1
|
Intan NN, Pfaendtner J. Role of Surface Features on the Initial Dissolution of CH 3NH 3PbI 3 Perovskite in Liquid Water: An Ab Initio Molecular Dynamics Study. ACS NANO 2023; 17:22371-22387. [PMID: 37943082 DOI: 10.1021/acsnano.3c04601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The degradation of CH3NH3PbI3 (MAPbI3) hybrid organic inorganic perovskite (HOIP) by water has been the major issue hampering its use in commercial perovskites solar cells (PSCs), as MAPbI3 HOIP has been known to easily degrade in the presence of water. Even though there have been numerous studies investigating this phenomenon, there is still no consensus on the mechanisms of the initial stages of dissolution. Here, we attempt to consolidate differing mechanistic interpretations previously reported in the literature through the use of the first-principles constrained ab initio molecular dynamics (AIMD) to study both the energetics and mechanisms that accompany the degradation of MAPbI3 HOIP in liquid water. By comparing the dissolution free energy barrier between surface species of different surficial types, we find that the dominant dissolution mechanisms of surface species vary widely based on the specific surface features. The high sensitivity of the dissolution mechanism to surface features has contributed to the many dissolution mechanisms proposed in the literature. In contrast, the dissolution free energy barriers are mainly determined by the dissolving species rather than the type of surfaces, and the type of surfaces the ions are dissolving from is inconsequential toward the dissolution free energy barrier. However, the presence of surface defects such as vacancy sites is found to significantly lower the dissolution free energy barriers. Based on the estimated dissolution free energy barriers, we propose that the dissolution of MAPbI3 HOIP in liquid water originates from surface defect sites that propagate laterally along the surface layer of the MAPbI3 HOIP crystal.
Collapse
Affiliation(s)
- Nadia N Intan
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Jim Pfaendtner
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Subudhi P, Punetha D. Pivotal avenue for hybrid electron transport layer-based perovskite solar cells with improved efficiency. Sci Rep 2023; 13:19485. [PMID: 37945667 PMCID: PMC10636004 DOI: 10.1038/s41598-023-33419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 11/12/2023] Open
Abstract
This study conducted a simulative analysis of different hybrid perovskite solar cells with various hybrid electron transport layers (ETL) and hole transport layers (HTL). The electron transport layer boosts durability, lowers production costs, increases stability, improves light absorption, and increases efficiency. Hybrid ETLs are taken into consideration to improve the device's performance. The selected hybrid ETLs (PCBM-SnS2, TiO2-SnO2, and PCBM-PCPB) were modeled with four hybrid perovskite absorbers (CsPbI3, FAPbI3, MAPbI3, and FAMAPbI3) and five HTLs (PEDOT: PSS, CuI, Spiro-OMeTAD, CBTS, and NiO). Three sets of solar cells are found to be the most effective configurations after investigating over sixty different combinations of perovskite solar cell architectures. The structures show CBTS as the efficient HTL for FAMAPbI3 with all three hybrid ETLs. Besides, a holistic analysis of the effect of several factors such as the defect density and thickness of the absorber layer, temperature, parasitic resistances, capacitance, Mott-Schottky, impedance, conduction band offset, and current density-voltage and quantum efficiency characteristics is performed. The results show a maximum power conversion efficiency of 25.57%, 26.35%, and 23.36% with PCBM-SnS2, TiO2-SnO2, and PCBM-PCPB respectively. Among the studied hybrid ETLs, perovskite solar cell associated with TiO2-SnO2 has depicted a superior performance (Voc = 1.12 V, Jsc = 26.88 mA/cm2, FF = 87.27%). The efficiency of the perovskite solar cell using this study has been drastically enhanced compared to the previous experimental report. The proposed strategy provides a new avenue for attaining clean energy and allows researchers to pave the way for further design optimization to obtain high-performance solar cell devices.
Collapse
Affiliation(s)
- Poonam Subudhi
- School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai, Tamilnadu, 600127, India
| | - Deepak Punetha
- School of Electronics Engineering, Vellore Institute of Technology (VIT) University, Chennai, Tamilnadu, 600127, India.
- Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology (MNNIT), Allahabad, Prayagraj, Uttar Pradesh, 211004, India.
| |
Collapse
|
3
|
Moaddeli M, Kanani M, Grünebohm A. Electronic and structural properties of mixed-cation hybrid perovskites studied using an efficient spin-orbit included DFT-1/2 approach. Phys Chem Chem Phys 2023; 25:25511-25525. [PMID: 37712408 DOI: 10.1039/d3cp02472e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Fundamental understanding and optimization of the emerging mixed organic-inorganic hybrid perovskites for solar cells require multiscale modeling starting from ab initio quantum mechanics methods. Particularly, it is important to correctly predict the structural and electronic properties such as phase stability, lattice parameters, band gaps, and band structures. Although density functional theory is the method of choice to address these properties and generate the input for subsequent multiscale, high-throughput, and data-driven approaches, standard exchange correlation functionals fail to reproduce the bandgap, particularly if spin-orbit coupling (SOC) is correctly taken into account. While many SOC-included hybrid functionals suffer from low transferability between different molecular ions and are computationally costly, we propose an efficient multistep simulation protocol based on the DFT-1/2 method. We apply this approach to APbI3 with A: FA, MA, Cs, and systems with mixed cations and show how the choice of the A-cation modifies the Pb-I scaffold and the hydrogen bonding and discuss their interplay with structural stability. Furthermore, band gaps, band structures, Rashba band splitting, Born effective charges as well as partial density of states (PDOS) are compared for different cases w/wo the SOC effect and the DFT-1/2 approach.
Collapse
Affiliation(s)
- Mohammad Moaddeli
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran.
- Solar Energy Technology Development Center, Shiraz University, Shiraz, Iran
| | - Mansour Kanani
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran.
- Solar Energy Technology Development Center, Shiraz University, Shiraz, Iran
| | - Anna Grünebohm
- Interdisciplinary Centre for Advanced Materials Simulation (ICAMS) and Center for Interface-Dominated High Performance Materials (ZGH), Ruhr-University Bochum, Universitätsstr 150, 44801 Bochum, Germany
| |
Collapse
|
4
|
Ahmed MT, Islam S, Ahmed F. Exchange-correlation functional's impact on structural, electronic, and optical properties of (N 2H 5)PbI 3 perovskite. Heliyon 2023; 9:e17779. [PMID: 37449187 PMCID: PMC10336499 DOI: 10.1016/j.heliyon.2023.e17779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
One of the most popular multifunctional materials in optoelectronic research domains is organometallic perovskites. In this research, DFT calculation on Hydrazinium Lead Iodide (N2H5PbI3, HAPI) perovskite with orthorhombic phase has been studied with distinct exchange-correlation functionals. HAPI showed a slight structural deformation using the LDA CAPZ functionals, revealing the minimum total energy. A very slight change in Mulliken and Hirshfeld charges of each element was observed due to the variation of functionals. The GGA calculations resulted in a perfect orthorhombic phase of HAPI, whereas LDA functional showed slight deformation from the orthorhombic phase. The band gaps of 1.644, 1.633, 1.618, and 1.650 eV were obtained using GGA (PBE, PBEsol, PW91) and LDA (CAPZ) functionals, respectively. HAPI showed a high absorption coefficient of 104 cm-1 order with strong absorption of high energy visible wavelength. A maximum refractive index of 2.8 was observed in the visible wavelength region and a high optical conductivity of over 1015 s-1 suggests that HAPI can be a potential material for numerous optoelectronic research.
Collapse
Affiliation(s)
- Mohammad Tanvir Ahmed
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shariful Islam
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
5
|
Birdeanu M, Fratilescu I, Epuran C, Mocanu L, Ianasi C, Lascu A, Fagadar-Cosma E. Nanomaterials Based on Collaboration with Multiple Partners: Zn 3Nb 2O 8 Doped with Eu 3+ and/or Amino Substituted Porphyrin Incorporated in Silica Matrices for the Discoloration of Methyl Red. Int J Mol Sci 2023; 24:ijms24108920. [PMID: 37240266 DOI: 10.3390/ijms24108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Designing appropriate materials destined for the removal of dyes from waste waters represents a great challenge for achieving a sustainable society. Three partnerships were set up to obtain novel adsorbents with tailored optoelectronic properties using silica matrices, Zn3Nb2O8 oxide doped with Eu3+, and a symmetrical amino-substituted porphyrin. The pseudo-binary oxide with the formula Zn3Nb2O8 was obtained by the solid-state method. The doping of Zn3Nb2O8 with Eu3+ ions was intended in order to amplify the optical properties of the mixed oxide that are highly influenced by the coordination environment of Eu3+ ions, as confirmed by density functional theory (DFT) calculations. The first proposed silica material, based solely on tetraethyl orthosilicate (TEOS) with high specific surface areas of 518-726 m2/g, offered better performance as an adsorbent than the second one, which also contained 3-aminopropyltrimethoxysilane (APTMOS). The contribution of amino-substituted porphyrin incorporated into silica matrices resides both in providing anchoring groups for the methyl red dye and in increasing the optical properties of the whole nanomaterial. Two different types of methyl red adsorption mechanisms can be reported: one based on surface absorbance and one based on the dye entering the pores of the adsorbents due to their open groove shape network.
Collapse
Affiliation(s)
- Mihaela Birdeanu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Street 1, 300224 Timisoara, Romania
| | - Ion Fratilescu
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| | - Camelia Epuran
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| | - Liviu Mocanu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Street 1, 300224 Timisoara, Romania
| | - Catalin Ianasi
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| | - Anca Lascu
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| | - Eugenia Fagadar-Cosma
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| |
Collapse
|
6
|
Romagnoli L, D’Annibale A, Blundo E, Patra A, Polimeni A, Meggiolaro D, Andrusenko I, Marchetti D, Gemmi M, Latini A. 4,4'-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Lead Iodide C 30H 22N 2Pb 2I 6: A Highly Luminescent, Chemically and Thermally Stable One-Dimensional Hybrid Iodoplumbate. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:1818-1826. [PMID: 36873626 PMCID: PMC9979375 DOI: 10.1021/acs.chemmater.2c03798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Indexed: 06/17/2023]
Abstract
A new one-dimensional hybrid iodoplumbate, namely, 4,4'-(anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) lead iodide C30H22N2Pb2I6 (AEPyPbI), is reported here for the first time with its complete characterization. The material exhibits remarkable thermal stability (up to 300 °C), and it is unreactive under ambient conditions toward water and atmospheric oxygen, due to the quaternary nature of the nitrogen atoms present in the organic cation. The cation exhibits strong visible fluorescence under ultraviolet (UV) irradiation, and when its iodide is combined with PbI2, it forms AEPyPb2I6, an efficient light-emitting material, with a photoluminescence emission intensity comparable to that of high-quality InP epilayers. The structure determination was obtained using three-dimensional electron diffraction, and the material was extensively studied by using a wide range of techniques, such as X-ray powder diffraction, diffuse reflectance UV-visible spectroscopy, thermogravimetry-differential thermal analysis, elemental analysis, Raman and infrared spectroscopies, and photoluminescence spectroscopy. The emissive properties of the material were correlated with its electronic structure by using state-of-the-art theoretical calculations. The complex, highly conjugated electronic structure of the cation interacts strongly with that of the Pb-I network, giving rise to the peculiar optoelectronic properties of AEPyPb2I6. The material, considering its relatively easy synthesis and stability, shows promise for light-emitting and photovoltaic devices. The use of highly conjugated quaternary ammonium cations may be useful for the development of new hybrid iodoplumbates and perovskites with optoelectronic properties tailored for specific applications.
Collapse
Affiliation(s)
- Lorenza Romagnoli
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Andrea D’Annibale
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Elena Blundo
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Atanu Patra
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Antonio Polimeni
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Daniele Meggiolaro
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce di Sotto 8, Perugia 06123, Italy
| | - Iryna Andrusenko
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Danilo Marchetti
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma (PR) 43124, Italy
| | - Mauro Gemmi
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Alessandro Latini
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| |
Collapse
|