1
|
Berríos D, Fincheira P, González F, Santander C, Cornejo P, Ruiz A. Impact of Sodium Alginate-Encapsulated Iron Nanoparticles and Soil Yeasts on the Photosynthesis Performance of Lactuca sativa L. Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2042. [PMID: 39124160 PMCID: PMC11314604 DOI: 10.3390/plants13152042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
In a scenario of accelerated global climate change, the continuous growth of the world population, and the excessive use of chemical fertiliser, the search for sustainable alternatives for agricultural production is crucial. The present study was conducted to evaluate the plant growth-promoting (PGP) characteristics of two yeast strains, Candida guilliermondii and Rhodotorula mucilaginosa, and the physicochemical characteristics of nanometric capsules and iron oxide nanoparticles (Fe2O3-NPs) for the formulation of nanobiofertilisers. The physiological and productive effects were evaluated in a greenhouse assay using lettuce plants. The results showed that C. guilliermondii exhibited higher tricalcium phosphate solubilisation capacity, and R. mucilaginosa had a greater indole-3-acetic acid (IAA) content. The encapsulation of C. guilliermondii in sodium alginate capsules significantly improved the growth, stomatal conductance, and photosynthetic rate of the lettuce plants. Physicochemical characterisation of the Fe2O3-NPs revealed a particle size of 304.1 nm and a negative Z-potential, which indicated their stability and suitability for agricultural applications. The incorporation of Fe2O3-NPs into the capsules was confirmed by SEM-EDX analysis, which showed the presence of Fe as the main element. In summary, this study highlights the potential of nanobiofertilisers containing yeast strains encapsulated in sodium alginate with Fe2O3-NPs to improve plant growth and photosynthetic efficiency as a path toward more sustainable agriculture.
Collapse
Affiliation(s)
- Daniela Berríos
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco 4811230, Chile
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Paola Fincheira
- Laboratorio de Nanobiotecnología Ambiental, Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Felipe González
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco 4811230, Chile
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, La Palma, Quillota 2260000, Chile
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
2
|
Karnwal A, Dohroo A, Malik T. Unveiling the Potential of Bioinoculants and Nanoparticles in Sustainable Agriculture for Enhanced Plant Growth and Food Security. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6911851. [PMID: 38075309 PMCID: PMC10699995 DOI: 10.1155/2023/6911851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The increasing public concern over the negative impacts of chemical fertilizers and pesticides on food security and sustainability has led to exploring innovative methods that offer both environmental and agricultural benefits. One such innovative approach is using plant-growth-promoting bioinoculants that involve bacteria, fungi, and algae. These living microorganisms are applied to soil, seeds, or plant surfaces and can enhance plant development by increasing nutrient availability and defense against plant pathogens. However, the application of biofertilizers in the field faced many challenges and required conjunction with innovative delivering approaches. Nanotechnology has gained significant attention in recent years due to its numerous applications in various fields, such as medicine, drug development, catalysis, energy, and materials. Nanoparticles with small sizes and large surface areas (1-100 nm) have numerous potential functions. In sustainable agriculture, the development of nanochemicals has shown promise as agents for plant growth, fertilizers, and pesticides. The use of nanomaterials is being considered as a solution to control plant pests, including insects, fungi, and weeds. In the food industry, nanoparticles are used as antimicrobial agents in food packaging, with silver nanomaterials being particularly interesting. However, many nanoparticles (Ag, Fe, Cu, Si, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes) have been reported to negatively affect plant growth. This review focuses on the effects of nanoparticles on beneficial plant bacteria and their ability to promote plant growth. Implementing novel sustainable strategies in agriculture, biofertilizers, and nanoparticles could be a promising solution to achieve sustainable food production while reducing the negative environmental impacts.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aradhana Dohroo
- Baddi University of Emerging Sciences and Technologies, Baddi, Himachal Pradesh 173405, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| |
Collapse
|
3
|
Campos EVR, Pereira ADES, Aleksieienko I, do Carmo GC, Gohari G, Santaella C, Fraceto LF, Oliveira HC. Encapsulated plant growth regulators and associative microorganisms: Nature-based solutions to mitigate the effects of climate change on plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111688. [PMID: 36963636 DOI: 10.1016/j.plantsci.2023.111688] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Over the past decades, the atmospheric CO2 concentration and global average temperature have been increasing, and this trend is projected to soon become more severe. This scenario of climate change intensifies abiotic stress factors (such as drought, flooding, salinity, and ultraviolet radiation) that threaten forest and associated ecosystems as well as crop production. These factors can negatively affect plant growth and development with a consequent reduction in plant biomass accumulation and yield, in addition to increasing plant susceptibility to biotic stresses. Recently, biostimulants have become a hotspot as an effective and sustainable alternative to alleviate the negative effects of stresses on plants. However, the majority of biostimulants have poor stability under environmental conditions, which leads to premature degradation, shortening their biological activity. To solve these bottlenecks, micro- and nano-based formulations containing biostimulant molecules and/or microorganisms are gaining attention, as they demonstrate several advantages over their conventional formulations. In this review, we focus on the encapsulation of plant growth regulators and plant associative microorganisms as a strategy to boost their application for plant protection against abiotic stresses. We also address the potential limitations and challenges faced for the implementation of this technology, as well as possibilities regarding future research.
Collapse
Affiliation(s)
- Estefânia V R Campos
- Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, São Paulo, Brazil; B.Nano Soluções Tecnológicas Ltda, Rua Dr. Júlio Prestes, 355,18230-000 São Miguel Arcanjo, São Paulo, Brazil.
| | - Anderson do E S Pereira
- Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, São Paulo, Brazil; B.Nano Soluções Tecnológicas Ltda, Rua Dr. Júlio Prestes, 355,18230-000 São Miguel Arcanjo, São Paulo, Brazil
| | - Ivan Aleksieienko
- Aix Marseille University, CEA, CNRS, BIAM, LEMiRE, Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 Saint Paul Lez Durance, France
| | - Giovanna C do Carmo
- Department of Animal and Plant Biology, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
| | - Gholamreza Gohari
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Catherine Santaella
- Aix Marseille University, CEA, CNRS, BIAM, LEMiRE, Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 Saint Paul Lez Durance, France
| | - Leonardo F Fraceto
- Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, São Paulo, Brazil
| | - Halley C Oliveira
- Department of Animal and Plant Biology, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil.
| |
Collapse
|
4
|
Rani N, Kaur G, Kaur S, Upadhyay SK, Tripathi M. Development of Zn biofertilizer microbeads encapsulating Enterobacter ludwigii-PS10 mediated alginate, starch, poultry waste and its efficacy in Solanum lycopersicum growth enhancement. Int J Biol Macromol 2023; 240:124381. [PMID: 37044325 DOI: 10.1016/j.ijbiomac.2023.124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
In the present farming era, rhizobacteria as beneficial biofertilizers can decrease the negative effects of Zinc (Zn) agrochemicals. However, their commercial viability and utility are constrained by their instability under field conditions. Thus, to enhance their stability, microbial formulations are considered, which will not only offer an appropriate microenvironment, and protection but also ensure a high rate of rhizospheric-colonization. The goal of this study was to create a new formulation for the Zn-solubilizing bacteria E. ludwigii-PS10. The studied formulation was prepared using the extrusion technique, wherein a composite solution containing alginate, starch, zinc oxide, and poultry waste was uniformly mixed with the bacterial strain PS10 to develop low-cost, eco-friendly, and slow-release microbeads. The produced microbead was spherical, and characterized by SEM, FTIR, and XRD. Further, the microbeads were analyzed for their survival stability over 3 months of storage at room temperature and 4 °C. The effect of the microbead on the vegetative growth of tomato plants was investigated. Results showed that 94 % of the encapsulated microbial beads (EMB) matrix was able to encapsulate the bacterial strain PS10. The dried EMB demonstrated a moisture content of 2.87 % and was able to preserve E. ludwigii-PS10 survival at room temperature at the rate of 85.6 %. The application of the microbead to the tomato plants significantly increased plant biomass and Zn content. As a result, our findings support the use of this novel EMB prepared using an alginate/poultry waste/starch mixture to increase bacterial cell viability and plant growth.
Collapse
Affiliation(s)
- Nitu Rani
- Department of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
| | - Gurparteek Kaur
- Laboratory Analyst, Bureau Veritas, 6740, Campobello Road, Mississauga, Ontario, L5N 2LB, Canada
| | - Sukhminderjit Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India.
| | - Sudhir K Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur 222003, Uttar Pradesh, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh 224001, India
| |
Collapse
|
5
|
Arora S, Murmu G, Mukherjee K, Saha S, Maity D. A Comprehensive Overview of Nanotechnology in Sustainable Agriculture. J Biotechnol 2022; 355:21-41. [PMID: 35752390 DOI: 10.1016/j.jbiotec.2022.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Plant nutrition is crucial in crop productivity and providing food security to the ever-expanding population. Application of chemical/biological fertilizers and pesticides are the mainstays for any agricultural economy. However, there are unintended consequences of using chemical fertilizers and pesticides. The environment and ecological balance are adversely affected by their usage. Biofertilizers and biopesticides counter some undesired environmental effects of chemical fertilizers/pesticides; inspite of some drawbacks associated with their use. The recent developments in nanotechnology offer promise towards sustainable agriculture. Sustainable agriculture involves addressing the concerns about agriculture as well as of the environment. This review briefs about important nanomaterials used in agriculture as nanofertilizers, nanopesticides, and a combination called nanobiofertilizers. Both nanofertilizers and nanopesticides enable slow and sustained release besides their eco-friendly environmental consequences. They can be tailored to specific needs to crop. Nanofertilizers also offer greater stress tolerance and, therefore, of considerable value in the era of climate change. Furthermore, nanofertilizers/nanopesticides are applied in minute amounts, reducing transportation costs associated and thus positively affecting the economy. Their uses extend beyond such as if nanoparticles (NPs) are used at high concentrations; they affect plant pathogens adversely. Polymer-based biodegradable nanofertilizers and nanopesticides offer various benefits. There is also a dark side to the use of nanomaterials in agriculture. Nanotechnology often involves the use of metal/metal oxide nanoparticles, which might get access to human bodies leading to their accumulation through bio-magnification. Although their effects on human health are not known, NPs may reach toxic concentrations in soil and runoff into rivers, and other water bodies with their removal to become a huge economic burden. Nevertheless, a risk-benefit analysis of nanoformulations must be ensured before their application in sustainable agriculture.
Collapse
Affiliation(s)
- Smriti Arora
- Department of Biotechnology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Gajiram Murmu
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
6
|
Ribeiro IDA, Volpiano CG, Vargas LK, Granada CE, Lisboa BB, Passaglia LMP. Use of Mineral Weathering Bacteria to Enhance Nutrient Availability in Crops: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:590774. [PMID: 33362817 PMCID: PMC7759553 DOI: 10.3389/fpls.2020.590774] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/26/2020] [Indexed: 05/19/2023]
Abstract
Rock powders are low-cost potential sources of most of the nutrients required by higher plants for growth and development. However, slow dissolution rates of minerals represent an obstacle to the widespread use of rock powders in agriculture. Rhizosphere processes and biological weathering may further enhance mineral dissolution since the interaction between minerals, plants, and bacteria results in the release of macro- and micronutrients into the soil solution. Plants are important agents in this process acting directly in the mineral dissolution or sustaining a wide diversity of weathering microorganisms in the root environment. Meanwhile, root microorganisms promote mineral dissolution by producing complexing ligands (siderophores and organic acids), affecting the pH (via organic or inorganic acid production), or performing redox reactions. Besides that, a wide variety of rhizosphere bacteria and fungi could also promote plant development directly, synergistically contributing to the weathering activity performed by plants. The inoculation of weathering bacteria in soil or plants, especially combined with the use of crushed rocks, can increase soil fertility and improve crop production. This approach is more sustainable than conventional fertilization practices, which may contribute to reducing climate change linked to agricultural activity. Besides, it could decrease the dependency of developing countries on imported fertilizers, thus improving local development.
Collapse
Affiliation(s)
- Igor Daniel Alves Ribeiro
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Camila Gazolla Volpiano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Kayser Vargas
- Laboratório de Microbiologia Agrícola, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | | | - Bruno Brito Lisboa
- Laboratório de Microbiologia Agrícola, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | | |
Collapse
|