Otolaryngology and HNS, Hearing Disturbance and Eardrum Regeneration Center, Medical Research Institute, Kitano Hospital, Public Interest Incorporated Foundation, Tazuke Kofukai, Osaka, Japan
| | - Akiko Kumazawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryohei Yuki
- Department of Otolaryngology and HNS, Hearing Disturbance and Eardrum Regeneration Center, Medical Research Institute, Kitano Hospital, Public Interest Incorporated Foundation, Tazuke Kofukai, Osaka, Japan
| | - Misaki Yoshida
- Department of Otolaryngology and HNS, Hearing Disturbance and Eardrum Regeneration Center, Medical Research Institute, Kitano Hospital, Public Interest Incorporated Foundation, Tazuke Kofukai, Osaka, Japan
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroyuki Harada
- Department of Otolaryngology and HNS, Hearing Disturbance and Eardrum Regeneration Center, Medical Research Institute, Kitano Hospital, Public Interest Incorporated Foundation, Tazuke Kofukai, Osaka, Japan
| | - Toshiki Maetani
- Department of Otolaryngology and HNS, Hearing Disturbance and Eardrum Regeneration Center, Medical Research Institute, Kitano Hospital, Public Interest Incorporated Foundation, Tazuke Kofukai, Osaka, Japan
| |
Collapse
|
2
|
Morgenstern J, Kreusch T, Golde J, Steuer S, Ossmann S, Kirsten L, Walther J, Zahnert T, Koch E, Neudert M. In Vivo Thickness of the Healthy Tympanic Membrane Determined by Optical Coherence Tomography. Otol Neurotol 2024; 45:e256-e262. [PMID: 38361307 DOI: 10.1097/mao.0000000000004132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
OBJECTIVE Tympanic membrane (TM) thickness is an important parameter for differentiation between a healthy and a pathologic TM. Furthermore, it is needed for modeling the middle ear function. Endoscopic optical coherence tomography (eOCT) provides the opportunity to measure the TM thickness of the entire TM in vivo. MATERIALS AND METHODS A total of 27 healthy ears were examined by eOCT. The system uses a light source with a central wavelength of 1,300 nm. The endoscope with an outer diameter of 3.5 mm provides a field of view of 10 mm and a working distance of 10 mm. Thickness measurements were carried out at 8 points on the TM. Additionally, the existing literature was analyzed, and a mean TM thickness value was determined. RESULTS The mean thickness of the TM over all measurement points of the pars tensa was 120.2 μm, and the pars flaccida was significantly thicker with a mean thickness of 177.9 μm. Beyond that, there were no significant differences between the single quadrants. The mean TM thickness in the literature was 88.8 μm. DISCUSSION EOCT provides the possibility for in vivo thickness determination of the TM. The mean thickness seems to be higher than in the previous studies, which were mostly carried out ex vivo. Our study takes the three-dimensional refraction into account and provides a method for the refraction correction.
Collapse
Affiliation(s)
- Joseph Morgenstern
- Department of Otorhinolaryngology, Head and Neck Surgery, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Theodor Kreusch
- Department of Otorhinolaryngology, Head and Neck Surgery, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | | | - Svea Steuer
- Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Steffen Ossmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | | | - Julia Walther
- Department of Medical Physics and Biomedical Engineering, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Thomas Zahnert
- Department of Otorhinolaryngology, Head and Neck Surgery, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Edmund Koch
- Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Marcus Neudert
- Department of Otorhinolaryngology, Head and Neck Surgery, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
3
|
Dong W, Meenderink SW. Imaging the Ear Anatomy and Function Using Optical Coherence Tomography Vibrometry. Semin Hear 2024; 45:101-109. [PMID: 38370517 PMCID: PMC10872649 DOI: 10.1055/s-0043-1770154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Optical coherence tomography (OCT) is a novel technology for performing real-time high-speed and high-resolution cross-sectional imaging on the micro-scale in situ. It is analogous to ultrasound imaging, except that it uses light instead of sound. OCT has recently been introduced in auditory research to visualize the various structures of the ear with a minimally invasive operation. In addition, OCT can be used as a vibrometry system that is capable to detect sound-induced sub-nanometer vibrations of the middle and inner ear. OCT-vibrometry measures depth-resolved vibrations into the specimen, which overcomes several limitations of classical vibrometry techniques (e.g., single surface point measurements using laser interferometry). In this article, we illustrate how to visualize the anatomy and function of the middle and inner ear (the cochlea) in a gerbil model using recently developed spectral-domain OCT. Our results demonstrate that the largest clinical impact of OCT for otology is to visualize various pathologies and quantify sound conduction and processing in the individual peripheral human ear.
Collapse
Affiliation(s)
- Wei Dong
- VA Loma Linda Healthcare System, Loma Linda, California
- Department of Otolaryngology – Head and Neck Surgery, Loma Linda University Health, Loma Linda, California
| | | |
Collapse
|
4
|
Padilla-Cabello J, Moral-Munoz JA, Santisteban-Espejo A, Velez-Estevez A, Cobo MJ, Martin-Piedra MA. Analysis of cognitive framework and biomedical translation of tissue engineering in otolaryngology. Sci Rep 2023; 13:13492. [PMID: 37596295 PMCID: PMC10439116 DOI: 10.1038/s41598-023-40302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Tissue engineering is a relatively recent research area aimed at developing artificial tissues that can restore, maintain, or even improve the anatomical and/or functional integrity of injured tissues. Otolaryngology, as a leading surgical specialty in head and neck surgery, is a candidate for the use of these advanced therapies and medicinal products developed. Nevertheless, a knowledge-based analysis of both areas together is still needed. The dataset was retrieved from the Web of Science database from 1900 to 2020. SciMAT software was used to perform the science mapping analysis and the data for the biomedical translation identification was obtained from the iCite platform. Regarding the analysis of the cognitive structure, we find consolidated research lines, such as the generation of cartilage for use as a graft in reconstructive surgery, reconstruction of microtia, or the closure of perforations of the tympanic membrane. This last research area occupies the most relevant clinical translation with the rest of the areas presenting a lower translational level. In conclusion, Tissue engineering is still in an early translational stage in otolaryngology, otology being the field where most advances have been achieved. Therefore, although otolaryngologists should play an active role in translational research in tissue engineering, greater multidisciplinary efforts are required to promote and encourage the translation of potential clinical applications of tissue engineering for routine clinical use.
Collapse
Affiliation(s)
- Javier Padilla-Cabello
- Program of Biomedicine, University of Granada, Granada, Spain
- Department of Otorhinolaryngology, Hospital Universitario Torrecardenas, Almeria, Spain
| | - Jose A Moral-Munoz
- Department of Nursing and Physiotherapy, University of Cadiz, Cadiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain.
| | - Antonio Santisteban-Espejo
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
- Department of Pathology, Puerta del Mar University Hospital, Cádiz, Spain
- Department of Medicine, University of Cadiz, Cadiz, Spain
| | | | - Manuel J Cobo
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Miguel A Martin-Piedra
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
| |
Collapse
|
5
|
Meenderink SWF, Warn M, Anchondo LM, Liu Y, Jung TTK, Dong W. Assessment of middle ear structure and function with optical coherence tomography. Acta Otolaryngol 2023; 143:558-562. [PMID: 37366291 DOI: 10.1080/00016489.2023.2224846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Current clinical tests for middle ear (ME) injuries and related conductive hearing loss (CHL) are lengthy and costly, lacking the ability to noninvasively evaluate both structure and function in real time. Optical coherence tomography (OCT) provides both, but its application to the audiological clinic is currently limited. OBJECTIVE Adapt and use a commercial Spectral-Domain OCT (SD-OCT) to evaluate anatomy and sound-evoked vibrations of the tympanic membrane (TM) and ossicles in the human ME. MATERIALS AND METHODS SD-OCT was used to capture high-resolution three-dimensional (3D) ME images and measure sound-induced vibrations of the TM and ossicles in fresh human temporal bones. RESULTS The 3D images provided thickness maps of the TM. The system was, with some software adaptations, also capable of phase-sensitive vibrometry. Measurements revealed several modes of TM vibration that became more complex with frequency. Vibrations were also measured from the incus, through the TM. This quantified ME sound transmission, which is the essential measure to assess CHL. CONCLUSION AND SIGNIFICANCE We adapted a commercial SD-OCT to visualize the anatomy and function of the human ME. OCT has the potential to revolutionize point-of-care assessment of ME disruptions that lead to CHL which are otherwise indistinguishable via otoscopy.
Collapse
Affiliation(s)
| | - Michael Warn
- University of California Riverside School of Medicine, Riverside, CA, USA
| | | | - Yuan Liu
- Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA, USA
| | - Timothy T K Jung
- VA Loma Linda Healthcare System, Loma Linda, CA, USA
- Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA, USA
| | - Wei Dong
- VA Loma Linda Healthcare System, Loma Linda, CA, USA
- Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA, USA
| |
Collapse
|
6
|
Liu Y, Wu C, Chen T, Shen Q, Xiong Y, Chen Z, Li C. Evaluation of acoustic changes in and the healing outcomes of rat eardrums with pars tensa and pars flaccida perforations. Laryngoscope Investig Otolaryngol 2022; 7:816-824. [PMID: 35734049 PMCID: PMC9194967 DOI: 10.1002/lio2.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives To systematically explore the differences in acoustic changes and healing outcomes of tympanic membranes (TMs) with pars flaccida perforation (PFP) and pars tensa perforation (PTP). Methods We created PFPs and PTPs of various sizes in Sprague-Dawley rats, and evaluated TM umbo velocity and hearing function using laser Doppler vibrometry and auditory brainstem response (ABR) measurement before and immediately after perforation. Two weeks later, hearing was reevaluated and TMs were investigated by immunohistochemical staining. Results Small PFPs and PTPs did not significantly affect umbo velocity and hearing function. Large PFPs increased umbo velocity loss at low frequency (1.5 kHz) and elevated ABR thresholds within 1-2 kHz. Large PTP caused significant velocity loss at low frequencies from 1.5 to 3.5 kHz and threshold elevations at full frequencies (1-2 kHz). Two weeks after the perforation, the hearing function of rats with healed PFPs recovered completely. However, high-frequency hearing loss (16-32 kHz) persisted in rats with healed PTPs. Morphological staining revealed that no increase in the thickness and obvious increase in collagen I level of regenerated par flaccida; regenerated pars tensa exhibited obvious increase in thickness and increased collagen I, while the collagen II regeneration was limited with discontinuous and disordered structure in regenerated pars tensa. Conclusion The hearing loss caused by large PFP limits at low frequencies while large PTP can lead to hearing loss at wide range frequencies. PFP and PTP have different functional outcomes after spontaneous healing, which is determined by the discrepant structure reconstruction and collagen regeneration.
Collapse
Affiliation(s)
- Yaoqian Liu
- Otolaryngology Research InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Cuiping Wu
- Otolaryngology Research InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Tingting Chen
- Department of Hearing and Language RehabilitationZhejiang Chinese Medicine UniversityHangzhouChina
| | - Qiyue Shen
- Department of Hearing and Language RehabilitationShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yuanping Xiong
- Department of Otolaryngology Head and Neck SurgeryFirst Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zhengnong Chen
- Otolaryngology Research InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
- Department of Otolaryngology‐Head and Neck SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Chunyan Li
- Otolaryngology Research InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
- Department of Otolaryngology‐Head and Neck SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
7
|
Lin X, Luo J, Tan J, Yang L, Wang M, Li P. Experimental animal models of drug-induced sensorineural hearing loss: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1393. [PMID: 34733945 PMCID: PMC8506545 DOI: 10.21037/atm-21-2508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Objective This narrative review describes experimental animal models of sensorineural hearing loss (SNHL) caused by ototoxic agents. Background SNHL primarily results from damage to the sensory organ within the inner ear or the vestibulocochlear nerve (cranial nerve VIII). The main etiology of SNHL includes genetic diseases, presbycusis, ototoxic agents, infection, and noise exposure. Animal models with functional and anatomic damage to the sensory organ within the inner ear or the vestibulocochlear nerve mimicking the damage seen in humans are employed to explore the mechanism and potential treatment of SNHL. These animal models of SNHL are commonly established using ototoxic agents. Methods A literature search of PubMed, Embase, and Web of Science was performed for research articles on hearing loss and ototoxic agents in animal models of hearing loss. Conclusions Common ototoxic medications such as aminoglycoside antibiotics (AABs) and platinum antitumor drugs are extensively used to induce SNHL in experimental animals. The effect of ototoxic agents in vivo is influenced by the chemical mechanisms of the ototoxic agents, the species of animal, routes of administration of the ototoxic agents, and the dosage of ototoxic agents. Animal models of drug-induced SNHL contribute to understanding the hearing mechanism and reveal the function of different parts of the auditory system in humans.
Collapse
Affiliation(s)
- Xuexin Lin
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mitian Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, Meizhou, China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Mao B, Wang Y, Balasubramanian T, Urioste R, Wafa T, Fitzgerald TS, Haraczy SJ, Edwards-Hollingsworth K, Sayyid ZN, Wilder D, Sajja VSSS, Wei Y, Arun P, Gist I, Cheng AG, Long JB, Kelley MW. Assessment of auditory and vestibular damage in a mouse model after single and triple blast exposures. Hear Res 2021; 407:108292. [PMID: 34214947 PMCID: PMC8276524 DOI: 10.1016/j.heares.2021.108292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
The use of explosive devices in war and terrorism has increased exposure to concussive blasts among both military personnel and civilians, which can cause permanent hearing and balance deficits that adversely affect survivors' quality of life. Significant knowledge gaps on the underlying etiology of blast-induced hearing loss and balance disorders remain, especially with regard to the effect of blast exposure on the vestibular system, the impact of multiple blast exposures, and long-term recovery. To address this, we investigated the effects of blast exposure on the inner ear using a mouse model in conjunction with a high-fidelity blast simulator. Anesthetized animals were subjected to single or triple blast exposures, and physiological measurements and tissue were collected over the course of recovery for up to 180 days. Auditory brainstem responses (ABRs) indicated significantly elevated thresholds across multiple frequencies. Limited recovery was observed at low frequencies in single-blasted mice. Distortion Product Otoacoustic Emissions (DPOAEs) were initially absent in all blast-exposed mice, but low-amplitude DPOAEs could be detected at low frequencies in some single-blast mice by 30 days post-blast, and in some triple-blast mice at 180 days post-blast. All blast-exposed mice showed signs of Tympanic Membrane (TM) rupture immediately following exposure and loss of outer hair cells (OHCs) in the basal cochlear turn. In contrast, the number of Inner Hair Cells (IHCs) and spiral ganglion neurons was unchanged following blast-exposure. A significant reduction in IHC pre-synaptic puncta was observed in the upper turns of blast-exposed cochleae. Finally, we found no significant loss of utricular hair cells or changes in vestibular function as assessed by vestibular evoked potentials. Our results suggest that (1) blast exposure can cause severe, long-term hearing loss which may be partially due to slow TM healing or altered mechanical properties of healed TMs, (2) traumatic levels of sound can still reach the inner ear and cause basal OHC loss despite middle ear dysfunction caused by TM rupture, (3) blast exposure may result in synaptopathy in humans, and (4) balance deficits after blast exposure may be primarily due to traumatic brain injury, rather than damage to the peripheral vestibular system.
Collapse
Affiliation(s)
- Beatrice Mao
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ying Wang
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Tara Balasubramanian
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Rodrigo Urioste
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Talah Wafa
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Tracy S. Fitzgerald
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Scott J. Haraczy
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Kamren Edwards-Hollingsworth
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Zahra N. Sayyid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Donna Wilder
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Venkata Siva Sai Sujith Sajja
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Yanling Wei
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Peethambaran Arun
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Irene Gist
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph B. Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Matthew W. Kelley
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Aleemardani M, Bagher Z, Farhadi M, Chahsetareh H, Najafi R, Eftekhari B, Seifalian A. Can Tissue Engineering Bring Hope to the Development of Human Tympanic Membrane? TISSUE ENGINEERING PART B-REVIEWS 2021; 27:572-589. [PMID: 33164696 DOI: 10.1089/ten.teb.2020.0176] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tympanic membrane (TM), more commonly known as the eardrum, consists of a thin layer of tissue in the human ear that receives sound vibrations from outside of the body and transmits them to the auditory ossicles. The TM perforations (TMPs) are a common ontological condition, which in some cases can result in permanent hearing loss. Despite the spontaneous healing capacity of the TM to regenerate in the majority of cases of acute perforation, chronic perforations require surgical interventions. However, the disadvantages of the surgical procedure include infection, anesthetic risks, and high failure of graft patency. The tissue engineering strategy, which includes the applications of a three-dimensional (3D) scaffold, cells, and biomolecules or a combination of them for the closure of chronic perforation, has been considered as an emerging treatment. Using this approach, emerging products are currently under development to regenerate the TM structure and its properties. This research aimed to highlight the problems with the current methods of TMP treatment, and critically evaluate the tissue engineering approaches, which may overcome these drawbacks. The focus of this review is on recent literature to critically discuss the emerging advanced materials used as a 3D scaffold in the development of a TM with cellular engineering, biomolecules, cells, and the fabrications of the TM and its pathway to the clinical application. In this review, we discuss the properties of TM and the advantages and disadvantages of the current clinical products for repair and replacement of the TM. Furthermore, we provide an overview of the in vitro and preclinical studies of emerging products over the past 5 years. The results of recent preclinical studies suggest that the tissue engineering field holds significant promise.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Chahsetareh
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Roghayeh Najafi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Behnaz Eftekhari
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
10
|
Lin X, Meenderink SWF, Stomackin G, Jung TT, Martin GK, Dong W. Forward and Reverse Middle Ear Transmission in Gerbil with a Normal or Spontaneously Healed Tympanic Membrane. J Assoc Res Otolaryngol 2021; 22:261-274. [PMID: 33591494 DOI: 10.1007/s10162-020-00779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
Tympanic membranes (TM) that have healed spontaneously after perforation present abnormalities in their structural and mechanical properties; i.e., they are thickened and abnormally dense. These changes result in a deterioration of middle ear (ME) sound transmission, which is clinically presented as a conductive hearing loss (CHL). To fully understand the ME sound transmission under TM pathological conditions, we created a gerbil model with a controlled 50% pars tensa perforation, which was left to heal spontaneously for up to 4 weeks (TM perforations had fully sealed after 2 weeks). After the recovery period, the ME sound transmission, both in the forward and reverse directions, was directly measured with two-tone stimulation. Measurements were performed at the input, the ossicular chain, and output of the ME system, i.e., at the TM, umbo, and scala vestibuli (SV) next to the stapes. We found that variations in ME transmission in forward and reverse directions were not symmetric. In the forward direction, the ME pressure gain decreased in a frequency-dependent manner, with smaller loss (within 10 dB) at low frequencies and more dramatic loss at high frequency regions. The loss pattern was mainly from the less efficient acoustical to mechanical coupling between the TM and umbo, with little changes along the ossicular chain. In the reverse direction, the variations in these ears are relatively smaller. Our results provide detailed functional observations that explain CHL seen in clinical patients with abnormal TM, e.g., caused by otitis media, that have healed spontaneously after perforation or post-tympanoplasty, especially at high frequencies. In addition, our data demonstrate that changes in distortion product otoacoustic emissions (DPOAEs) result from altered ME transmission in both the forward and reverse direction by a reduction of the effective stimulus levels and less efficient transfer of DPs from the ME into the ear canal. This confirms that DPOAEs can be used to assess both the health of the cochlea and the middle ear.
Collapse
Affiliation(s)
- Xiaohui Lin
- VA Loma Linda Healthcare System, Loma Linda, CA, 92374, USA
| | | | | | - Timothy T Jung
- VA Loma Linda Healthcare System, Loma Linda, CA, 92374, USA.,Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA, 92350, USA
| | - Glen K Martin
- VA Loma Linda Healthcare System, Loma Linda, CA, 92374, USA.,Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA, 92350, USA
| | - Wei Dong
- VA Loma Linda Healthcare System, Loma Linda, CA, 92374, USA. .,Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA, 92350, USA.
| |
Collapse
|
11
|
Yao X, Teh BM, Li H, Hu Y, Huang J, Lv C, Bu S, Zheng M, Shen Y. Acellular Collagen Scaffold With Basic Fibroblast Growth Factor for Repair of Traumatic Tympanic Membrane Perforation in a Rat Model. Otolaryngol Head Neck Surg 2021; 164:381-390. [PMID: 32662734 DOI: 10.1177/0194599820938345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To evaluate the efficacy of acellular collagen scaffold (ACS) in combination with basic fibroblast growth factor (bFGF) for the repair of traumatic tympanic membrane (TM) perforation in a rat model. STUDY DESIGN A prospective controlled animal study in a rat model of traumatic TM perforation. SETTING Tertiary medical center. SUBJECTS AND METHODS Sprague-Dawley rats (N = 84) with unilateral traumatic perforation of the right TMs were randomized to receive ACS, bFGF, ACS in combination with bFGF (ACS/bFGF), or nothing (spontaneous healing without any interventions as a control group). The healing outcomes were evaluated by otoscopy, optical coherence tomography, histology, and transmission electron microscopy at 1, 2, and 4 weeks postoperatively. The hearing outcomes were assessed with auditory brainstem response testing. RESULTS ACS/bFGF resulted in higher perforation closure rates at an earlier stage than spontaneous healing, ACS, and bFGF. Based on histology, optical coherence tomography, and transmission electron microscopy, a trilaminar structure and uniform thickness with mature, densely packed collagen fibers were seen in the ACS/bFGF group. Auditory brainstem response evaluation also showed that ACS/bFGF treatment promoted faster functional hearing recovery as compared with the control group. CONCLUSIONS ACS is an effective TM scaffold and a carrier for bFGF. ACS/bFGF improves the TM closure rate, results in better-reconstructed TMs, and improves hearing. ACS/bFGF serves as a potential substitute for TM perforations in clinical settings.
Collapse
Affiliation(s)
- Xu Yao
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Medical Center (Ningbo Lihuili Hospital), The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Bing Mei Teh
- Department of Ear, Nose, and Throat-Head and Neck Surgery, Eastern Health, Box Hill, Australia
- Department of Otolaryngology-Head and Neck Surgery, Monash Health; Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Huan Li
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Medical Center (Ningbo Lihuili Hospital), The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Yi Hu
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Medical Center (Ningbo Lihuili Hospital), The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Juntao Huang
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Medical Center (Ningbo Lihuili Hospital), The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Cuiting Lv
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Medical Center (Ningbo Lihuili Hospital), The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Shizhong Bu
- School of Medicine, Ningbo University, Ningbo, China
| | - Minghao Zheng
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Australia
| | - Yi Shen
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Medical Center (Ningbo Lihuili Hospital), The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Zhang M, Chen X, Huang Y, Yang Z, Zhang Y, Wu X. The effect of using a PORP to reconstruct the ossicular chain under otoendoscopy with and without a malleus handle. Acta Otolaryngol 2021; 141:19-22. [PMID: 33063573 DOI: 10.1080/00016489.2020.1815835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND There are many reports on the role of the malleus handle in ossicular chain reconstruction (OCR). However, the effect of the presence of the malleus handle is not clear. AIM/OBJECTIVES To compare the hearing outcomes of using a partial ossicular replacement prosthesis (PORP) to reconstruct the ossicular chain under otoendoscopy with and without a malleus handle. METHODS Records of 57 patients requiring OCR were retrospectively analyzed. They were divided into the malleus handle-present group (group 1) and the malleus handle-absent group (group 2). The audiometric results were analyzed pre- and postoperatively. A postoperative air-bone gap (ABG)≤20 dB was considered successful. RESULTS The mean improvement in air conduction hearing thresholds was 19.80 dB in group 1 and 16.70 dB in group 2. The mean ABG improvement was 18.09 ± 12.79 dB for group 1 and 17.20 ± 16.44 dB for group 2. The malleus handle-present group achieved higher success (65.63%) than the malleus handle-absent group (52%; p> .05). CONCLUSIONS AND SIGNIFICANCE Improvements in hearing outcomes were similar for the two groups. However, the malleus handle-present group showed a better reconstruction success rate. Our results suggest that if there is no lesion in the malleus handle, it is recommended to be retained.
Collapse
Affiliation(s)
- Min Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyun Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yideng Huang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zifei Yang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianmin Wu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Optical coherence tomography: current and future clinical applications in otology. Curr Opin Otolaryngol Head Neck Surg 2020; 28:296-301. [PMID: 32833887 DOI: 10.1097/moo.0000000000000654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article reviews literature on the use of optical coherence tomography (OCT) in otology and provides the reader with a timely update on its current clinical and research applications. The discussion focuses on the principles of OCT, the use of the technology for the diagnosis of middle ear disease and for the delineation of in-vivo cochlear microarchitecture and function. RECENT FINDINGS Recent advances in OCT include the measurement of structural and vibratory properties of the tympanic membrane, ossicles and inner ear in healthy and diseased states. Accurate, noninvasive diagnosis of middle ear disease, such as otosclerosis and acute otitis media using OCT, has been validated in clinical studies, whereas inner ear OCT imaging remains at the preclinical stage. The development of recent microscopic, otoscopic and endoscopic systems to address clinical and research problems is reviewed. SUMMARY OCT is a real-time, noninvasive, nonionizing, point-of-care imaging modality capable of imaging ear structures in vivo. Although current clinical systems are mainly focused on middle ear imaging, OCT has also been shown to have the ability to identify inner ear disease, an exciting possibility that will become increasingly relevant with the advent of targeted inner ear therapies.
Collapse
|