1
|
Wang W, Wang Z, Cao J, Dong Y, Chen Y. Melatonin ameliorates chronic sleep deprivation against memory encoding vulnerability: Involvement of synapse regulation via the mitochondrial-dependent redox homeostasis-induced autophagy inhibition. Free Radic Biol Med 2024; 225:398-414. [PMID: 39396581 DOI: 10.1016/j.freeradbiomed.2024.10.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Voluntary sleep curtailment is increasingly more rampant in modern society and compromises healthy cognition, including memory, to varying degrees. However, whether memory encoding is impaired after chronic sleep deprivation (CSD) and the underlying molecular mechanisms involved remain unclear. Here, using the mice, we tested the impact of CSD on the encoding abilities of social recognition-dependent memory and object recognition-dependent memory. We found that memory encoding was indeed vulnerable to CSD, while memory retrieval remained unaffected. The hippocampal neurons of mice with memory encoding deficits exhibited significant synapse damage and hyperactive autophagy, which dissipates during regular sleep cycles. This excessive autophagy appeared to be triggered by damage to mitochondrial DNA (mtDNA), resulting from oxidative stress within the mitochondria. The relief at the behavioral and molecular biological levels can be achieved with intraperitoneal injections of the antioxidant compound melatonin. Moreover, our in vitro experiments using HT-22 cells demonstrated that oxidative stress induced by hydrogen peroxide led to oxidative damage, including mtDNA damage, and activation of autophagy. Melatonin treatment effectively countered these effects, restoring redox homeostasis and reducing excessive autophagic activity. Notably, this protective effect was not observed when melatonin was administered as a pre-treatment. Together, our findings reveal the vulnerability of memory encoding during chronic sleep curtailment, which is caused by oxidative stress and consequent enhancement of autophagy, suggest a potential therapeutic strategy for addressing these effects following prolonged wakefulness through melatonin intervention, and reiterate the significance of adequate sleep for memory formation and retention.
Collapse
Affiliation(s)
- Wei Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Coluk Y, Peker EGG, Yildirmak S, Keskin A, Yildirim G. Exploring the protective role of green tea extract against cardiovascular alterations induced by chronic REM sleep deprivation via modulation of inflammation and oxidative stress. BMC Complement Med Ther 2024; 24:351. [PMID: 39363261 PMCID: PMC11448275 DOI: 10.1186/s12906-024-04643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Chronic Rapid eye movement (REM) sleep deprivation has been associated with various cardiovascular alterations, including disruptions in antioxidant defense mechanisms, lipid metabolism, and inflammatory responses. This study investigates the therapeutic potential of green tea extract (GTE) in mitigating these adverse effects. METHODS A total of 24 male Wistar albino rats were used in this study and divided into the control group (n = 8), Chronic-REM Sleep Deprivation (CRSD) Group (n = 8) and Chronic-REM SD + Green Tea 200 (CRSD + GTE200) Group (n = 8). After 21 days, a comprehensive analysis of paraoxonase (PON1), arylesterase (ARE), malondialdehyde (MDA), glutathione (GSH), nitric oxide (NOx), proinflammatory cytokines, and lipid profiles in aortic tissue, heart tissue, and serum was conducted in a sleep-deprived rat model. RESULTS Chronic REM sleep deprivation led to a significant reduction in PON1 and ARE levels in aortic (p = 0.046, p = 0.035 respectively) and heart tissues (p = 0.020, p = 0.019 respectively), indicative of compromised antioxidant defenses. MDA levels increased, and NOx levels decreased, suggesting oxidative stress and impaired vascular function. Lipid profile alterations, including increased triglycerides and total cholesterol, were observed in serum. Elevated levels of inflammatory cytokines (IL-6 and TNF-alpha) further indicated an inflammatory response (p = 0.007, p = 0.018 respectively). GTE administration demonstrated a protective role, restoring antioxidant enzyme levels, suppressing lipid peroxidation, and improving NOx levels. CONCLUSION These findings suggest the therapeutic potential of GTE in alleviating the cardiovascular impairments of chronic REM sleep deprivation, emphasizing its candidacy for further clinical exploration as a natural intervention in sleep-related disorders and associated cardiovascular risks.
Collapse
Affiliation(s)
- Yonca Coluk
- Department of Otorhinolaryngology, Faculty of Medicine, Giresun University, Giresun, 28200, Turkey.
| | - Emine Gulceri Gulec Peker
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Giresun University, Giresun, 28200, Turkey
| | - Sembol Yildirmak
- Department of Biochemistry, Faculty of Medicine, Mersin University, Mersin, 33010, Turkey
| | - Arif Keskin
- Department of Anatomy, Faculty of Medicine, Giresun University, Giresun, 28200, Turkey
| | - Guven Yildirim
- Private Practice, Otorhinolaryngology, İstanbul, 34360, Turkey
| |
Collapse
|
3
|
He F, Yan Y, Peng M, Gao M, Zhou L, Chen F, Yang L, Li L, Yang X. Therapeutic potential of Rosa roxburghii folium extract in insomnia treatment: a comprehensive evaluation of behavioral and neurochemical effects in a PCPA-induced mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39286895 DOI: 10.1002/jsfa.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Insomnia, a prevalent sleep disorder, detrimentally affects quality of life and is often challenging to manage with conventional treatments. This study delved into identifying and quantifying the main compounds by employing ultra-performance liquid chromatography-Q-Exactive-Orbitrap mass spectrometry, and further to evaluate the therapeutic potential of Rosa roxburghii folium (RRF) extract, with multiple pharmacological activities. Previous research had hinted at the efficacy of glycosides in influencing the γ-aminobutyric acid (GABAergic) system, which plays a pivotal role in sleep regulation. Utilizing a p-chlorophenylalanine-induced insomnia model in BALB/C mice, this investigation aimed to unravel the effects of various dosages of RRF extract on sleep quality and elucidated its mechanism of action. RESULTS A total of 66 compounds in the RRF extract were analyzed. Behavioral assessments demonstrated notable enhancements in sleep duration and latency. Biochemical analyses further corroborated these findings, revealing modulation in neurotransmitter levels indicative of a potential mechanism through the GABAergic and serotoninergic pathways. Additionally, histological evaluations suggested anti-inflammatory and antioxidant effects of the RRF extract. CONCLUSION The findings from this study underscored the therapeutic efficacy of RRF extract in combating insomnia, particularly highlighting its glycoside components' role. The extract's significant improvement in sleep duration and latency, alongside its modulation of neurotransmitter levels, showcases its potential as a natural remedy for insomnia. Through its action on the GABAergic and serotoninergic pathways, as well as its anti-inflammatory and antioxidant effects, RRF extract emerges as a promising candidate for insomnia treatment, offering a holistic approach to sleep disorder management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengjin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Yanfang Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Mei Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Ming Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Lang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Faju Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Lishou Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Liangqun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Xiaosheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| |
Collapse
|
4
|
Azami S, Forouzanfar F. Therapeutic potentialities of green tea (Camellia sinensis) in ischemic stroke: biochemical and molecular evidence. Metab Brain Dis 2024; 39:347-357. [PMID: 37721652 DOI: 10.1007/s11011-023-01294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Ischemic stroke is a leading cause of disability and death in patients. Despite considerable recent advances in the treatment of ischemic stroke, only a limited number of effective neuroprotective agents are available for stroke. Green tea (Camellia sinensis) is a popular herbal plant, and numerous studies have indicated its health benefits for several diseases. Green tea is of interest due to its high content of catechin derivatives, including epicatechin, gallocatechin, epicatechin gallate, epigallocatechin, and epigallocatechin-3-gallate. This review tried to develop a feasible background for the potential effects of green tea and its bioactive derivatives concerning protection against ischemic stroke. Green tea's antioxidants, anti-inflammatory, anti-apoptotic, and neuroprotective effects are believed to be efficacious in stroke treatment. Evidence supports the idea that green tea can be used to assist in treating ischemic stroke.
Collapse
Affiliation(s)
- Shakiba Azami
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Pérez-Jiménez J, Agnant K, Lamuela-Raventós RM, St-Onge MP. Dietary polyphenols and sleep modulation: Current evidence and perspectives. Sleep Med Rev 2023; 72:101844. [PMID: 37659249 PMCID: PMC10872761 DOI: 10.1016/j.smrv.2023.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Polyphenols are plant compounds with several biological activities. This review aims to summarize current knowledge on the potential role of polyphenols in modulating sleep. A total of 28 preclinical studies, 12 intervention studies and four observational studies exploring the role of polyphenol intake on sleep were identified. From animal studies, 26 out of the 28 studies found beneficial effects of polyphenols on sleep architecture. Three out of four human observational studies found a beneficial association between polyphenol intake and sleep parameters. And, among clinical intervention studies, eight from a total of 12 studies found some beneficial effect of polyphenol intake on various sleep parameters, although some discrepancies between studies were found. Overall, emerging evidence suggests a benefit of polyphenol intake on sleep. Several mechanisms of action have been suggested, ranging from effects on neurotransmitters to an action through the gut-brain axis. However, more research in this field is needed, emphasizing the use of nutritional doses in mechanistic studies and interventions targeting participants with sleep problems. This would allow to elucidate whether an additional biological effect of polyphenols is modulation of sleep, a behavior associated with adverse health outcomes.
Collapse
Affiliation(s)
- Jara Pérez-Jiménez
- Dept. Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, Madrid, Spain; Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kaitha Agnant
- Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rosa M Lamuela-Raventós
- Dept. Nutrition, Food Sciences and Gastronomy, XIA, INSA-UB, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), ISCIII, Madrid, Spain
| | - Marie-Pierre St-Onge
- Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
6
|
Neculicioiu VS, Colosi IA, Costache C, Toc DA, Sevastre-Berghian A, Colosi HA, Clichici S. Sleep Deprivation-Induced Oxidative Stress in Rat Models: A Scoping Systematic Review. Antioxidants (Basel) 2023; 12:1600. [PMID: 37627596 PMCID: PMC10451248 DOI: 10.3390/antiox12081600] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sleep deprivation is highly prevalent in the modern world, possibly reaching epidemic proportions. While multiple theories regarding the roles of sleep exist (inactivity, energy conservation, restoration, brain plasticity and antioxidant), multiple unknowns still remain regarding the proposed antioxidant roles of sleep. The existing experimental evidence is often contradicting, with studies pointing both toward and against the presence of oxidative stress after sleep deprivation. The main goals of this review were to analyze the existing experimental data regarding the relationship between sleep deprivation and oxidative stress, to attempt to further clarify multiple aspects surrounding this relationship and to identify current knowledge gaps. Systematic searches were conducted in three major online databases for experimental studies performed on rat models with oxidative stress measurements, published between 2015 and 2022. A total of 54 studies were included in the review. Most results seem to point to changes in oxidative stress parameters after sleep deprivation, further suggesting an antioxidant role of sleep. Alterations in these parameters were observed in both paradoxical and total sleep deprivation protocols and in multiple rat strains. Furthermore, the effects of sleep deprivation seem to extend beyond the central nervous system, affecting multiple other body sites in the periphery. Sleep recovery seems to be characterized by an increased variability, with the presence of both normalizations in some parameters and long-lasting changes after sleep deprivation. Surprisingly, most studies revealed the presence of a stress response following sleep deprivation. However, the origin and the impact of the stress response during sleep deprivation remain somewhat unclear. While a definitive exclusion of the influence of the sleep deprivation protocol on the stress response is not possible, the available data seem to suggest that the observed stress response may be determined by sleep deprivation itself as opposed to the experimental conditions. Due to this fact, the observed oxidative changes could be attributed directly to sleep deprivation.
Collapse
Affiliation(s)
- Vlad Sever Neculicioiu
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Alina Colosi
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Carmen Costache
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Dan Alexandru Toc
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandra Sevastre-Berghian
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Horațiu Alexandru Colosi
- Division of Medical Informatics and Biostatistics, Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Wang W, Ige OO, Ding Y, He M, Long P, Wang S, Zhang Y, Wen X. Insights into the potential benefits of triphala polyphenols toward the promotion of resilience against stress-induced depression and cognitive impairment. Curr Res Food Sci 2023; 6:100527. [PMID: 37377497 PMCID: PMC10291000 DOI: 10.1016/j.crfs.2023.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
In response to environmental challenges, stress is a common reaction, but dysregulation of the stress response can lead to neuropsychiatric disorders, including depression and cognitive impairment. Particularly, there is ample evidence that overexposure to mental stress can have lasting detrimental consequences for psychological health, cognitive function, and ultimately well-being. In fact, some individuals are resilient to the same stressor. A major benefit of enhancing stress resilience in at-risk groups is that it may help prevent the onset of stress-induced mental health problems. A potential therapeutic strategy for maintaining a healthy life is to address stress-induced health problems with botanicals or dietary supplements such as polyphenols. Triphala, also known as Zhe Busong decoction in Tibetan, is a well-recognized Ayurvedic polyherbal medicine comprising dried fruits from three different plant species. As a promising food-sourced phytotherapy, triphala polyphenols have been used throughout history to treat a variety of medical conditions, including brain health maintenance. Nevertheless, a comprehensive review is still lacking. Here, the primary objective of this review article is to provide an overview of the classification, safety, and pharmacokinetics of triphala polyphenols, as well as recommendations for the development of triphala polyphenols as a novel therapeutic strategy for promoting resilience in susceptible individuals. Additionally, we summarize recent advances demonstrating that triphala polyphenols are beneficial to cognitive and psychological resilience by regulating 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) receptors, gut microbiota, and antioxidant-related signaling pathways. Overall, scientific exploration of triphala polyphenols is warranted to understand their therapeutic efficacy. In addition to providing novel insights into the mechanisms of triphala polyphenols for promoting stress resilience, blood brain barrier (BBB) permeability and systemic bioavailability of triphala polyphenols also need to be improved by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of triphala polyphenols' beneficial effects for preventing and treating cognitive impairment and psychological dysfunction.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Olufola Oladoyin Ige
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, 610021, China
| |
Collapse
|
8
|
Arjmandi-Rad S, Ebrahimnejad M, Zarrindast MR, Vaseghi S. Do Sleep Disturbances have a Dual Effect on Alzheimer's Disease? Cell Mol Neurobiol 2023; 43:711-727. [PMID: 35568778 DOI: 10.1007/s10571-022-01228-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
Sleep disturbances and Alzheimer's disease have deleterious effects on various physiological and cognitive functions including synaptic plasticity, oxidative stress, neuroinflammation, and memory. In addition, clock genes expression is significantly altered following sleep disturbances, which may be involved in the pathogenesis of Alzheimer's disease. In this review article, we aimed to discuss the role of sleep disturbances and Alzheimer's disease in the regulation of synaptic plasticity, oxidative stress, neuroinflammation, and clock genes expression. Also, we aimed to find significant relationships between sleep disturbances and Alzheimer's disease in the modulation of these mechanisms. We referred to the controversial effects of sleep disturbances (particularly those related to the duration of sleep deprivation) on the modulation of synaptic function and neuroinflammation. We aimed to know that, do sleep disturbances have a dual effect on the progression of Alzheimer's disease? Although numerous studies have discussed the association between sleep disturbances and Alzheimer's disease, the new point of this study was to focus on the controversial effects of sleep disturbances on different biological functions, and to evaluate the potential dualistic role of sleep disturbances in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Shirin Arjmandi-Rad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, PO Box: 1419815477, Karaj, Iran.
| |
Collapse
|
9
|
Transcutaneous auricular vagus stimulation (taVNS) improves human working memory performance under sleep deprivation stress. Behav Brain Res 2023; 439:114247. [PMID: 36473677 DOI: 10.1016/j.bbr.2022.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulate cognitive abilities, attention, and arousal. Two experiments were conducted to assess the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) to relieve the deleterious effects of sleep deprivation. In the first experiment, 35 participants completed N-back tasks at 8:00 a.m. for two consecutive days in a within-subject study. Then, the participants received either taVNS or earlobe stimulation (active control) intervention in two sessions at random orders after 24 h of sustained wakefulness. Then, they completed the N-back tasks again. In the second experiment, 30 participants completed the psychomotor vigilance task (PVT), and 32 completed the N-back tasks at 8:00 a.m. on the first and second days. Then, they received either taVNS or earlobe stimulation at random orders and finished the N-back and PVT tasks immediately after one hour. In Experiment 1, taVNS could significantly improve the accuracy rate of participants in spatial 3-back tasks compared to active control, which was consistent with experiment 2. However, taVNS did not specifically enhance PVT performance. Therefore, taVNS could be a powerful intervention for acute sleep deprivation as it can improve performance on high cognitive load tasks and is easy to administer.
Collapse
|
10
|
Kholghi G, Alipour V, Rezaie M, Zarrindast MR, Vaseghi S. The Interaction Effect of Sleep Deprivation and Treadmill Exercise in Various Durations on Spatial Memory with Respect to the Oxidative Status of Rats. Neurochem Res 2023; 48:2077-2092. [PMID: 36786943 DOI: 10.1007/s11064-023-03890-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023]
Abstract
Sleep deprivation (SD) has deleterious effects on cognitive functions including learning and memory. However, some studies have shown that SD can improve cognitive functions. Interestingly, treadmill exercise has both impairment and improvement effects on memory function. In this study, we aimed to investigate the effect of SD for 4 (short-term) and 24 (long-term) hours, and two protocols of treadmill exercise (mild short-term and moderate long-term) on spatial memory performance, and oxidative and antioxidant markers in the serum of rats. Morris Water Maze apparatus was used to assess spatial memory performance. Also, SD was done using gentle handling method. In addition, the serum level of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) was measured. The results showed that 24 h SD (but not 4 h) had negative effect on spatial memory performance, decreased SOD, CAT, and GSH-Px level, and increased MDA level. Long-term moderate (but not short-term mild) treadmill exercise had also negative effect on spatial memory performance, decreased SOD, CAT, and GSH-Px level, and increased MDA level. Interestingly, both protocols of treadmill exercise reversed spatial memory impairment and oxidative stress induced by 24 h SD. In conclusion, it seems that SD and treadmill exercise interact with each other, and moderate long-term exercise can reverse the negative effects of long-term SD on memory and oxidative status; although, it disrupted memory function and increased oxidative stress by itself.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Vahide Alipour
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Maede Rezaie
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|
11
|
Dehnavi P, Rakhshandeh H, Bakhtiari E, Asadpour H, Moshirian Farahi SM, Forouzanfar F. Effect of Tomato ( Solanum lycopersicum) Extract in Patients with Primary Insomnia: A Double-blind Randomized Study. Cent Nerv Syst Agents Med Chem 2023; 23:137-143. [PMID: 37475550 DOI: 10.2174/1871524923666230720155754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE Insomnia is a condition that causes sleep problems, and many people suffer from it. Patients with this disorder have difficulty with beginning or continuation of sleep, so they are exhausted all day long, and their performance reduces. This study was designed to assess the efficacy of capsules that contain tomato extract in patients with primary insomnia. METHODS In this study, 70 patients with primary insomnia were assigned to 2 groups randomly: intervention and control. The intervention group used to take tomato capsules every night for 2 weeks, and the placebo one used to take placebo capsules every night for 2 weeks. All patients used to fill out Insomnia Severity Index (ISI) and Pittsburgh Sleep Quality Index (PSQI) questionnaires before and after the intervention. ISI and PSQI results were analyzed separately on SPSS software. RESULTS A total of 70 patients (35 in the intervention group and 35 in the control group), including 50 females and 20 males, were studied. Female to male ratio and the rate of unemployment were significantly higher in the intervention group (in both cases P < 0.001), but there was no significant difference between the intervention and control groups in other characteristics (Age, marital status, weight, height, education; in all cases P > 0.05). At the end of the study, the amount of actual sleep had increased, and the delay in falling asleep decreased in both groups; the two groups at the end of the study were not significantly different in terms of these two variables (P > 0.05). The ISI score in both groups decreased significantly at the end of the study, and the PSQI score in both groups decreased significantly at the end of the study (In both cases, P < 0.05). The absolute value of ISI score change in the intervention group was significantly higher than the control group (P < 0.001); But the absolute value of PSQI score change was not significantly different between the two groups (P = 0.102). Most importantly, the improvement of both ISI and PSQI scores in the intervention group was significantly better than the control group (P > 0.05). CONCLUSION This study showed that tomato capsules have sleep-inducing effects, although there was no significant difference in the amount of actual sleep, and the delay in falling sleep in the intervention group compared to the control group.
Collapse
Affiliation(s)
- Parvin Dehnavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Bakhtiari
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Asadpour
- Division of Sleep Medicine, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Ouyang J, Peng Y, Gong Y. New Perspectives on Sleep Regulation by Tea: Harmonizing Pathological Sleep and Energy Balance under Stress. Foods 2022; 11:3930. [PMID: 36496738 PMCID: PMC9738644 DOI: 10.3390/foods11233930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/09/2022] Open
Abstract
Sleep, a conservative evolutionary behavior of organisms to adapt to changes in the external environment, is divided into natural sleep, in a healthy state, and sickness sleep, which occurs in stressful environments or during illness. Sickness sleep plays an important role in maintaining energy homeostasis under an injury and promoting physical recovery. Tea, a popular phytochemical-rich beverage, has multiple health benefits, including lowering stress and regulating energy metabolism and natural sleep. However, the role of tea in regulating sickness sleep has received little attention. The mechanism underlying tea regulation of sickness sleep and its association with the maintenance of energy homeostasis in injured organisms remains to be elucidated. This review examines the current research on the effect of tea on sleep regulation, focusing on the function of tea in modulating energy homeostasis through sickness sleep, energy metabolism, and damage repair in model organisms. The potential mechanisms underlying tea in regulating sickness sleep are further suggested. Based on the biohomology of sleep regulation, this review provides novel insights into the role of tea in sleep regulation and a new perspective on the potential role of tea in restoring homeostasis from diseases.
Collapse
Affiliation(s)
- Jin Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Yuxuan Peng
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
- College of Physical Education, Hunan City University, Yiyang 413002, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Xiao F, Shao S, Zhang H, Li G, Piao S, Zhao D, Li G, Yan M. Neuroprotective effect of Ziziphi Spinosae Semen on rats with p-chlorophenylalanine-induced insomnia via activation of GABA A receptor. Front Pharmacol 2022; 13:965308. [PMID: 36483742 PMCID: PMC9722729 DOI: 10.3389/fphar.2022.965308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/07/2022] [Indexed: 09/24/2023] Open
Abstract
Ziziphus jujuba var. spinosa (Bunge) Hu ex H.F.Chow [Rhamnaceae; Ziziphi Spinosae Semen (ZSS)] has attracted extensive attention as the first choice of traditional Chinese medicine in the treatment of insomnia. However, recent studies on the sleep-improving mechanism of ZSS have mainly focused on the role of single components. Thus, to further reveal the potential mechanism of ZSS, an assessment of its multiple constituents is necessary. In this study, ZSS extract (ZSSE) was obtained from ZSS via detailed modern extraction, separation, and purification technologies. The chemical constituents of ZSSE were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS). For in vivo experiments, a rat model of insomnia induced by p-chlorophenylalanine (PCPA) was established to investigate the potential effect and corresponding mechanism of ZSSE on improving sleep. Hematoxylin-eosin staining (HE) results revealed that the drug group showed prominent advantages over the model group in improving sleep. Moreover, the brain levels of γ-aminobutyric acid (GABA), glutamic acid (Glu), 5-hydroxytryptamine (5-HT), and dopamine (DA) were monitored via enzyme-linked immunosorbent assay (ELISA) to further study the sleep-improving mechanism of ZSSE. We found that sleep was effectively improved via upregulation of GABA and 5-HT and downregulation of Glu and DA. In addition, molecular mechanisms of ZSSE in improving sleep were studied by immunohistochemical analysis. The results showed that sleep was improved by regulating the expression levels of GABA receptor subunit alpha-1 (GABAARα1) and GABA acid receptor subunit gamma-2 (GABAARγ2) receptors in the hypothalamus and hippocampus tissue sections. Therefore, this work not only identified the active ingredients of ZSSE but also revealed the potential pharmacological mechanism of ZSSE for improving sleep, which may greatly stimulate the prospective development and application of ZSSE.
Collapse
Affiliation(s)
- Fengqin Xiao
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shuai Shao
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Hongyin Zhang
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Guangfu Li
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Songlan Piao
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Guangzhe Li
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mingming Yan
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|