1
|
Giram P, Bist G, Woo S, Wohlfert E, Pili R, You Y. Prodrugs of paclitaxel improve in situ photo-vaccination. Photochem Photobiol 2024. [PMID: 39384406 DOI: 10.1111/php.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/22/2024] [Indexed: 10/11/2024]
Abstract
Photodynamic therapy (PDT) effectively kills cancer cells and initiates immune responses that promote anticancer effects locally and systemically. Primarily developed for local and regional cancers, the potential of PDT for systemic antitumor effects [in situ photo-vaccination (ISPV)] remains underexplored. This study investigates: (1) the comparative effectiveness of paclitaxel (PTX) prodrug [Pc-(L-PTX)2] for PDT and site-specific PTX effects versus its pseudo-prodrug [Pc-(NCL-PTX)2] for PDT combined with checkpoint inhibitors; (2) mechanisms driving systemic antitumor effects; and (3) the prophylactic impact on preventing cancer recurrence. A bilateral tumor model was established in BALB/c mice through subcutaneous injection of CT26 cells. Mice received the PTX prodrug (0.5 μmole kg-1, i.v.), and tumors were treated with a 690-nm laser (75 mW cm-2 for 30 min, drug-light interval 0.5 h, light does 135 J cm-1), followed by anti-CTLA-4 (100 μg dose-1, i.p.) on days 1, 4, and 7. Notable enhancement in both local and systemic antitumor effectiveness was observed with [Pc-(L-PTX)2] compared to [Pc-(NCL-PTX)2] with checkpoint inhibitor. Immune cell depletion and immunohistochemistry confirmed neutrophils and CD8+ T cells are effectors for systemic antitumor effects. Treatment-induced immune memory resisted newly rechallenged CT26, showcasing prophylactic benefits. ISPV with a PTX prodrug and anti-CTLA-4 is a promising approach for treating metastatic cancers and preventing recurrence.
Collapse
Affiliation(s)
- Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Ganesh Bist
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Elizabeth Wohlfert
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Roberto Pili
- Division of Hematology and Oncology, Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
2
|
Wang Y, Ji R, Yu B. Assessing the anti-inflammatory effects of whole-body vibration: a meta-analysis based on pre-clinical and clinical evidences. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:68-87. [PMID: 39022791 PMCID: PMC11249855 DOI: 10.62347/llgy4023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Whole-body vibration (WBV) is a commonly used physical exercise for disease prevention and rehabilitation. Recent studies indicated the beneficial mechanism of WBV may be associated with its anti-inflammatory potential, however, its regulatory roles on different inflammatory mediators remained controversial. The aim of this study was to perform a meta-analysis to re-confirm the effects of WBV exercise on various inflammatory factors. METHODS The PubMed, EMBASE and Cochrane Library databases were searched up to September 2023 to collect all articles comparing WBV with control (or post-pre trials). The effect size was expressed as the standardized mean difference (SMD) and 95% confidence intervals (CI). RESULTS A total of 31 eligible studies were included, including 14 pre-clinical and 17 clinical studies. The meta-analysis of pre-clinical studies showed that compared with the control group, WBV exercise could significantly reduce the level of IL-6 (SMD: -1.03, 95% CI: -1.93, -0.13), TNF-α (SMD: -1.36, 95% CI: -2.54, -0.17) (for disease subgroup), IL-1β (SMD: -2.20, 95% CI: -3.24, -1.15), IFN-γ (SMD: -1.91, 95% CI: -2.71, -1.12), IL-4 (SMD: -0.71, 95% CI: -1.39, -0.03) and IL-17 (SMD: -1.32, 95% CI: -2.05, -0.59) overall. Pooling of clinical studies revealed WBV exercise significantly reduced the level of TNF-α (WBV vs control: SMD: -1.11, 95% CI: -2.16, -0.06; post vs pre: SMD: -1.29, 95% CI: -1.91, -0.67), CRP (SMD: -3.59, 95% CI: -6.36, -0.82, P = 0.011) and enhanced the level of IL-10 (WBV vs control: SMD: 2.90, 95% CI: 1.10, 4.71; post vs pre: SMD: 1.75, 95% CI: 0.64, 2.87) and IL-6 (SMD: 0.91, 95% CI: 0.31, 1.52) (healthy subgroup). CONCLUSION WBV may be an effective prevention and rehabilitation tool for inflammatory diseases.
Collapse
Affiliation(s)
- Yiying Wang
- Department of Rehabilitation Medicine, Shanghai First People’s HospitalShanghai 200080, China
| | - Renxin Ji
- Department of Rehabilitation Therapy, Shanghai Sanda UniversityShanghai 201209, China
| | - Bo Yu
- Department of Rehabilitation Medicine, Shanghai First People’s HospitalShanghai 200080, China
| |
Collapse
|
3
|
Haba D, Qin Q, Takizawa C, Tomida S, Minematsu T, Sanada H, Nakagami G. Local low-frequency vibration accelerates healing of full-thickness wounds in a hyperglycemic rat model. J Diabetes Investig 2023; 14:1356-1367. [PMID: 37688317 PMCID: PMC10688122 DOI: 10.1111/jdi.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
AIMS/INTRODUCTION Local low-frequency vibration (LLFV) promotes vasodilation and blood flow, enhancing wound healing in diabetic foot ulcers with angiopathy. However, vibration-induced vasodilation does not occur, owing to chronic hyperglycemia and inflammation. We hypothesized that LLFV improves glycometabolism and inflammation, leading to vasodilation and angiogenesis in diabetic wounds. Therefore, this study investigated the effect of LLFV on wound healing in hyperglycemic rats, primarily focusing on glycometabolism, inflammation, vasodilation, and angiogenesis. MATERIALS AND METHODS Streptozotocin-induced hyperglycemic Sprague-Dawley rats were used in this study. We applied LLFV to experimentally-induced wounds at 50 Hz and 0, 600, 1,000 or 1,500 mVpp for 40 min/day from post-wounding days (PWD) 1-14. RESULTS The relative wound areas in the 600 and 1,000 mVpp groups on PWD 5-7 were significantly smaller than those at 0 mVpp. The expression of Glo-1 (1,500 mVpp) and Slc2A4 (1,000 and 1,500 mVpp) was upregulated on PWD 4 and 14, respectively. However, there was no difference in methylglyoxal expression levels in any group until PWD 14. At 1,000 mVpp, the expression of Tnfa on PWD 4, and that of Ptx3 and Ccl2 on PWD 14 was downregulated. Furthermore, the M1/M2 macrophage ratio was considerably decreased on both days. The expression of Nos3, Vegfa and vascular endothelial growth factor A was upregulated on PWD 4. In addition, vasodilation and angiogenesis were more obvious on PWD 14 with 1,000 mVpp. CONCLUSIONS The results suggest that LLFV promotes wound healing, improves glycometabolism and inflammation, and enhances vasodilation and angiogenesis in hyperglycemic wounds.
Collapse
Affiliation(s)
- Daijiro Haba
- Global Nursing Research Center, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Gerontological Nursing/Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Qi Qin
- Department of Gerontological Nursing/Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Chihiro Takizawa
- Department of Gerontological Nursing/Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sanai Tomida
- Department of Gerontological Nursing/Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Takeo Minematsu
- Global Nursing Research Center, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Skincare Science, Graduate School of MedicineThe University of TokyoTokyoJapan
- Ishikawa Prefectural Nursing UniversityIshikawaJapan
| | - Hiromi Sanada
- Global Nursing Research Center, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Gerontological Nursing/Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
- Ishikawa Prefectural Nursing UniversityIshikawaJapan
| | - Gojiro Nakagami
- Global Nursing Research Center, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Gerontological Nursing/Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
4
|
Haba D, Ohmiya T, Sekino M, Qin Q, Takizawa C, Tomida S, Minematsu T, Sanada H, Nakagami G. Efficacy of wearable vibration dressings on full-thickness wound healing in a hyperglycemic rat model. Wound Repair Regen 2023; 31:816-826. [PMID: 37950849 DOI: 10.1111/wrr.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Local low-frequency vibration promotes blood flow and wound healing in hard-to-heal diabetic foot ulcers (DFUs). However, vibration treatment is challenging in patients with DFUs due to wound management difficulties and low adherence. Consequently, developing wearable self-care devices becomes imperative for effective wound healing. This study introduces a wearable vibration dressing and assesses its impact on wound healing in hyperglycemic rats. Low-frequency vibration at 52 Hz was applied to the wound for 40 min/day in awake rats. Relative wound areas on post-wounding days (PWDs) 4-7 were significantly smaller and the wound closure rate was significantly higher in the vibration group than in the control group (p < 0.05, respectively). The total haemoglobin at baseline and after vibration on post-wounding day 7 was significantly larger in the vibration group than in the control group (p < 0.05). On PWD 7, the thickness of the granulation tissue was significantly higher in the vibration group than in the control group (p < 0.05). Moreover, the number of blood vessels at the wound site and vascular endothelial growth factor A protein expression were significantly higher in the vibration group than in the control group (p < 0.05, respectively). The ratio of (CD68+ /iNOS+ )/(CD163+ ) macrophages in the vibration group was significantly lower than that in the control group (p < 0.05). These results indicate the potential of wearable vibration dressings as new self-care devices that can promote angiogenesis and blood flow, improve inflammation, and enhance wound healing in DFUs.
Collapse
Affiliation(s)
- Daijiro Haba
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takafumi Ohmiya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Sekino
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Qi Qin
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihiro Takizawa
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sanai Tomida
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeo Minematsu
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Ishikawa Prefectural Nursing University, Ishikawa, Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Ishikawa Prefectural Nursing University, Ishikawa, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Brites-Ferreira A, Taiar R, Cardoso ALBD, De Souza-Santos D, da Costa-Borges PP, Torres-Nunes L, Jaques-Albuquerque LT, Monteiro-Oliveira BB, Boyer FC, da Cunha Sá-Caputo D, Rapin A, Bernardo-Filho M. Therapeutic Approach of Whole-Body Vibration Exercise on Wound Healing in Animal Models: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4925. [PMID: 36981833 PMCID: PMC10048796 DOI: 10.3390/ijerph20064925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Human skin wounds pose a gathering threat to the public health, carrying an immense epidemiologic and financial burden. Pharmacological and non-pharmacological (NP) treatments have been proposed to the management of wound healing. Physical exercise is a strong NP intervention considered for patients in wound healing. Particularly, a type of exercise intervention known as whole-body vibration (WBV) exercise has gained increasing interest. WBV exercise is generated due to the transmission of mechanical vibrations, produced by a vibrating platform, to the body. The aim of this review was to summarize studies in experimental animal models using WBV exercise in wound healing. Searches were performed in EMBASE, PubMed, Scopus and Web of Science including publications on 21 November 2022 using the string "whole body vibration" AND "wound healing" (animal or mice or mouse or rat or rodent). The SYRCLE tool was used to assess the risk of bias (RoB). From 48 studies, five studies met the inclusion criteria. RoB indicated that none of the studies fulfilled all methodological analyzed criteria, resulting in possible biases. The studies were homogeneous, and results suggest beneficial effects of WBV exercise in wound healing, mainly related to enhancing angiogenesis, granulation tissue formation, reducing the blood glucose level and enhancing blood microcirculation, by increasing myofiber growth and rapid re-epithelialization. In conclusion, the various biological effects of the response to the WBV exercise indicate the relevance of this intervention in wound healing in animals. Moreover, considering the translation approach, it is possible to speculate that the beneficial effects of this non-pharmacological therapy might justify clinical trials for wound healing also in humans, after criterion evaluation.
Collapse
Affiliation(s)
- Adrielli Brites-Ferreira
- Programa de Pós-Graduação em Fisiopatologia Clínica e Experimental, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
- Laboratório de Vibrações Mecânicas e Práticas Integrativas—LAVIMPI, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes and Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
| | - Redha Taiar
- MATériaux et Ingénierie Mécanique (MATIM), Université de Reims, 51100 Reims, France
| | - André Luiz Bandeira Dionizio Cardoso
- Programa de Pós-Graduação em Fisiopatologia Clínica e Experimental, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
- Laboratório de Vibrações Mecânicas e Práticas Integrativas—LAVIMPI, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes and Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
| | - Daysa De Souza-Santos
- Laboratório de Vibrações Mecânicas e Práticas Integrativas—LAVIMPI, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes and Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
- Programa de Pós-Graduação em Saúde, Medicina Laboratorial e Tecnologia Forense, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
| | - Patricia Prado da Costa-Borges
- Laboratório de Vibrações Mecânicas e Práticas Integrativas—LAVIMPI, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes and Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
| | - Luiza Torres-Nunes
- Programa de Pós-Graduação em Fisiopatologia Clínica e Experimental, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
- Laboratório de Vibrações Mecânicas e Práticas Integrativas—LAVIMPI, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes and Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
| | - Luelia Teles Jaques-Albuquerque
- Laboratório de Vibrações Mecânicas e Práticas Integrativas—LAVIMPI, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes and Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
| | - Bruno Bessa Monteiro-Oliveira
- Programa de Pós-Graduação em Fisiopatologia Clínica e Experimental, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
- Laboratório de Vibrações Mecânicas e Práticas Integrativas—LAVIMPI, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes and Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
| | - Francois Constant Boyer
- Centre Hospitalo-Universitaire de Reims, Département de Médecine Physique et de Réadaptation, Hôpital Sébastopol, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Faculté de Médecine, VieFra, Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Danúbia da Cunha Sá-Caputo
- Laboratório de Vibrações Mecânicas e Práticas Integrativas—LAVIMPI, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes and Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
| | - Amandine Rapin
- Centre Hospitalo-Universitaire de Reims, Département de Médecine Physique et de Réadaptation, Hôpital Sébastopol, Université de Reims Champagne-Ardenne, 51092 Reims, France
- Faculté de Médecine, VieFra, Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Mario Bernardo-Filho
- Laboratório de Vibrações Mecânicas e Práticas Integrativas—LAVIMPI, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes and Policlínica Universitária Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil
| |
Collapse
|
6
|
Syabariyah S, Nurachmah E, Widjojo BD, Prasetyo S, Sanada H, Nakagami G, Kardiatun T, Hisan UK. The Effect of Vibration on the Acceleration of Wound Healing of Diabetic Neuropathic Foot Ulcer: A Prospective Experimental Study on Human Patients. Healthcare (Basel) 2023; 11:healthcare11020191. [PMID: 36673559 PMCID: PMC9859045 DOI: 10.3390/healthcare11020191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Diabetic foot ulcers are a common complication that occurs in approximately 15 percent of patients with diabetes mellitus. Over 60% of diabetic foot ulcers are caused by underlying neuropathy. Former studies on diabetic animals with foot wounds found that vibration platforms significantly accelerate wound healing by catalyzing epithelization, promoting angiogenesis, and enhancing muscle bulk. This result suggests that there is evidence that vibrations may accelerate diabetic neuropathic ulcer healing in human patients. However, to the best of our knowledge, the effect of vibration on the enhancements of diabetic foot ulcer healing in human patients is rarely investigated. Hence, in this work, we conducted an experimental study with human subjects to investigate whether vibration therapy, as a complement to the standard wound treatment, can accelerate the wound healing rate of diabetic neuropathic foot ulcers. In this prospective experimental study, 80 participants diagnosed with Wagner grades I−III diabetic neuropathic foot ulcers were randomly distributed to experimental (n = 40) and control groups (n = 40). Patients in the intervention group received standard wound treatment and vibration wound therapy (VWT), whereas patients in the control group retrieved only standard wound treatment. The results (p = 0.024, α = 0.05) show notable differences in the median healing rate between the intervention group (25 days, 95% CI: 20.3−29.7) and control group (33 days, 95% CI: 25.6−40.4), with the effect-size r, Cohen’s d, Glass’s Δ, and Hedges’ g, respectively, being 0.810, 2.764, 2.311, and 2.772. Moreover, the nitric oxide (NO) level, wound closure area, and wound healing score after intervention significantly differed between the two groups (p < 0.05), putting the intervention group on a higher level than the control group. Furthermore, positive associations were found between the NO level and wound healing closure rates. These findings suggested that VWT enhances diabetic neuropathic foot ulcer healing in terms of healing rate, wound closure area, healing score, and elevated NO level. Considering that no clinically adverse effects were found in the patients induced with vibration intervention, VWT can be regarded as a complementary therapy to the existing ones to accelerate the healing of DFUs.
Collapse
Affiliation(s)
- Sitti Syabariyah
- Department of Medical Surgical Nursing, University of Aisyiyah Bandung, West Java 40264, Indonesia
- Correspondence: ; Tel.: +62-812-5297-1927
| | - Elly Nurachmah
- Department of Medical Surgical Nursing, University of Indonesia, Depok, West Java 16424, Indonesia
| | | | - Sabarinah Prasetyo
- Faculty of Community Health, Universitas of Indonesia, Depok, West Java 16424, Indonesia
| | - Hiromi Sanada
- Department of Wound Care Management/Gerontological Nursing, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Gojiro Nakagami
- Department of Wound Care Management/Gerontological Nursing, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tutur Kardiatun
- Department of Nursing, Institut Teknologi dan Kesehatan Muhammadiyah Kalimantan Barat, Kabupaten Kubu Raya 78117, Indonesia
| | | |
Collapse
|
7
|
Tóth K, Oroszi T, Nyakas C, van der Zee EA, Schoemaker RG. Whole-body vibration as a passive alternative to exercise after myocardial damage in middle-aged female rats: Effects on the heart, the brain, and behavior. Front Aging Neurosci 2023; 15:1034474. [PMID: 36960421 PMCID: PMC10028093 DOI: 10.3389/fnagi.2023.1034474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/02/2023] [Indexed: 03/09/2023] Open
Abstract
Background Females with cardiovascular disease seem more vulnerable to develop concomitant mental problems, such as depression and cognitive decline. Although exercise is shown beneficial in cardiovascular disease as well as in mental functions, these patients may be incapable or unmotivated to perform exercise. Whole body vibration (WBV) could provide a passive alternative to exercise. Aim of the present study was to compare WBV to exercise after isoproterenol (ISO)-induced myocardial damage in female rats, regarding effects on heart, brain and behavior. Methods One week after ISO (70 mg/kg s.c., on 2 consecutive days) or saline injections, 12 months old female rats were assigned to WBV (10 minutes daily), treadmill running (30 minutes daily) or pseudo intervention for 5 weeks. During the last 10 days, behavioral tests were performed regarding depressive-like behavior, cognitive function, and motor performance. Rats were sacrificed, brains and hearts were dissected for (immuno)histochemistry. Results Significant ISO-induced cardiac collagen deposition (0.67 ± 0.10 vs 0.18 ± 0.03%) was absent after running (0.45 ± 0.26 vs 0.46 ± 0.08%), but not after WBV (0.83 ± 0.12 vs 0.41 ± 0.05%). However, WBV as well as running significantly reduced hippocampal (CA3) collagen content in ISO-treated rats. Significant regional differences in hippocampal microglia activity and brain derived neurotrophic factor (BDNF) expression were observed. Significant ISO-induced CA1 microglia activation was reduced after WBV as well as running, while opposite effects were observed in the CA3; significant reduction after ISO that was restored by WBV and running. Both WBV and running reversed the ISO-induced increased BDNF expression in the CA1, Dentate gyrus and Hilus, but not in the CA3 area. Whereas running had no significant effect on behavior in the ISO-treated rats, WBV may be associated with short-term spatial memory in the novel location recognition test. Conclusion Although the female rats did not show the anticipated depressive-like behavior or cognitive decline after ISO, our data indicated regional effects on neuroinflammation and BDNF expression in the hippocampus, that were merely normalized by both WBV and exercise. Therefore, apart from the potential concern about the lack of cardiac collagen reduction, WBV may provide a relevant alternative for physical exercise.
Collapse
Affiliation(s)
- Kata Tóth
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Tamás Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Behavioral Physiology Research Laboratory, Health Science Faculty, Semmelweis University, Budapest, Hungary
| | - Eddy A. van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Regien G. Schoemaker
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Department of Cardiology, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Regien G. Schoemaker
| |
Collapse
|
8
|
Whole body vibration, an alternative for exercise to improve recovery from surgery? Brain Behav Immun Health 2022; 26:100521. [PMID: 36203743 PMCID: PMC9531049 DOI: 10.1016/j.bbih.2022.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/23/2022] Open
Abstract
Although exercise is usually associated with beneficial effects on physical and mental health, patients recovering from surgery may be hampered to perform active exercise. Whole body vibration (WBV) is suggested a passive alternative for physical training. Aim of the present study was to explore the therapeutic potential of WBV compared to physical exercise during early post-surgery recovery. Male three months old Wistar rats underwent major abdominal surgery. Starting the day after surgery, rats were subjected to either daily WBV or exercise (treadmill running) for 15 consecutive days. Control rats underwent pseudo treatment. During the first week after surgery, effects of interventions were obtained from continuous recording of hemodynamic parameters, body temperature and activity (via an implanted transducer). Behavioral tests were performed during the second post-surgical week to evaluate anxiety-like behavior, short and long-term memory functions, cognitive flexibility and motor performance. Animals were sacrificed 15 days after surgery and brain tissue was collected for analysis of hippocampal neuroinflammation and neurogenesis. Surgery significantly impacted all parameters measured during the first post-surgery week, irrespective of the type of surgery. Effect on cognitive performance was limited to cognitive flexibility; both WBV and exercise prevented the surgery-induced decline. Exercise, but not WBV increased anxiety-like behavior and grip strength. WBV as well as exercise prevented the surgery-induced declined neurogenesis, but surgery-associated hippocampal neuroinflammation was not affected. Our results indicated that active exercise and WBV share similar therapeutic potentials in the prevention of surgery induced decline in cognitive flexibility and hippocampal neurogenesis. In contrast to exercise, WBV did not increase anxiety-like behavior. Since neither intervention affected hippocampal neuroinflammation, other mechanisms and/or brain areas may be involved in the behavioral effects. Taken together, we conclude that WBV may provide a relevant alternative to active exercise during the early stage of post-operative recovery. Both whole body vibration (WBV) and running exercise restored the reduced cognitive flexibility caused by surgery. WBV as well as active exercise prevented surgery-induced declined neurogenesis. Active exercise, but not WBV, induced anxiety-like behavior after surgery. Neither WBV nor active exercise affected surgery-induced neuroinflammation. Neither WBV nor active exercise influenced hemodynamic recovery from surgery.
Collapse
|
9
|
Potential of Whole-Body Vibration in Parkinson’s Disease: A Systematic Review and Meta-Analysis of Human and Animal Studies. BIOLOGY 2022; 11:biology11081238. [PMID: 36009865 PMCID: PMC9405106 DOI: 10.3390/biology11081238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Exercise has shown to have a positive impact on both motor and non-motor functions in Parkinson’s Disease patients. However, particularly in later stages of the disease, reduced cognitive function and motor capacity may lead to an inability to stay physically active. Therefore, alternative strategies for patients with Parkinson’s Disease are necessary to minimize burden for patients, their families and public health care. Whole-Body Vibration could be such an alternative. Whole-Body Vibration is an exercise or treatment method in which subjects are exposed to a mechanical vibration while sitting, standing or exercising on a vibrating platform. Whole-Body Vibration is currently used for physiotherapy, sports and rehabilitation purposes. Whole-Body Vibration treatment is interesting because it affects both the body and brain. The potential of Whole-Body Vibration for, specifically, Parkinson’s Disease patients should be clarified for further application. For this purpose, we conducted an extensive systematic review of the articles investigating the effects of Whole-Body Vibrations (1) on animals and humans with Parkinson’s Disease and (2) on neuropathological Parkinson’s Disease mechanisms. The results show some potential of Whole-Body Vibration for Parkinson’s Disease patients. The recommendations provided by this review can be used by researchers and rehabilitative practitioners implementing Whole-Body Vibration as a treatment for Parkinson’s Disease patients. Abstract (1) Background: When the severity of Parkinson’s Disease (PD) increases, patients often have difficulties in performing exercises. Whole-Body Vibration (WBV) may be a suitable alternative. This systematic review aims to clarify if WBV shows potential as rehabilitative therapy for PD patients. (2) Methods: We searched several databases for controlled trials investigating the effects of WBV (1) on PD populations and (2) PD neuropathological mechanisms. We included both human and animal studies and performed meta-analyses. (3) Results: The studies on PD populations (14 studies) show an overall significant, but small, effect in favor of WBV (Hedges’ g = 0.28), for which the effects on stability (Hedges’ g = 0.39) and balance (Hedges’ g = 0.30) are the most prominent. The studies on the neuropathological mechanisms (18 studies) show WBV effects on neuroinflammation (Hedges’ g = –1.12) and several specific WBV effects on neurotransmitter systems, growth factors, neurogenesis, synaptic plasticity and oxidative stress. (4) Conclusions: The effects of WBV on human PD patients remains inconclusive. Nevertheless, WBV protocols with sufficient duration (≥3 weeks), session frequency (≥3 sessions/week) and vibration frequency (≥20 Hz) show potential as a treatment method, especially for motor function. The potential of WBV for PD patients is confirmed by the effects on the neuropathological mechanisms in mostly non-PD populations. We recommend high-quality future studies on both PD patients and PD mouse models to optimize WBV protocols and to examine the neuropathological mechanisms in PD populations.
Collapse
|
10
|
Influence of 40 Hz and 100 Hz Vibration on SH-SY5Y Cells Growth and Differentiation-A Preliminary Study. Molecules 2022; 27:molecules27103337. [PMID: 35630814 PMCID: PMC9143216 DOI: 10.3390/molecules27103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: A novel bioreactor platform of neuronal cell cultures using low-magnitude, low-frequency (LMLF) vibrational stimulation was designed to discover vibration influence and mimic the dynamic environment of the in vivo state. To better understand the impact of 40 Hz and 100 Hz vibration on cell differentiation, we join biotechnology and advanced medical technology to design the nano-vibration system. The influence of vibration on the development of nervous tissue on the selected cell line SH-SY5Y (experimental research model in Alzheimer’s and Parkinson’s) was investigated. (2) Methods: The vibration stimulation of cell differentiation and elongation of their neuritis were monitored. We measured how vibrations affect the morphology and differentiation of nerve cells in vitro. (3) Results: The highest average length of neurites was observed in response to the 40 Hz vibration on the collagen surface in the differentiating medium, but cells response did not increase with vibration frequency. Also, vibrations at a frequency of 40 Hz or 100 Hz did not affect the average density of neurites. 100 Hz vibration increased the neurites density significantly with time for cultures on collagen and non-collagen surfaces. The exposure of neuronal cells to 40 Hz and 100 Hz vibration enhanced cell differentiation. The 40 Hz vibration has the best impact on neuronal-like cell growth and differentiation. (4) Conclusions: The data demonstrated that exposure to neuronal cells to 40 Hz and 100 Hz vibration enhanced cell differentiation and proliferation. This positive impact of vibration can be used in tissue engineering and regenerative medicine. It is planned to optimize the processes and study its molecular mechanisms concerning carrying out the research.
Collapse
|
11
|
Rodríguez-Reyes G, García-Ulloa AC, Hernández-Jiménez S, Alessi-Montero A, Núñez Carrera L, Rojas-Torres F, Infanzón-Talango H, Clark P, Miranda-Duarte A, Gómez-Díaz RA. Effect of whole-body vibration training on transcutaneous oxygen levels of the foot in patients with type 2 diabetes: A randomized controlled trial. J Biomech 2021; 139:110871. [PMID: 34839962 DOI: 10.1016/j.jbiomech.2021.110871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 02/09/2023]
Abstract
Whole body vibration (WBV) has been suggested as improving skin and blood flow. This study aimed to determine the effect of exposure to WBV on levels of partial transcutaneous oxygen pressure (TcPO2) in the foot of patients with type 2 diabetes (T2D) within the metabolic control goals. A block randomized, open, two-arm, parallel and controlled clinical trial was conducted. Participants recruited from the Center of Comprehensive Care for the Patient with Diabetes were assessed at the National Institute of Rehabilitation, Mexico City. Control group underwent multidisciplinary care for T2D; experimental group, in addition to the comprehensive diabetes care, was exposed to WBV through an exercise program, attending three times a week for a period of 3 months. TcPO2 was measured in the feet of the participants at baseline and after 12 weeks. A sample of 50 volunteers with recently-diagnosed T2D and similar baseline characteristics (demographic, cardiovascular risk, presence of diabetic polyneuropathy, and indicators of glycemic control and TcPO2) was recruited. The experimental group (n = 27) showed a mean value of 47.7 ± 6.1 mmHg in TcPO2, significantly higher (p = 0.028) than the 44.3 ± 7.5 mmHg of control group (n = 23), at the end of intervention. In conclusion, exposure to WBV promoted an increase and a significant 3 mmHg difference in the foot TcPO2 levels between those subjects with T2D that underwent the 12-week exercise program and those not exposed to the treatment.
Collapse
Affiliation(s)
- Gerardo Rodríguez-Reyes
- Laboratorio de Ortesis y Prótesis, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Ana Cristina García-Ulloa
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sergio Hernández-Jiménez
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Aldo Alessi-Montero
- Laboratorio de Análisis de Movimiento Humano e Ingeniería de Rehabilitación, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Lidia Núñez Carrera
- Laboratorio de Análisis de Movimiento Humano e Ingeniería de Rehabilitación, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Francis Rojas-Torres
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Héctor Infanzón-Talango
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Patricia Clark
- Unidad de Epidemiología Clínica, Hospital Infantil de México Federico Gómez and National University of Mexico-UNAM, Mexico City, Mexico
| | - Antonio Miranda-Duarte
- Laboratorio de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Rita A Gómez-Díaz
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|