1
|
Salazar Mercado SA, Correa RDC. Examining the interaction between pesticides and bioindicator plants: an in-depth analysis of their cytotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51114-51125. [PMID: 39120815 DOI: 10.1007/s11356-024-34521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Agrochemicals are substances used to prevent, destroy, or mitigate any pest. Their indiscriminate use can cause serious problems in ecosystems, contaminating surface and groundwater and affecting surrounding biota. However, in the environment, various natural processes such as biological degradation and photodegradation can mitigate their persistence and, consequently, their ecotoxicological impact. In this regard, this study aimed to obtain relevant data on the cytotoxic effects produced by pesticides on bioindicator plants. As observed in the literature review, cellular inhibition, nuclear anomalies, and micronucleus index are some of the different impacts commonly known from pesticides. These chemical substances can cause cytogenetic alterations in a plant bioassay. Plant bioindicators such as Allium cepa L, Vicia faba L, Pisum sativum L, Lactuca sativa L, and Lens culinaris Med are very important and effective experimental models for identifying the cytogenotoxicity of pesticides. These have been available for many years. However, they are still used today for their effectiveness in detecting and monitoring chemical substances such as agrochemicals.
Collapse
Affiliation(s)
- Seir Antonio Salazar Mercado
- Laboratorio de Ciencias Básicas, Departamento de Biología, Universidad Francisco de Paula Santander, San José de Cúcuta, Colombia.
| | - Rubén Darío Carreño Correa
- Departamento de Ciencias Agrícolas y Pecuarias, Universidad Francisco De Paula Santander, Santander, San José de Cúcuta, Colombia
| |
Collapse
|
2
|
Mercado SAS, Galvis DGV. Paracetamol ecotoxicological bioassay using the bioindicators Lens culinaris Med. and Pisum sativum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61965-61976. [PMID: 36934188 PMCID: PMC10024602 DOI: 10.1007/s11356-023-26475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Paracetamol is one of the most widely used drugs worldwide, yet its environmental presence and hazardous impact on non-target organisms could rapidly increase. In this study, the possible cytotoxic effects of paracetamol were evaluated using two bioindicator plants Lens culinaris and Pisum sativum. Concentrations of 500, 400, 300, 200, 100, 50, 25, 5, 1 mg L-1, and a control (distilled water) were used for a total of 10 treatments, which were subsequently applied on seeds of Lens culinaris Med. and Pisum sativum L.; after 72 h of exposure, root growth, mitotic index, percentage of chromosomal abnormalities, and the presence of micronucleus were evaluated. The cytotoxic effect of paracetamol on L. culinaris and P. sativum was demonstrated, reporting the inhibition of root growth, the presence of abnormalities, and a significant micronucleus index at all concentrations used, which shows that this drug has a high degree of toxicity.
Collapse
|
3
|
Mercado SAS, Caleño JDQ. Use of Lens culinaris Med test as environmental bioindicator to identify the cytogenotoxic effect of paraquat pesticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51321-51328. [PMID: 33977433 DOI: 10.1007/s11356-021-14352-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Paraquat is the most widely used herbicide and the third most sold pesticide in the world, applied in more than 120 countries despite being banned in the European Union. It is a risk to ecosystems. The genotoxic effect of paraquat was evaluated using the Lens culinaris test. L. culinaris seeds were subjected to 6 concentrations of paraquat (0.1, 0.5, 1, 1.5, 1.5, 2, and 3 ppm) plus a control (distilled water). During 72 h, root development was measured every 24 h. After 3 days, root apices were analyzed to obtain the inhibition of the mitotic index, as well as the type and rate of chromosomal abnormalities present. A decrease in root growth of more than 50% (72 h of exposure) and an inhibition of the mitotic index of 2.9 times in the treatment with 3 ppm compared to the control were observed. The 2 ppm concentration presented all the anomalies found with a frequency of 84 ± 2.5 of micronuclei, 106 ± 3.5 of nuclear lesions, 14 ± 4.7 of nucleus absence, 8 ± 2.7 of telophase bridges, 7 ± 2.7 of binucleated cells, among others. It is also recommended to establish comparisons of L. culinaris with multiple biomarkers since it is presented as a practical and economic alternative.
Collapse
Affiliation(s)
- Seir Antonio Salazar Mercado
- Departamento de Biología , Universidad Francisco de Paula Santander , Avenida Gran, Colombia No. 12E-96B Colsag , San José de Cúcuta , Colombia.
| | - Jesús David Quintero Caleño
- Departamento de Matemáticas y Estadística , Universidad Francisco de Paula Santander , San José , de Cúcuta, Colombia
| |
Collapse
|
4
|
Acar A. In vivo toxicological assessment of diquat dibromide: cytotoxic, genotoxic, and biochemical approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47550-47561. [PMID: 33893917 DOI: 10.1007/s11356-021-13936-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Diquat dibromide is a comprehensive herbicide commonly used in the cultivation of cotton, soybeans, and other crops to combat unwanted weeds. In this study, the half-maximal effective concentration (EC50) value of diquat dibromide was determined 60 mg/L in the Allium root growth inhibition test. ½ × EC50 (30 mg/L), EC50 (60 mg/L), and 2 × EC50 (120 mg/L) concentrations of diquat dibromide were applied to Allium cepa L. bulbs for 72 h to investigate the dose-dependent toxic effects. To determine the toxic effects cytogenetic, biochemical and physiological parameters were used. Physiological effects were investigated by determination of the percentage of rooting, relative injury rate, root length, and weight gain. Genetic effects were evaluated by the frequency of chromosomal abnormalities (CAs), micronucleus (MN) formation, mitotic index (MI) rate, and comet assay. Biochemical parameters were evaluated with antioxidant enzyme activities and lipid peroxidation by determining malondialdehyde (MDA) level, superoxide dismutase (SOD) activity, catalase (CAT) activity, and glutathione (GSH) level. Also, chlorophyll pigment contents (a, b, and total) in green leaves were calculated to elucidate the effect of diquat dibromide on plants and the biosphere. The findings show that increasing doses of diquat dibromide caused a decrease in all physiological parameters and MI ratio, promoting MN and CAs and tail DNA formation in genetic parameters. It was determined by the increases in MDA level, SOD, and CAT activities and decreases in GSH levels that diquat dibromide administration caused oxidative stress depending on the dose. Also, chlorophyll pigment levels (a, b, and total) measured in leaf tissues decreased with the application dose. Considering that the toxic effects caused by diquat dibromide and that organisms other than unwanted plants will be exposed during the application, its use should be abandoned and biocontrol methods should be used instead. In cases where use is compulsory, doses that will not harm the environment and organisms should be determined and used.
Collapse
Affiliation(s)
- Ali Acar
- Vocational School of Health Services, Department of Medical Services and Techniques, Giresun University, Giresun, Turkey.
| |
Collapse
|
5
|
Gideon J, Mulligan J, Hui C, Cheng SY. UV and temperature effects on chloroacetanilide and triazine herbicides degradation and cytotoxicity. Heliyon 2021; 7:e08010. [PMID: 34589629 PMCID: PMC8461356 DOI: 10.1016/j.heliyon.2021.e08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/25/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to explore the stability and toxicity of the herbicides and their degradation byproduct after exposure to different environmental factors. Triazines (atrazine, propazine, simazine) and chloroacetanilides (acetochlor, alachlor, metolachlor) which are commonly used herbicides were evaluated for cytotoxicity in different UV (254 nm and 365 nm) and temperature (4 °C, 23 °C, and 40 °C) conditions as well as degradation rates. Atrazine with the highest LD50 (4.23 μg mL-1) was less toxic than the other tested triazine herbicides Chloroacetanilides tested were more toxic than tested triazines, with LD50 0.08-1.42 μg mL-1 vs 1.44-4.23 μg mL-1, respectively. Alachlor with LD50 0.08 μg mL-1 showed the strongest toxic response as compared with other tested herbicides. Temperatures only did not alter cytotoxicity of the tested herbicides, except for acetochlor and alachlor showing about 45 % more cell death after exposure to 40 °C for 2 h. At all 3 tested temperatures, 2 h of UV treatments did not affect cytotoxic effects of the tested herbicides, except for acetochlor and alachlor. At 4 °C, acetochlor toxicity was attenuated about 63 % after UV 365 nm exposure; but alachlor toxicity was enhanced after either UV 254 or 365 nm exposure for about 40 % and 24 %, respectively. At 23 °C, acetochlor toxicity was enhanced about 35 % after UV 254 nm exposure, but attenuated about 48 % after UV 365 nm exposure. Alachlor toxicity was enhanced about 34 % after UV 254 nm and 23 °C exposure. In combination of UV 254 nm and 40 °C, acetochlor toxicity was lowered by 63 % and alachlor toxicity was no change as compared with 4 °C, no UV group. After co-treatment with UV 365 nm and 40 °C both acetochlor and alachlor toxicity was enhanced 55 % and 80 %, respectively. Through degradation analysis by LC-MS/MS, alachlor showed the most dramatic degradation (only 0.58 %-10.58 % remaining) after heat and UV treatments.
Collapse
Affiliation(s)
| | | | - Christina Hui
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York, NY, 10019, USA
| | - Shu-Yuan Cheng
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York, NY, 10019, USA
- The Graduate Center of the City University of New York, New York, NY, 10016, USA
| |
Collapse
|
6
|
Khan A, Kumar V, Srivastava A, Saxena G, Verma PC. Biomarker-based evaluation of cytogenotoxic potential of glyphosate in Vigna mungo (L.) Hepper genotypes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:73. [PMID: 33469782 DOI: 10.1007/s10661-021-08865-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Herbicides have proven to be a boon for agricultural fields. Their inherent property to kill weeds and unwanted vegetation makes them an essential biological tool for farmers and agricultural systems. Besides being capable of destroying weeds, they also exhibit certain effects on non-target crop plants. In the present study, a laboratory experiment was performed to assess the effect of glyphosate on Vigna mungo root meristem cells. Seeds of five different genotypes of V. mungo were treated with a series of concentrations of glyphosate ranging from 1 to 10 mM, and their effects on mitotic cell division were studied. Healthy and uniform-sized seeds were selected and were allowed to grow in Petri plates for 3 days, and all the doses were maintained in triplicates. Roots were fixed at day 3 after treatment (DAT) for cytological microscopic slide preparation. The results obtained indicate the dose-dependent reduction in the mitotic index in all the genotypes and an increase in the percentage of chromosomal aberrations (CAs) and relative abnormality rate (RAR). Most commonly observed chromosome aberrations at lower doses (< 6 mM) were fragments, stickiness, and disoriented metaphase, while at higher doses (6 to 10 mM) bridges, laggards, spindle disorientation, and clumping were obvious. The increase in the percentage of CAs and RAR indicates the inhibitory effect of glyphosate on cell cycle progression at various stages in root tip cells. The present study is a fine example of a biomarker-based genotoxic assessment of mitotic damage caused by glyphosate.
Collapse
Affiliation(s)
- Adiba Khan
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Vaibhav Kumar
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Gauri Saxena
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India.
| | - Praveen C Verma
- Department of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India
| |
Collapse
|