1
|
Zare-Zardini H, Hedayati-Goudarzi MT, Alizadeh A, Sadeghian-Nodoushan F, Soltaninejad H. A review of cardioprotective effect of ginsenosides in chemotherapy-induced cardiotoxicity. Biomed Eng Online 2024; 23:128. [PMID: 39709452 DOI: 10.1186/s12938-024-01322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Chemotherapy-induced cardiotoxicity is a significant concern in cancer treatment, as certain chemotherapeutic agents can have adverse effects on the cardiovascular system. This can lead to a range of cardiac complications, including heart failure, arrhythmias, myocardial dysfunction, pericardial complications, and vascular toxicity. Strategies to mitigate chemotherapy-induced cardiotoxicity may include the use of cardioprotective agents (e.g., dexrazoxane), dose adjustments, alternative treatment regimens, and the implementation of preventive measures, such as lifestyle modifications and the management of cardiovascular risk factors. Ginsenosides, the active compounds found in ginseng (Panax ginseng), have been studied for their potential cardioprotective effects in the context of chemotherapy-induced cardiotoxicity. In this review, we investigate the cardioprotective effect of ginsenosides in chemotherapy-induced cardiotoxicity. Ginsenosides have been shown to possess potent antioxidant properties, which can help mitigate the oxidative stress and inflammation associated with chemotherapy-induced cardiac injury. They can modulate the expression of antioxidant enzymes and reduce the production of reactive oxygen species, thereby protecting cardiomyocytes from damage. Ginsenosides can also inhibit apoptosis (programmed cell death) of cardiomyocytes, which is a key mechanism underlying chemotherapy-induced cardiotoxicity. Modulation of ion channels, improvement of lipid profiles, anti-platelet and anti-thrombotic effects, and promotion of angiogenesis and neovascularization are another important mechanisms behind potential effects of ginsenosides on cardiovascular health. Ginsenosides can improve various parameters of cardiac function, such as ejection fraction, fractional shortening, and cardiac output, in animal models of chemotherapy-induced cardiotoxicity. The cardioprotective effects of ginsenosides have been observed in preclinical studies using various chemotherapeutic agents, including doxorubicin, cisplatin, and 5-fluorouracil. However, more clinical studies are needed to fully elucidate the therapeutic potential of ginsenosides in preventing and managing chemotherapy-induced cardiotoxicity in cancer patients.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | | | - Ameneh Alizadeh
- Department of Applied Chemistry, Faculty of Gas and Petroleum, Yasouj University, Gachsaran, 75918-74831, Iran
| | - Fatemeh Sadeghian-Nodoushan
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Soltaninejad
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, 15614, Iran
| |
Collapse
|
2
|
Wang A, Li S, Zhang R, Chen X, Zhu Y, Xia J, Wang J. Senescence-associated secretory phenotype regulation by dual drug delivery biomimetic nanoplatform for enhanced tumor chemotherapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200856. [PMID: 39262569 PMCID: PMC11387675 DOI: 10.1016/j.omton.2024.200856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/10/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Many chemotherapies, which are still the main clinical treatment for primary tumors, will induce persistent DNA damage in non-tumor stromal cells, especially cancer-associated fibroblasts (CAFs), and activate them to secrete senescence-associated secretory phenotype (SASP). The transition could further result in the formation of tumor immunosuppressive microenvironment and cause drug resistance of neighboring tumor cells. To solve this dilemma, a multi-functional biomimetic drug delivery system (named mPtP@Lipo) was rationally developed by combining CAFs reshaper ginsenoside 20(S)-protopanaxadiol (PPD) and cisplatin prodrug (PtLA) to inhibit tumor progression and the formation of SASP. To achieve effective delivery of these molecules deep into the desmoplastic tumor, fibroblast membrane was fused with liposomes as a targeting carrier. In vitro and in vivo results showed that mPtP@Lipo could penetrate deep into the tumor, reverse CAFs phenotype and inhibit SASP formation, which then blocked the immunosuppressive progress and thus reinforced anti-tumor immune response. The combination of chemotherapeutics and CAFs regulator could achieve both tumor inhibition and tumor immune microenvironment remodeling. In conclusion, mPtP@Lipo provides a promising strategy for the comprehensive stromal-desmoplastic tumor treatment.
Collapse
Affiliation(s)
- Anni Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Shiyi Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Ru Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Xing Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Ying Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| |
Collapse
|
3
|
Rivero-Segura NA, Zepeda-Arzate EA, Castillo-Vazquez SK, Fleischmann-delaParra P, Hernández-Pineda J, Flores-Soto E, García-delaTorre P, Estrella-Parra EA, Gomez-Verjan JC. Exploring the Geroprotective Potential of Nutraceuticals. Nutrients 2024; 16:2835. [PMID: 39275153 PMCID: PMC11396943 DOI: 10.3390/nu16172835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damages over time, meaning that "the more damage we accumulate, the higher the possibility to develop age-related diseases". Therefore, to reduce the incidence of such diseases and improve human health, it becomes important to find ways to combat such damage. In this sense, geroprotectors have been suggested as molecules that could slow down or prevent age-related diseases. On the other hand, nutraceuticals are another set of compounds that align with the need to prevent diseases and promote health since they are biologically active molecules (occurring naturally in food) that, apart from having a nutritional role, have preventive properties, such as antioxidant, anti-inflammatory and antitumoral, just to mention a few. Therefore, in the present review using the specialized databases Scopus and PubMed we collected information from articles published from 2010 to 2023 in order to describe the role of nutraceuticals during the aging process and, given their role in targeting the hallmarks of aging, we suggest that they are potential geroprotectors that could be consumed as part of our regular diet or administered additionally as nutritional supplements.
Collapse
Affiliation(s)
| | | | - Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Jessica Hernández-Pineda
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, SSA, Mexico City 11000, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, Mexico City 04510, Mexico
| | - Paola García-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | | |
Collapse
|
4
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
5
|
Balasubramaniam M, Sapuan S, Hashim IF, Ismail NI, Yaakop AS, Kamaruzaman NA, Ahmad Mokhtar AM. The properties and mechanism of action of plant immunomodulators in regulation of immune response - A narrative review focusing on Curcuma longa L. , Panax ginseng C. A. Meyer and Moringa oleifera Lam. Heliyon 2024; 10:e28261. [PMID: 38586374 PMCID: PMC10998053 DOI: 10.1016/j.heliyon.2024.e28261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Herbal treatments have been utilized for millennia to cure a variety of ailments. There are over 20, 000 herbal remedies available to treat cancer and other disease in humans. In Ayurveda, traditional plants having revitalizing and nourishing characteristics are known as "Rasayanas." They have anti-inflammatory, anticancer, anti-microbicidal, antiviral, and immunomodulatory effects on the immune system. Immunomodulation is a mechanism through which the body stimulates, suppresses, or boosts the immune system to maintain homeostasis. Plant-derived immunomodulators are typically phytocompounds, including carbohydrates, phenolics, lipids, alkaloids, terpenoids, organosulfur, and nitrogen-containing chemicals. Immunomodulation activity of phytocompounds from traditional plants is primarily mediated through macrophage activation, phagocytosis stimulation, peritoneal macrophage stimulation, lymphoid cell stimulation, and suppression or enhancement of specific and non-specific cellular immune systems via numerous signalling pathways. Despite extensive research, the precise mechanism of immunomodulation of most traditional plants has not yet been fully elucidated, justifying the need for further experimentation. Therefore, this review describes the immunomodulatory agents from traditional plants such as Curcuma longa L., Panax ginseng C.A. Meyer, and Moringa oleifera Lam, further highlighting the common molecular targets and immunomodulatory mechanism involved in eradicating diseases.
Collapse
Affiliation(s)
- Muggunna Balasubramaniam
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Sarah Sapuan
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Ilie Fadzilah Hashim
- Department of Clinical Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Nurul Izza Ismail
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Amira Suriaty Yaakop
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | | | - Ana Masara Ahmad Mokhtar
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
- Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| |
Collapse
|
6
|
Li CJ, Zhai RR, Zhu XY, Guo ZF, Yang H. Discovery of effective combination from Renshen-Fuzi herbal pair against heart failure by spectrum-effect relationship analysis and zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116832. [PMID: 37352946 DOI: 10.1016/j.jep.2023.116832] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herbal pair Ginseng Radix et Rhizoma (roots and rhizomes of Panax ginseng C.A. Mey, Renshen in Chinese) and Aconiti Lateralis Radix Praeparata (lateral roots of Aconitum carmichaelii Debeaux, Fuzi in Chinese), composition of two traditional Chinese medicinal herbs, has been widely used in traditional Chinese medicine formula, in which Shenfu decoction has been used clinically in China for the treatment of heart failure at present. AIM OF THE STUDY Although the ginsenosides and aconite alkaloids have been proven as the essential bioactive components in Renshen-Fuzi herbal pair, the exact composition of effective components to combat heart failure are still unclear. Therefore, spectrum-effect relationship analysis was performed to reveal its effective combination for anti-heart failure effect. MATERIALS AND METHODS Firstly, the chemical constituents of Renshen-Fuzi herbal pair were identified using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). The 39 major compounds in Renshen-Fuzi with five different compatibility ratios were simultaneously quantified using ultra high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QQQ MS/MS). Subsequently, zebrafish models induced by verapamil hydrochloride were constructed and four heart failure-related indexes were selected for pharmacodynamic evaluation of Renshen-Fuzi. To analyze the spectrum-effect relationships, partial least squares regression (PLSR) models were established among the contents of 39 compounds in Renshen-Fuzi with each pharmacodynamic index. According to the contribution of each compound to the whole efficacy, 12 compounds were finally screened out as the effective combination. RESULTS A total of 157 chemical compounds of Renshen-Fuzi herbal pair were identified, in which 39 components were simultaneously determined. The pharmacological effects indicated that Renshen-Fuzi with 1:2 ratio exhibited the best effect based on zebrafish model, which could improve cardiac output and blood flow velocity and inhibit pericardial enlargement and venous blood stasis significantly. A combination of 9 ginsenosides and 3 aconite alkaloids based on a component-efficacy modeling by PLSR was screened, and exerted approximately equivalent pharmacological effects compared with Renshen-Fuzi herbal pair. CONCLUSIONS Our findings elucidated the effective combination of Renshen-Fuzi herbal pair that has been used in clinic for the treatment of heart failure, which could also promote the pharmacological research and quality control of their formula such as Shenfu decoction.
Collapse
Affiliation(s)
- Chu-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rong-Rong Zhai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zi-Fan Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Cai L, Liu B, Cao Y, Sun T, Li Y. Unveiling the molecular structure and role of RBBP4/7: implications for epigenetic regulation and cancer research. Front Mol Biosci 2023; 10:1276612. [PMID: 38028543 PMCID: PMC10679446 DOI: 10.3389/fmolb.2023.1276612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Retinoblastoma-binding protein (RBBP) family is a class of proteins that can interact with tumor suppressor retinoblastoma protein (pRb). RBBP4 and RBBP7 are the only pair of homologous proteins in this family, serving as scaffold proteins whose main function is to offer a platform to indirectly connect two proteins. This characteristic allows them to extensively participate in the binding of various proteins and epigenetic complexes, indirectly influencing the function of effector proteins. As a result, they are often highlighted in organism activities involving active epigenetic modifications, such as embryonic development and cancer activation. In this review, we summarize the structural characteristics of RBBP4/7, the complexes they are involved in, their roles in embryonic development and cancer, as well as potential future research directions, which we hope to inspire the field of epigenetic research in the future.
Collapse
Affiliation(s)
- Lize Cai
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Bin Liu
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, China
| | - Yufei Cao
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Ting Sun
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Yanyan Li
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| |
Collapse
|
8
|
Beyaz S, Aslan A, Gok O, Ozercan IH, Agca CA. Fullerene C 60 protects against 7,12-dimethylbenz [a] anthracene (DMBA) induced-pancreatic damage via NF-κB and Nrf-2/HO-1 axis in rats. Toxicol Res (Camb) 2023; 12:954-963. [PMID: 37915491 PMCID: PMC10615826 DOI: 10.1093/toxres/tfad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
The objective of this investigation was to investigate the protective effects of fullerene C60 nanoparticle against pancreatic damage experimentally induced by 7,12-dimethylbenz [a] anthracene (DMBA) in female rats. Fullerene C60 nanoparticle was administered to rats 5 times a week by oral gavage (o.g) at 1.7 mg/kg bw 7 days after DMBA administration. 60 Wistar albino female rats divided to four groups; Groups: (1) Control group: Fed with standard diet; (2) Fullerene C60 group: Fullerene C60 (1.7 mg/kg bw); (3) DMBA group: DMBA (45 mg/kg bw); (4) Fullerene C60 + DMBA group: Fullerene C60 (1.7 mg/kg bw) and DMBA (45 mg/kg bw). Lipid peroxidation malondialdehyde (MDA), catalase activity (CAT) and glutathione (GSH) levels in pancreatic tissue were determined by spectrophotometer. Protein expression levels of p53, HO-1, p38-α (MAPK), Nrf-2, NF-κB and COX-2 in pancreatic tissue were determined by western blotting technique. In our findings, compared to the group given DMBA, MDA levels and p38-α, NF-κB and COX-2 levels decreased, CAT activity, GSH level, total protein density and p53, HO-1, Nrf-2 levels in the groups given fullerene C60 nanoparticle an increase in expression levels was observed. Our results showed that fullerene C60 nanoparticle may be more beneficial in preventing pancreatic damage.
Collapse
Affiliation(s)
- Seda Beyaz
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | - Abdullah Aslan
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Can Ali Agca
- Department of Molecular Biology and Genetics Bingol, Faculty of Science, Bingol University, Bingol, Turkey
| |
Collapse
|
9
|
Chen J, Huang L, Liao X. Protective effects of ginseng and ginsenosides in the development of osteoarthritis (Review). Exp Ther Med 2023; 26:465. [PMID: 37664679 PMCID: PMC10468808 DOI: 10.3892/etm.2023.12164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory joint disease. Traditional chinese medicine provides a resource for drug screening for OA treatment. Ginseng and the associated bioactive compound, ginsenosides, may reduce inflammation, which is considered a risk factor for the development of OA. Specifically, ginsenosides may exhibit anti-inflammatory and anti-oxidative stress activities, and inhibit extracellular matrix degradation by suppressing the NF-κB and MAPK signaling pathways. Notably, specific ginsenosides, such as compound K and Rk1, may physically interact with IκB kinase and inhibit the associated phosphorylation. Thus, ginsenosides exhibit potential as therapeutic candidates in the management of OA. However, the low water solubility limits the clinical applications of ginsenosides. Numerous effective strategies have been explored to improve bioavailability; however, further investigations are still required.
Collapse
Affiliation(s)
- Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lin Huang
- Department of Internal Medicine, Ganzhou Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
10
|
Wang Y, Han Q, Zhang S, Xing X, Sun X. New perspective on the immunomodulatory activity of ginsenosides: Focus on effective therapies for post-COVID-19. Biomed Pharmacother 2023; 165:115154. [PMID: 37454595 DOI: 10.1016/j.biopha.2023.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
More than 700 million confirmed cases of Coronavirus Disease-2019 (COVID-19) have been reported globally, and 10-60% of patients are expected to exhibit "post-COVID-19 symptoms," which will continue to affect human life and health. In the absence of safer, more specific drugs, current multiple immunotherapies have failed to achieve satisfactory efficacy. Ginseng, a traditional Chinese medicine, is often used as an immunomodulator and has been used in COVID-19 treatment as a tonic to increase blood oxygen saturation. Ginsenosides are the main active components of ginseng. In this review, we summarize the multiple ways in which ginsenosides affect post-COVID-19 symptoms, including inhibition of lipopolysaccharide, tumor necrosis factor signaling, modulation of chemokine receptors and inflammasome activation, induction of macrophage polarization, effects on Toll-like receptors, nuclear factor kappa-B, the mitogen-activated protein kinase pathway, lymphocytes, intestinal flora, and epigenetic regulation. Ginsenosides affect virus-mediated tissue damage, local or systemic inflammation, immune modulation, and other links, thus alleviating respiratory and pulmonary symptoms, reducing the cardiac burden, protecting the nervous system, and providing new ideas for the rehabilitation of patients with post-COVID-19 symptoms. Furthermore, we analyzed its role in strengthening body resistance to eliminate pathogenic factors from the perspective of ginseng-epidemic disease and highlighted the challenges in clinical applications. However, the benefit of ginsenosides in modulating organismal imbalance post-COVID-19 needs to be further evaluated to better validate the pharmacological mechanisms associated with their traditional efficacy and to determine their role in individualized therapy.
Collapse
Affiliation(s)
- Yixin Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Qin Han
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Shuxia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| |
Collapse
|
11
|
Su H, Tan Y, Zhou Z, Wang C, Chen W, Wang J, Sun H. Effect and mechanism of total ginsenosides repairing SDS‑induced Drosophila enteritis model based on MAPK pathway. Exp Ther Med 2023; 26:369. [PMID: 37415840 PMCID: PMC10320654 DOI: 10.3892/etm.2023.12068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/22/2023] [Indexed: 07/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal disease that seriously endangers human and animal health. Although the etiology of IBD is complex and the pathogenesis is not well understood, studies have found that genetic predisposition, diet and intestinal flora disorders are the main risk factors for IBD. The potential biological mechanism of total ginsenosides (TGGR) in the treatment of IBD remains to be elucidated. Surgery is still the main strategy for the treatment of IBD, due to the relatively high side effects of related drugs and the easy development of drug resistance. The purpose of the present study was to evaluate the efficacy of TGGR and explore the effect of TGGR on the intestinal inflammation induced by sodium dodecyl sulfate (SDS) in Drosophila and to initially explain the improvement effect and mechanism of TGGR on Drosophila enteritis by analyzing the levels of Drosophila-related proteins. During the experiment, the survival rate, climb index and abdominal characteristics of the Drosophila was recorded. Intestinal samples of Drosophila were collected for analysis of intestinal melanoma. The oxidative stress related indexes of catalase, superoxide dismutase and malondialdehyde were determined by spectrophotometry. Western blotting detected the expression of signal pathway-related factors. The effects of TGGR on growth indices, tissue indices, biochemical indices, signal pathway transduction and related mechanisms of SDS-induced Drosophila enteritis model were studied. The results showed that TGGR could repair SDS-induced enteritis of Drosophila through MAPK signaling pathway, improve survival rate and climbing ability and repair intestinal damage and oxidative stress damage. The results suggested that TGGR has potential application value in the treatment of IBD and its mechanism is related to the downregulation of phosphorylated (p)-JNK/p-ERK levels, which provides a basis for drug research in the treatment of IBD.
Collapse
Affiliation(s)
- Hang Su
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin 132013, P.R. China
| | - Yujing Tan
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin 132013, P.R. China
| | - Zhijiang Zhou
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin 132013, P.R. China
| | - Chunjuan Wang
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin 132013, P.R. China
| | - Wei Chen
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin 132013, P.R. China
| | - Jinlong Wang
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin 132013, P.R. China
| | - Haiming Sun
- School of Pharmacy, Beihua University, Jilin 132000, P.R. China
| |
Collapse
|
12
|
Radu AF, Negru PA, Radu A, Tarce AG, Bungau SG, Bogdan MA, Tit DM, Uivaraseanu B. Simulation-Based Research on Phytoconstituents of Embelia ribes Targeting Proteins with Pathophysiological Implications in Rheumatoid Arthritis. Life (Basel) 2023; 13:1467. [PMID: 37511842 PMCID: PMC10381729 DOI: 10.3390/life13071467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a heterogeneous inflammatory disease with an autoimmune origin and an incompletely elucidated pathophysiological mechanism. RA pharmacotherapy is based on chemically or biologically active substances that provide clinical alleviation and remission, but the disease is still incurable. As a result, there remains a need for significant therapeutic development, and adjuvant therapies may play an essential role in the search for novel RA treatment strategies. The aim of the present study was to investigate potential phytocompounds and phytocompound derivates as RA treatment agents, using in silico methodologies. In this regard, five phytoconstituents identified in different structures of Embelia ribes were evaluated by in silico methods for their potential action on target proteins of therapeutic interest in RA. The methodology involved identifying the phytocompound with the highest binding toward the target protein via molecular docking using AutoDock Vina 1.5.7, followed by a ligand-based virtual screening based on the structure of the most promising phytocompound using SwissSimilarity. This process led to the identification of ligands that are not currently utilized in medical practice, but that might have the potential to be used in the management of RA after further extensive experimental endorsements. ZINC000004024651 showed the highest binding affinity for the Bruton's tyrosine kinase protein, followed by ZINC000000434197 for p38 mitogen-activated protein kinases, ZINC000087606977 for interleukin-1 receptor-associated kinase 4, and ZINC000014728393 for matrix metallopeptidase 9, the latter two showing higher affinity than the co-crystallized compound. The relatively high affinities to target proteins and the pharmacokinetic data obtained by in silico studies using SwisADME suggest a first step for the inclusion of promising new compounds in various more advanced studies, leading to the evaluation of efficacy and safety profiles.
Collapse
Affiliation(s)
- Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Paul Andrei Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Ada Radu
- Ducfarm Pharmacy, 410514 Oradea, Romania;
| | - Alexandra Georgiana Tarce
- Medicine Program of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Mihaela Alexandra Bogdan
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Bogdan Uivaraseanu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Surgery Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
13
|
Kanojia N, Thapa K, Kaur G, Sharma A, Puri V, Verma N. Update on Therapeutic potential of emerging nanoformulations of phytocompounds in Alzheimer's and Parkinson's disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Duan X, Li J, Cui J, Wen H, Xin X, Aisa HA. A network pharmacology strategy combined with in vitro experiments to investigate the potential anti-inflammatory mechanism of Prunus cerasifera Ehrhart. J Food Biochem 2022; 46:e14396. [PMID: 36169283 DOI: 10.1111/jfbc.14396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023]
Abstract
This study aimed to investigate the anti-inflammatory activity of Prunus cerasifera Ehrhart (EHP). LC-MS/MS, network pharmacology, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis methods were used to investigate the chemical composition and the anti-inflammatory mechanism of EHP. The LC-MS/MS results showed that flavonoids and phenolic acids were the major compounds in EHP. The network pharmacology analysis results indicated that EHP was related to TNF, inflammatory cytokine, and MAPK signaling pathway. ELISA and Western blot results showed that EHP impeded the increase in inflammatory factors, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), nuclear transcription factors κB (p65), MAPK pathway, pyrolytic relevant proteins nod-like receptor family pyrin domain-containing 3 (NLRP3), and interleukin-1β (IL-1β) induced by lipopolysaccharide (LPS) and activated the nuclear factor erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) pathway. Therefore, this research highlighted the potential application of P. cerasifera in the development of anti-inflammatory foods that prevented inflammatory diseases. PRACTICAL APPLICATIONS: In recent years, many synthetic drugs with anti-inflammatory effect have the disadvantages of high price and side effects. Thus, the development of anti-inflammatory drugs from natural resources has its application value. In this study, LPS-stimulated RAW264.7 cells were used to establish inflammatory model to verify the anti-inflammatory effect of Prunus cerasifera (EHP). The results showed that P. cerasifera possessed anti-inflammatory activity through inhibiting pro-inflammatory cytokines secretion, NF-κB, MAPK pathway, and NLRP3 inflammasome activation. Therefore, P. cerasifera has the potential to develop into functional food to prevent the progress of various inflammatory-related diseases.
Collapse
Affiliation(s)
- Xiaomei Duan
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingxue Cui
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huizheng Wen
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haji Akber Aisa
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Bai D, Cheng X, Li Q, Zhang B, Zhang Y, Lu F, Sun T, Hao J. Eupatilin inhibits keratinocyte proliferation and ameliorates imiquimod-induced psoriasis-like skin lesions in mice via the p38 MAPK/NF-κB signaling pathway. Immunopharmacol Immunotoxicol 2022; 45:133-139. [PMID: 36305632 DOI: 10.1080/08923973.2022.2121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease that is currently incurable and causes long-term distress to patients. Therefore, there is an urgent need to develop safe and effective psoriatic drugs. Eupatilin is a natural flavone, that has a variety of pharmacological effects. However, the anti-psoriatic effect of eupatilin and its underlying mechanism remain unclear. METHODS HaCaT cells were treated with 20 μg/mL LPS for 24 h to establish the proliferation model of HaCaT cells. Cell viability was measured by MTT assay. Western blotting was used to detect the expression of p-p38 MAPK, p38 MAPK, p-NF-κB p65 and NF-κB p65 in HaCaT cells. Imiquimod (IMQ) was used to induce psoriasis-like mouse model. Psoriasis Area Severity Index (PASI) score was used to evaluate the degree of skin injury, H&E staining was used to observe the pathological damage of skin tissues, and the expression levels of TNF-α, IL-6, IL-23 and IL-17 in the serum were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Eupatilin could inhibit the hyperproliferation of LPS-stimulated HaCaT cells through p38 MAPK/NF-κB signaling pathway in vitro. In psoriatic mice, eupatilin could significantly reduce skin erythema, scales and thickening scores, ameliorate skin histopathological lesions, and decrease the levels of TNF-α, IL-6, IL-23 and IL-17 in the serum. CONCLUSION Eupatilin had a good anti-proliferative effect in LPS-stimulated HaCaT cells, and significantly alleviated IMQ-induced psoriasis-like lesions in mice. Eupatilin was a promising drug for the treatment of psoriasis.
Collapse
Affiliation(s)
- Donghui Bai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | | | - Qiong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Bo Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Yan Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Fang Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Tianxiao Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, PR China
| |
Collapse
|