1
|
Sun J, Sai N, Zhang T, Tang C, Fan S, Wang Q, Liu D, Zeng X, Li J, Guo W, Yang S, Han W. Repeated low-intensity noise exposure exacerbates age-related hearing loss via RAGE signaling pathway. Neurobiol Dis 2025; 204:106768. [PMID: 39694338 DOI: 10.1016/j.nbd.2024.106768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
Repeated low-intensity noise exposure is prevalent in industrialized societies. It has long been considered risk-free until recent evidence suggests that the temporary threshold shift (TTS) induced by such exposure might be a high-risk factor for hearing loss. This study was conducted to further investigate the manner in which repeated low-intensity noise exposure contributed to hearing damage. Two-month-old C57BL/6 J mice were exposed to white noise at 96 dB SPL for 8 h per day over 7 days to induce TTS. Auditory brainstem response (ABR) was monitored to assess changes in hearing thresholds, tracking the effects of noise exposure until the mice reached 12 months of age. Our results indicated that noise-exposed mice exhibited accelerated age-related hearing loss spanning from high to low frequencies. Proteomics analysis revealed an upregulation in the receptor for the advanced glycation end-products (RAGE) signaling pathway, which was associated with an activated inflammatory response, vascular injury, and mitochondrial and synaptic dysfunction. Further analysis confirmed increased levels of inflammatory cytokines in the cochlear lymph fluid and significant macrophages infiltration in the cochlear lateral wall, accompanied by hyperpermeability of the blood-labyrinth barrier. Additionally, degenerated mitochondria in the outer hair cells and decreased synaptic ribbons in the inner hair cells were also observed. These pathological changes indicated that noise exposure damages the cochlear cellular components, increasing the cochlear susceptibility to age-related stress. Our findings suggest that TTS caused by repeated low-intensity noise exposure correlates with a severe sensorineural hearing loss during aging; targeting the RAGE signaling pathway may be a promising strategy to mitigate damage from low-intensity noise and slow down the progression of age-related hearing loss.
Collapse
Affiliation(s)
- Jianbin Sun
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China; Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Provincial Key Laboratory for Precision Diagnosis and Treatment of Otorhinolaryngology, Xi'an 710004, China
| | - Na Sai
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China
| | - Tong Zhang
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China
| | - Chaoying Tang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shuhang Fan
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China
| | - Qin Wang
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China
| | - Da Liu
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China
| | - Xianhai Zeng
- Department of Otorhinolaryngology, Long gang Otorhinolaryngology Hospital, Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen, Guangdong 518172, China
| | - Juanjuan Li
- Department of Otorhinolaryngology, Long gang Otorhinolaryngology Hospital, Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen, Guangdong 518172, China
| | - Weiwei Guo
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China.
| | - Shiming Yang
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China.
| | - Weiju Han
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China.
| |
Collapse
|
2
|
Liu X, Zhao Z, Shi X, Zong Y, Sun Y. The Effects of Viral Infections on the Molecular and Signaling Pathways Involved in the Development of the PAOs. Viruses 2024; 16:1342. [PMID: 39205316 PMCID: PMC11359136 DOI: 10.3390/v16081342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cytomegalovirus infection contributes to 10-30% of congenital hearing loss in children. Vertebrate peripheral auditory organs include the outer, middle, and inner ear. Their development is regulated by multiple signaling pathways. However, most ear diseases due to viral infections are due to congenital infections and reactivation and affect healthy adults to a lesser extent. This may be due to the fact that viral infections affect signaling pathways that are important for the development of peripheral hearing organs. Therefore, an in-depth understanding of the relationship between viral infections and the signaling pathways involved in the development of peripheral hearing organs is important for the prevention and treatment of ear diseases. In this review, we summarize the effects of viruses on signaling pathways and signaling molecules in the development of peripheral auditory organs.
Collapse
Affiliation(s)
- Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanjun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Harding AT, Ocwieja K, Jeong M, Zhang Y, Leger V, Jhala N, Stankovic KM, Gehrke L. Human otic progenitor cell models of congenital hearing loss reveal potential pathophysiologic mechanisms of Zika virus and cytomegalovirus infections. mBio 2024; 15:e0019924. [PMID: 38440980 PMCID: PMC11005345 DOI: 10.1128/mbio.00199-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Congenital hearing loss is a common chronic condition affecting children in both developed and developing nations. Viruses correlated with congenital hearing loss include human cytomegalovirus (HCMV) and Zika virus (ZIKV), which causes congenital Zika syndrome. The mechanisms by which HCMV and ZIKV infections cause hearing loss are poorly understood. It is challenging to study human inner ear cells because they are encased in bone and also scarce as autopsy samples. Recent advances in culturing human stem cell-derived otic progenitor cells (OPCs) have allowed us herein to describe successful in vitro infection of OPCs with HCMV and ZIKV, and also to propose potential mechanisms by which each viral infection could affect hearing. We find that ZIKV infection rapidly and significantly induces the expression of type I interferon and interferon-stimulated genes, while OPC viability declines, at least in part, from apoptosis. In contrast, HCMV infection did not appear to upregulate interferons or cause a reduction in cell viability, and instead disrupted expression of key genes and pathways associated with inner ear development and function, including Cochlin, nerve growth factor receptor, SRY-box transcription factor 11, and transforming growth factor-beta signaling. These findings suggest that ZIKV and HCMV infections cause congenital hearing loss through distinct pathways, that is, by inducing progenitor cell death in the case of ZIKV infection, and by disruption of critical developmental pathways in the case of HCMV infection. IMPORTANCE Congenital virus infections inflict substantial morbidity and devastating disease in neonates worldwide, and hearing loss is a common outcome. It has been difficult to study viral infections of the human hearing apparatus because it is embedded in the temporal bone of the skull. Recent technological advances permit the differentiation of otic progenitor cells (OPCs) from human-induced pluripotent stem cells. This paper is important for demonstrating that inner ear virus infections can be modeled in vitro using OPCs. We infected OPCs with two viruses associated with congenital hearing loss: human cytomegalovirus (HCMV), a DNA virus, or Zika virus (ZIKV), an RNA virus. An important result is that the gene expression and cytokine production profiles of HCMV/ZIKV-infected OPCs are markedly dissimilar, suggesting that mechanisms of hearing loss are also distinct. The specific molecular regulatory pathways identified in this work could suggest important targets for therapeutics.
Collapse
Affiliation(s)
- Alfred T. Harding
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Karen Ocwieja
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Boston Childrens’ Hospital, Boston, Massachusetts, USA
| | - Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yichen Zhang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Valerie Leger
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nairuti Jhala
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Venâncio LGA, Muniz LF, Hora LCDD, Silva JDD, Cavalcanti GST, Leal MDC, Caldas Neto SDS. Does a patient with acquired arbovirus infection have a hearing impairment? A scoping review of hearing changes in an adult with Dengue, Chikungunya, and Zika. Braz J Otorhinolaryngol 2024; 90:101342. [PMID: 37879254 PMCID: PMC10598399 DOI: 10.1016/j.bjorl.2023.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/30/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVES To identify and understand the evidence regarding hearing changes related to acquired Dengue, Chikungunya, and Zika virus infection in adult individuals. METHODS A scoping review was performed according to the recommendations of The Joanna Briggs Institute and guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews in the Embase, PubMed/Medline, ScienceDirect, Scopus, and Web of Science databases without restriction on language and year of publication. Case studies, observational studies, and clinical trials reporting hearing loss in adult subjects (>18-60 years of age) of both sexes with DENV, CHIKV, or ZIKV diagnosed by positive molecular/serological examination by RT-PCR or IgM/IgG by ELISA method were included. RESULTS Thirteen studies met the inclusion criteria and were selected for review. The occurrence of auditory symptoms caused by arboviroses and the presence of permanent or transient sensorineural hearing loss was variable in adults. CONCLUSIONS Dengue, Chikungunya, and Zika infections in adults are associated with a variety of auditory symptoms. The frequency of permanent or transient sensorineural hearing loss is low but not negligible.
Collapse
|
5
|
Capra D, DosSantos MF, Sanz CK, Acosta Filha LG, Nunes P, Heringer M, Ximenes-da-Silva A, Pessoa L, de Mattos Coelho-Aguiar J, da Fonseca ACC, Mendes CB, da Rocha LS, Devalle S, Niemeyer Soares Filho P, Moura-Neto V. Pathophysiology and mechanisms of hearing impairment related to neonatal infection diseases. Front Microbiol 2023; 14:1162554. [PMID: 37125179 PMCID: PMC10140533 DOI: 10.3389/fmicb.2023.1162554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The inner ear, the organ of equilibrium and hearing, has an extraordinarily complex and intricate arrangement. It contains highly specialized structures meticulously tailored to permit auditory processing. However, hearing also relies on both peripheral and central pathways responsible for the neuronal transmission of auditory information from the cochlea to the corresponding cortical regions. Understanding the anatomy and physiology of all components forming the auditory system is key to better comprehending the pathophysiology of each disease that causes hearing impairment. In this narrative review, the authors focus on the pathophysiology as well as on cellular and molecular mechanisms that lead to hearing loss in different neonatal infectious diseases. To accomplish this objective, the morphology and function of the main structures responsible for auditory processing and the immune response leading to hearing loss were explored. Altogether, this information permits the proper understanding of each infectious disease discussed.
Collapse
Affiliation(s)
- Daniela Capra
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos F. DosSantos
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Odontologia (PPGO), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carolina K. Sanz
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lionete Gall Acosta Filha
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Priscila Nunes
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Manoela Heringer
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Luciana Pessoa
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Juliana de Mattos Coelho-Aguiar
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Carolina Carvalho da Fonseca
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | | | - Sylvie Devalle
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Paulo Niemeyer Soares Filho
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Yee KT, Vetter DE. Detection of West Nile Virus Envelope Protein in Brain Tissue with an Immunohistochemical Assay. Methods Mol Biol 2023; 2585:51-69. [PMID: 36331765 DOI: 10.1007/978-1-0716-2760-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Immunohistochemistry is a valuable tool for probing not only scientific questions but also clinical diagnoses. It provides power from localization of a protein within the milieu of a tissue section that may reflect positioning within or beyond the boundaries of a cell that is representative of the tissue at a discrete moment in time. The method can be applied broadly, including to tissues under normal, developmental, chemically, or genetically altered conditions and disease states.Disease manifesting from West Nile virus infection ranges from acute, systemic febrile symptoms to compromise of central nervous system function. Immunohistochemistry has been used to assess WNV infection in the nervous system in postmortem and experimental conditions, despite the lack of understanding of the precise route of viral entry. In addition to imprecise knowledge of initial viral entry into cells and whether entry is even the same between cell types, the fact that spontaneous viral mutations and environmental pressures from climate change may alter the prevalence of the disease state across geographical and climatological boundaries highlights the need for continued assessment of infection. Immunohistochemistry is a useful way to assess these aspects of WNV infection with the aim being to better understand the organs and cell types that are compromised by WNV infection. This chapter outlines how this can be carried out on brain tissue, but the procedures discussed can also be applied more broadly on tissue outside of the central nervous system.
Collapse
Affiliation(s)
- Kathleen T Yee
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Douglas E Vetter
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
7
|
Maruyama J, Reyna RA, Kishimoto-Urata M, Urata S, Manning JT, Harsell N, Cook R, Huang C, Nikolich-Zugich J, Makishima T, Paessler S. CD4 T-cell depletion prevents Lassa fever associated hearing loss in the mouse model. PLoS Pathog 2022; 18:e1010557. [PMID: 35605008 PMCID: PMC9166448 DOI: 10.1371/journal.ppat.1010557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever (LF), which presents as a lethal hemorrhagic disease in severe cases. LASV-induced hearing loss in survivors is a huge socioeconomic burden, however, the mechanism(s) leading to hearing loss is unknown. In this study, we evaluate in a mouse LF model the auditory function using auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to determine the mechanisms underlying LASV-induced hearing loss. In the process, we pioneered measures of ABR and DPOAE tests in rodents in biosafety level 4 (BSL-4) facilities. Our T cell depletion studies demonstrated that CD4 T-cells play an important role in LASV-induced hearing loss, while CD8 T-cells are critical for the pathogenicity in the acute phase of LASV infection. Results presented in this study may help to develop future countermeasures against acute disease and LASV-induced hearing loss.
Collapse
Affiliation(s)
- Junki Maruyama
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rachel A. Reyna
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Megumi Kishimoto-Urata
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shinji Urata
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John T. Manning
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nantian Harsell
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rebecca Cook
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cheng Huang
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Janko Nikolich-Zugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Tomoko Makishima
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Slobodan Paessler
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
8
|
Yu Y, Shi K, Nielson C, Graham EM, Price MS, Haller TJ, Carraro M, Firpo MA, Park AH, Harrison RV. Hearing loss caused by CMV infection is correlated with reduced endocochlear potentials caused by strial damage in murine models. Hear Res 2022; 417:108454. [DOI: 10.1016/j.heares.2022.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
|
9
|
Munnamalai V, Sammudin NH, Young CA, Thawani A, Kuhn RJ, Fekete DM. Embryonic and Neonatal Mouse Cochleae Are Susceptible to Zika Virus Infection. Viruses 2021; 13:v13091823. [PMID: 34578404 PMCID: PMC8472928 DOI: 10.3390/v13091823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Congenital Zika Syndrome (CZS) is caused by vertical transmission of Zika virus (ZIKV) to the gestating human fetus. A subset of CZS microcephalic infants present with reduced otoacoustic emissions; this test screens for hearing loss originating in the cochlea. This observation leads to the question of whether mammalian cochlear tissues are susceptible to infection by ZIKV during development. To address this question using a mouse model, the sensory cochlea was explanted at proliferative, newly post-mitotic or maturing stages. ZIKV was added for the first 24 h and organs cultured for up to 6 days to allow for cell differentiation. Results showed that ZIKV can robustly infect proliferating sensory progenitors, as well as post-mitotic hair cells and supporting cells. Virus neutralization using ZIKV-117 antibody blocked cochlear infection. AXL is a cell surface molecule known to enhance the attachment of flavivirus to host cells. While Axl mRNA is widely expressed in embryonic cochlear tissues susceptible to ZIKV infection, it is selectively downregulated in the post-mitotic sensory organ by E15.5, even though these cells remain infectible. These findings may offer insights into which target cells could potentially contribute to hearing loss resulting from fetal exposure to ZIKV in humans.
Collapse
Affiliation(s)
- Vidhya Munnamalai
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; (V.M.); (C.A.Y.)
- Graduate School of Biomedical Sciences and Engineering, University of Main, Orono, ME 04469, USA
| | - Nabilah H. Sammudin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (N.H.S.); (A.T.); (R.J.K.)
| | - Caryl A. Young
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; (V.M.); (C.A.Y.)
| | - Ankita Thawani
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (N.H.S.); (A.T.); (R.J.K.)
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (N.H.S.); (A.T.); (R.J.K.)
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Donna M. Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (N.H.S.); (A.T.); (R.J.K.)
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
10
|
Abstract
Congenital hearing loss is the most common birth defect, estimated to affect 2-3 in every 1000 births. Currently there is no cure for hearing loss. Treatment options are limited to hearing aids for mild and moderate cases, and cochlear implants for severe and profound hearing loss. Here we provide a literature overview of the environmental and genetic causes of congenital hearing loss, common animal models and methods used for hearing research, as well as recent advances towards developing therapies to treat congenital deafness. © 2021 The Authors.
Collapse
Affiliation(s)
- Justine M Renauld
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Martin L Basch
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve School of Medicine, Cleveland, Ohio.,Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Otolaryngology, Head & Neck Surgery, University Hospitals, Cleveland, Ohio
| |
Collapse
|
11
|
Gheorghe DC, Niculescu AG, Bîrcă AC, Grumezescu AM. Nanoparticles for the Treatment of Inner Ear Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1311. [PMID: 34067544 PMCID: PMC8156593 DOI: 10.3390/nano11051311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
The inner ear is sensitive to various infections of viral, bacterial, or fungal origin, which, if left untreated, may lead to hearing loss or progress through the temporal bone and cause intracranial infectious complications. Due to its isolated location, the inner ear is difficult to treat, imposing an acute need for improving current therapeutic approaches. A solution for enhancing antimicrobial treatment performance is the use of nanoparticles. Different inorganic, lipidic, and polymeric-based such particles have been designed, tested, and proven successful in the controlled delivery of medication, improving drug internalization by the targeted cells while reducing the systemic side effects. This paper makes a general presentation of common inner ear infections and therapeutics administration routes, further focusing on newly developed nanoparticle-mediated treatments.
Collapse
Affiliation(s)
- Dan Cristian Gheorghe
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- “M.S. Curie” Clinical Emergency Hospital for Children, 050474 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alexandra Cătălina Bîrcă
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|