1
|
Soon CW, Gaurav A, Gautam V, Al-Nema M. Structural insight into the lead identification of a dual inhibitor of PDE1B and PDE10A: Integrating pharmacophore-based virtual screening, molecular docking, and structure-activity-relationship approaches. Heliyon 2024; 10:e38305. [PMID: 39391487 PMCID: PMC11466560 DOI: 10.1016/j.heliyon.2024.e38305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
Schizophrenia is a chronic neuropsychiatric disorder affecting more than 1% of the world's population. Current antipsychotic treatments show inadequacy in mitigating the negative and cognitive symptoms of schizophrenia. In addition, these medications cause undesirable extrapyramidal side effects. According to the studies, inhibition of phosphodiesterase (PDE) 1B and PDE10A simultaneously can alleviate positive, negative, and cognitive symptoms of schizophrenia. Thus, this study aims to identify new dual inhibitors of PDE1B and PDE10A using ligand-based pharmacophore modelling, virtual screening, and molecular docking studies. Accordingly, the generated pharmacophore models of PDE1B and PDE10A comprised hydrogen bond acceptor, aromatic ring, and hydrophobic features. These features were essential for retrieving the active hits from the Universal Natural Product Database in the virtual screening. Additional filters were subsequently employed to identify potential hits that could be developed into central nervous system-active compounds. Hits meeting all the screening criteria were subjected to docking studies with PDE1B and PDE10A. Among these hits, UNPD167314 exhibited significant binding affinities for the target receptors. It occupied the P-clamp and displayed hydrophobic, aromatic, and hydrogen bond interactions with the active site residues of both receptors, thus selected as a lead compound for the design of potent and selective dual inhibitors. The structural modifications of UNPD167314 resulted in the design of 35 novel inhibitors. Out of 35, four compounds exhibited high and comparable binding affinities for both PDE1B and PDE10A, making them promising candidates for further evaluation and optimisation.
Collapse
Affiliation(s)
- Ching Wen Soon
- Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Anand Gaurav
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India
- Faculty of Health Sciences, Villa College, Male', 20373, Maldives
| | - Vertika Gautam
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
- Klarity, Westbourne, Bournemouth, BH4 8DT, United Kingdom
| |
Collapse
|
2
|
Zhang Y, Yang Y, Liang H, Liang Y, Xiong G, Lu F, Yang K, Zou Q, Zhang X, Du G, Xu X, Hao J. Nobiletin, as a Novel PDE4B Inhibitor, Alleviates Asthma Symptoms by Activating the cAMP-PKA-CREB Signaling Pathway. Int J Mol Sci 2024; 25:10406. [PMID: 39408735 PMCID: PMC11477036 DOI: 10.3390/ijms251910406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Asthma is a chronic airway inflammation that is considered a serious public health concern worldwide. Nobiletin (5,6,7,8,3',4'-hexamethyl flavonoid), an important compound isolated from several traditional Chinese medicines, especially Citri Reticulatae Pericarpium, is widely used for a number of indications, including cancer, allergic diseases, and chronic inflammation. However, the mechanism by which nobiletin exerts its anti-asthmatic effect remains unclear. In this research, we comprehensively demonstrated the anti-asthmatic effects of nobiletin in an animal model of asthma. It was found that nobiletin significantly reduced the levels of inflammatory cells and cytokines in mice and alleviated airway hyperresponsiveness. To explore the target of nobiletin, we identified PDE4B as the target of nobiletin through pharmacophore modeling, molecular docking, molecular dynamics simulation, SPR, and enzyme activity assays. Subsequently, it was found that nobiletin could activate the cAMP-PKA-CREB signaling pathway downstream of PDE4B in mouse lung tissues. Additionally, we studied the anti-inflammatory and anti-airway remodeling effects of nobiletin in LPS-induced RAW264.7 cells and TGF-β1-induced ASM cells, confirming the activation of the cAMP-PKA-CREB signaling pathway by nobiletin. Further validation in PDE4B-deficient RAW264.7 cells confirmed that the increase in cAMP levels induced by nobiletin depended on the inhibition of PDE4B. In conclusion, nobiletin exerts anti-asthmatic activity by targeting PDE4B and activating the cAMP-PKA-CREB signaling pathway.
Collapse
Affiliation(s)
- Yan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Yaping Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Huicong Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Yuerun Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Guixin Xiong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Fang Lu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Kan Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Qi Zou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Xiaomin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Guanhua Du
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China;
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China;
- Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiejie Hao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China;
| |
Collapse
|
3
|
Lusardi M, Rapetti F, Spallarossa A, Brullo C. PDE4D: A Multipurpose Pharmacological Target. Int J Mol Sci 2024; 25:8052. [PMID: 39125619 PMCID: PMC11311937 DOI: 10.3390/ijms25158052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Phosphodiesterase 4 (PDE4) enzymes catalyze cyclic adenosine monophosphate (cAMP) hydrolysis and are involved in a variety of physiological processes, including brain function, monocyte and macrophage activation, and neutrophil infiltration. Among different PDE4 isoforms, Phosphodiesterases 4D (PDE4Ds) play a fundamental role in cognitive, learning and memory consolidation processes and cancer development. Selective PDE4D inhibitors (PDE4Dis) could represent an innovative and valid therapeutic strategy for the treatment of various neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and Lou Gehrig's diseases, but also for stroke, traumatic brain and spinal cord injury, mild cognitive impairment, and all demyelinating diseases such as multiple sclerosis. In addition, small molecules able to block PDE4D isoforms have been recently studied for the treatment of specific cancer types, particularly hepatocellular carcinoma and breast cancer. This review overviews the PDE4DIsso far identified and provides useful information, from a medicinal chemistry point of view, for the development of a novel series of compounds with improved pharmacological properties.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| | | | | | - Chiara Brullo
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| |
Collapse
|
4
|
Xing Y, Hou Y, Fan T, Gao R, Feng X, Li B, Pang J, Guo W, Shu T, Li J, Yang J, Mao Q, Luo Y, Qi X, Yang P, Liang C, Zhao H, Chen W, Wang J, Wang C. Endothelial phosphodiesterase 4B inactivation ameliorates endothelial-to-mesenchymal transition and pulmonary hypertension. Acta Pharm Sin B 2024; 14:1726-1741. [PMID: 38572107 PMCID: PMC10985131 DOI: 10.1016/j.apsb.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 04/05/2024] Open
Abstract
Pulmonary hypertension (PH) is a fatal disorder characterized by pulmonary vascular remodeling and obstruction. The phosphodiesterase 4 (PDE4) family hydrolyzes cyclic AMP (cAMP) and is comprised of four subtypes (PDE4A-D). Previous studies have shown the beneficial effects of pan-PDE4 inhibitors in rodent PH; however, this class of drugs is associated with side effects owing to the broad inhibition of all four PDE4 isozymes. Here, we demonstrate that PDE4B is the predominant PDE isozyme in lungs and that it was upregulated in rodent and human PH lung tissues. We also confirmed that PDE4B is mainly expressed in the lung endothelial cells (ECs). Evaluation of PH in Pde4b wild type and knockout mice confirmed that Pde4b is important for the vascular remodeling associated with PH. In vivo EC lineage tracing demonstrated that Pde4b induces PH development by driving endothelial-to-mesenchymal transition (EndMT), and mechanistic studies showed that Pde4b regulates EndMT by antagonizing the cAMP-dependent PKA-CREB-BMPRII axis. Finally, treating PH rats with a PDE4B-specific inhibitor validated that PDE4B inhibition has a significant pharmacological effect in the alleviation of PH. Collectively, our findings indicate a critical role for PDE4B in EndMT and PH, prompting further studies of PDE4B-specific inhibitors as a therapeutic strategy for PH.
Collapse
Affiliation(s)
- Yanjiang Xing
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300051, China
| | - Yangfeng Hou
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Tianfei Fan
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Ran Gao
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaohang Feng
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Bolun Li
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Junling Pang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Wenjun Guo
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ting Shu
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300051, China
| | - Jinqiu Li
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jie Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qilong Mao
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ya Luo
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xianmei Qi
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Chaoyang Liang
- Department of Lung Transplantation, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China–Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Hongmei Zhao
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Wenhui Chen
- Department of Lung Transplantation, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China–Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Jing Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300051, China
| | - Chen Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
5
|
Jin J, Mazzacuva F, Crocetti L, Giovannoni MP, Cilibrizzi A. PDE4 Inhibitors: Profiling Hits through the Multitude of Structural Classes. Int J Mol Sci 2023; 24:11518. [PMID: 37511275 PMCID: PMC10380597 DOI: 10.3390/ijms241411518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclic nucleotide phosphodiesterases 4 (PDE4) are a family of enzymes which specifically promote the hydrolysis and degradation of cAMP. The inhibition of PDE4 enzymes has been widely investigated as a possible alternative strategy for the treatment of a variety of respiratory diseases, including chronic obstructive pulmonary disease and asthma, as well as psoriasis and other autoimmune disorders. In this context, the identification of new molecules as PDE4 inhibitors continues to be an active field of investigation within drug discovery. This review summarizes the medicinal chemistry journey in the design and development of effective PDE4 inhibitors, analyzed through chemical classes and taking into consideration structural aspects and binding properties, as well as inhibitory efficacy, PDE4 selectivity and the potential as therapeutic agents.
Collapse
Affiliation(s)
- Jian Jin
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
| | - Francesca Mazzacuva
- School of Health, Sport and Bioscience, University of East London, London E15 4LZ, UK
| | - Letizia Crocetti
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Via Ugo Schiff 6, Sesto Fiorentino, University of Florence, 50019 Florence, Italy
| | - Maria Paola Giovannoni
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Via Ugo Schiff 6, Sesto Fiorentino, University of Florence, 50019 Florence, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
6
|
Daoui O, Mali SN, Elkhattabi K, Elkhattabi S, Chtita S. Repositioning Cannabinoids and Terpenes as Novel EGFR-TKIs Candidates for Targeted Therapy Against Cancer: A virtual screening model using CADD and biophysical simulations. Heliyon 2023; 9:e15545. [PMID: 37128337 PMCID: PMC10148140 DOI: 10.1016/j.heliyon.2023.e15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
This study examines the potential of Cannabis sativa L. plants to be repurposed as therapeutic agents for cancer treatment through designing of hybrid Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). A set of 50 phytochemicals was taken from Cannabinoids and Terpenes and subjected for screening using Semi-flexible and Flexible Molecular Docking methods, MM-GBSA free binding energy computations, and pharmacokinetic/pharmacodynamic (ADME-Tox) predictions. Nine promising phytochemicals, Cannabidiolic acid (CBDA), Cannabidiol (CBD), Tetrahydrocannabivarin (THCV), Dronabinol (Δ-9-THC), Delta-8-Tetrahydrocannabinol (Δ-8-THC), Cannabicyclol (CBL), Delta9-tetrahydrocannabinolic acid (THCA), Beta-Caryophyllene (BCP), and Gamma-Elemene (γ-Ele) were identified as potential EGFR-TKIs natural product candidates for cancer therapy. To further validate these findings, a set of Molecular Dynamics simulations were conducted over a 200 ns trajectory. This hybrid early drug discovery screening strategy has the potential to yield a new generation of EGFR-TKIs based on natural cannabis products, suitable for cancer therapy. In addition, the application of this computational strategy in the virtual screening of both natural and synthetic chemical libraries could support the discovery of a wide range of lead drug agents to address numerous diseases.
Collapse
Affiliation(s)
- Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, P.O. Box 72, Fez, Morocco
- Corresponding author.
| | - Suraj N. Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, India, 835215
| | - Kaouakeb Elkhattabi
- Department of Fundamental Sciences, Faculty of Dental Medicine, Mohammed V University in Rabat, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, P.O. Box 72, Fez, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| |
Collapse
|
7
|
Al-Nema M, Gaurav A, Lee VS. Designing of 2,3-dihydrobenzofuran derivatives as inhibitors of PDE1B using pharmacophore screening, ensemble docking and molecular dynamics approach. Comput Biol Med 2023; 159:106869. [PMID: 37071939 DOI: 10.1016/j.compbiomed.2023.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
In recent years, the PDE1B enzyme has become a desirable drug target for the treatment of psychological and neurological disorders, particularly schizophrenia disorder, due to the expression of PDE1B in brain regions involved in volitional behaviour, learning and memory. Although several inhibitors of PDE1 have been identified using different methods, none of these inhibitors has reached the market yet. Thus, searching for novel PDE1B inhibitors is considered a major scientific challenge. In this study, pharmacophore-based screening, ensemble docking and molecular dynamics simulations have been performed to identify a lead inhibitor of PDE1B with a new chemical scaffold. Five PDE1B crystal structures have been utilised in the docking study to improve the possibility of identifying an active compound compared to the use of a single crystal structure. Finally, the structure-activity- relationship was studied, and the structure of the lead molecule was modified to design novel inhibitors with a high affinity for PDE1B. As a result, two novel compounds have been designed that exhibited a higher affinity to PDE1B compared to the lead compound and the other designed compounds.
Collapse
Affiliation(s)
- Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Wang YZ, Wang YL, Che HJ, Jia YH, Wang HF, Zuo LF, Yang K, Li TT, Wang JX. Sappanone A: A natural PDE4 inhibitor with dual anti-inflammatory and antioxidant activities from the heartwood of Caesalpinia sappan L. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116020. [PMID: 36529254 DOI: 10.1016/j.jep.2022.116020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sumu (Lignum sappan), the dry heartwood of Caesalpinia sappan L., is a traditional Chinese medicine used as an analgesic and anti-inflammatory agent. AIM OF THE STUDY The study aspired to discover natural phosphodiesterase 4 (PDE4) inhibitors with dual anti-inflammatory and antioxidant activities from Sumu for the treatment of chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS To accurately and efficiently identify natural PDE4 inhibitors from Sumu, molecular docking and molecular dynamics (MD) analysis methods were used for structure-based virtual screening of a self-built database of primary polyphenols in Sumu. According to the previous studies of Sumu and the free radical scavenging mechanism of polyphenols, the reported antioxidant components from Sumu and the potential antioxidants with the antioxidant pharmacophore of catechol and π-conjugated moieties were selected from the potential PDE4 inhibitors predicted by docking. Sappanone A, a potential PDE4 inhibitor with antioxidant activity from Sumu, was selected, calculated and synthesized to evaluate its dual anti-inflammatory and antioxidant functions in vitro and in vivo studies. Herein sappanone A was assayed for its inhibitory effects against PDE4 enzyme activity, tumor necrosis factor-alpha (TNF-α) production induced by lipopolysaccharide (LPS) in RAW264.7 macrophages and malondialdehyde (MDA) production induced by Fe2+ in mouse lung homogenate; sappanone A was also assayed for its abilities of radical (DPPH) scavenging, reducing Fe3+ and complexing Fe2+ in vitro. Additionally, LPS-induced acute lung injury (ALI) in mice was used to evaluate its anti-inflammatory activity as a PDE4 inhibitor in vivo, and the levels of TNF-α and total protein in bronchoalveolar lavage fluid (BALF) and myeloperoxidase (MPO) activity in the lung were assayed. RESULTS The present study predicted and validated that sappanone A was a promising PDE4 inhibitor from Sumu with dual anti-inflammation and antioxidant activities from Sumu. In vitro, sappanone A remarkably inhibited PDE4 enzyme activity and reduced TNF-α production induced by LPS in RAW264.7 macrophages and MDA production induced by Fe2+ in mouse lung homogenate. Meanwhile, it showed outstanding abilities of scavenging DPPH radicals, reducing Fe3+ and complexing Fe2+. In vivo, sappanone A (25 mg/kg and 50 mg/kg, i.p., twice daily for 7 days) distinctly prevented LPS-induced ALI in mice by reducing the levels of TNF-α and total protein in BALF and MPO activity in the lung. CONCLUSION Sappanone A is a natural PDE4 inhibitor with dual anti-inflammatory and antioxidant activities from the traditional Chinese medicine Sumu, which may be a promising therapeutic agent to prevent the vicious cycle of COPD inflammation and oxidative stress.
Collapse
Affiliation(s)
- You-Zhi Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu-Long Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao-Jie Che
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi-He Jia
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui-Fang Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lin-Fei Zuo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Ting-Ting Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jin-Xin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Dhawale S, Pandit M, Thete K, Ighe D, Gawale S, Bhosle P, Lokwani DK. In silico approach towards polyphenols as targeting glucosamine-6-phosphate synthase for Candida albicans. J Biomol Struct Dyn 2023; 41:12038-12054. [PMID: 36629053 DOI: 10.1080/07391102.2022.2164797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
Candida albicans is one of the most common species of fungus with life-threatening systemic infections and a high mortality rate. The outer cell wall layer of C. albicans is packed with mannoproteins and glycosylated polysaccharide moieties that play an essential role in the interaction with host cells and tissues. The glucosamine-6-phosphate synthase enzyme produces N-acetylglucosamine, which is a crucial chemical component of the cell wall of Candida albicans. Collectively, these components are essential to maintain the cell shape and for infection. So, its disruption can have serious effects on cell growth and morphology, resulting in cell death. Hence, it is considered a good antifungal target. In this study, we have performed an in silico approach to analyze the inhibitory potential of some polyphenols obtained from plants. Those can be considered important in targeting against the enzyme glucosamine-6-phosphate synthase (PDB-2VF5). The results of the study revealed that the binding affinity of complexes theaflavin and 3-o-malonylglucoside have significant docking scores and binding free energy followed by significant ADMET parameters that predict the drug-likeness property and toxicity of polyphenols as potential ligands. A molecular dynamic simulation was used to test the validity of the docking scores, and it showed that the complex remained stable during the period of the simulation, which ranged from 0 to 100 ns. Theaflavins and 3-o-malonylglucoside may be effective against Candida albicans using a computer-aided drug design methodology that will further enable researchers for future in vitro and in vivo studies, according to our in silico study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sachin Dhawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Madhuri Pandit
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Kanchan Thete
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Dnyaneshwari Ighe
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Sachin Gawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Pallavi Bhosle
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | | |
Collapse
|
10
|
kumar Bhardwaj V, Das P, Purohit R. Identification and comparison of plant-derived scaffolds as selective CDK5 inhibitors against standard molecules: Insights from umbrella sampling simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Al-Nema M, Gaurav A, Lee VS, Gunasekaran B, Lee MT, Okechukwu P, Nimmanpipug P. Structure-based discovery and bio-evaluation of a cyclopenta[4,5]thieno[2,3- d]pyrimidin-4-one as a phosphodiesterase 10A inhibitor. RSC Adv 2022; 12:1576-1591. [PMID: 35425186 PMCID: PMC8979230 DOI: 10.1039/d1ra07649c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Phosphodiesterase10A (PDE10A) is a potential therapeutic target for the treatment of several neurodegenerative disorders. Thus, extensive efforts of medicinal chemists have been directed toward developing potent PDE10A inhibitors with minimal side effects. However, PDE10A inhibitors are not approved as a treatment for neurodegenerative disorders, possibly due to the lack of research in this area. Therefore, the discovery of novel and diverse scaffolds targeting PDE10A is required. In this study, we described the identification of a new PDE10A inhibitor by structure-based virtual screening combining pharmacophore modelling, molecular docking, molecular dynamics simulations, and biological evaluation. Zinc42657360 with a cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-one scaffold from the zinc database exhibited a significant inhibitory activity of 1.60 μM against PDE10A. The modelling studies demonstrated that Zinc42657360 is involved in three hydrogen bonds with ASN226, THR187 and ASP228, and two aromatic interactions with TYR78 and PHE283, besides the common interactions with the P-clamp residues PHE283 and ILE246. The novel scaffold of Zinc42657360 can be used for the rational design of PDE10A inhibitors with improved affinity. Phosphodiesterase10A (PDE10A) is a potential therapeutic target for the treatment of several neurodegenerative disorders.![]()
Collapse
Affiliation(s)
- Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya Kuala Lumpur 50603 Malaysia
| | | | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur 56000 Malaysia .,Office of Postgraduate Studies, UCSI University Kuala Lumpur 56000 Malaysia.,Graduate Institute of Pharmacology, College of Medicine, National Taiwan University 10051 Taipei Taiwan
| | - Patrick Okechukwu
- Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand.,Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University 50200 Thailand
| |
Collapse
|
12
|
Identification of dual inhibitor of phosphodiesterase 1B/10A using structure-based drug design approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|