1
|
Chukwu EE, Okwuraiwe A, Kunle-Ope CN, Igbasi UT, Onyejepu N, Osuolale K, Shaibu JO, Ojogbede A, Abuh D, Afocha E, Awoderu O, Obiozor K, Mustapha A, Audu R. Surveillance of public health pathogens in Lagos wastewater canals: a cross-sectional study. BMC Public Health 2024; 24:3590. [PMID: 39725906 DOI: 10.1186/s12889-024-21157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) is already being adopted for the surveillance of health conditions of communities and shows great potential for the monitoring of infectious pathogens of public health importance. There is however paucity of robust data to support extensive WBE in Nigeria. This study evaluated the prevalence of clinically relevant infectious pathogens and provided antimicrobial resistance profiles of bacteria pathogens in wastewater canals in Lagos State at a single point in time. METHODS This is a cross-sectional survey of wastewater canals in 20 Local Government Areas (LGAs) in Lagos State for detection of bacteria pathogens of public health importance including non-tuberculous mycobacteria and SARS-Cov-2 virus using cultural analysis and conventional Polymerase Chain Reaction (PCR) techniques. Descriptive epidemiological survey of communities around the canals was done using questionnaires to assess exposure pathways. Statistical analysis was done using SPSS version 27 while P value of < 0.05 was considered as significant. RESULTS Three thousand and fifty-four (3054) questionnaires were administered to 1215 (39.8%) females and 1658 (54.3%) males in communities situated around 40 canals in 20 LGAs. Although majority (81.8%) reported using water closet toilet system and pit latrine (12.5%), a few of them admitted to open defaecation [101 (3.3%)] while 299 (9.8%) engaged in open field waste disposal. SARS-CoV-2 was not detected from wastewater in this study. Two mycobacterial species that included Mycobacterium fortitium group (13, 32.5%) and Mycobacterium kansasii (11, 27.5%) were identified in 15 out of 20 LGAs sampled. A total of 123 bacteria pathogens were isolated across the 40 canals. Prominent enteropathogens isolated included Escheriachia coli (28.5%), Salmonella spp (16.3%), Vibro cholerae (10.6%) and Shigella spp (5.7%). Extended spectrum beta-lactamase genes were prominent (87.5%) in the wastewater samples with almost a half (42.5%) of the canals containing both SHV and CTX-M. CONCLUSION This study highlights the presence of pathogens with potential to cause epidemic in wastewater canals in Lagos State and provides evidence to inform policy and strategies for wastewater monitoring and treatment. Further studies involving longitudinal monitoring of time-based variations is needed to identify trends in pathogen loads and AMR patterns over time.
Collapse
Affiliation(s)
- Emelda E Chukwu
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria.
- Department of Medical Laboratory Sciences, Faculty of Sciences, Trinity University, Sabo, Yaba, Lagos State, Nigeria.
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria.
| | - Azuka Okwuraiwe
- Center for Human Virology and Genomics, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Chioma N Kunle-Ope
- Center for Tuberculosis Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Uche T Igbasi
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Nneka Onyejepu
- Center for Tuberculosis Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Kazeem Osuolale
- Monitoring and Evaluation Unit, Nigerian Institute of Medical Research, Yaba, , Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Joseph O Shaibu
- Center for Human Virology and Genomics, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Adewale Ojogbede
- Public Health and Epidemiology Department, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Dennis Abuh
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Ebelechukwu Afocha
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Oluwatoyin Awoderu
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Kelechi Obiozor
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Adetoun Mustapha
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Rosemary Audu
- Center for Human Virology and Genomics, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| |
Collapse
|
2
|
Ofori B, Agoha RK, Bokoe EK, Armah ENA, Misita Morang'a C, Sarpong KAN. Leveraging wastewater-based epidemiology to monitor the spread of neglected tropical diseases in African communities. Infect Dis (Lond) 2024; 56:697-711. [PMID: 38922811 DOI: 10.1080/23744235.2024.2369177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Neglected tropical diseases continue to cause a significant burden worldwide, with Africa accounting for more than one-third of the global burden. Over the past decade, progress has been made in eliminating, controlling, and eradicating these diseases in Africa. By December 2022, 47 out of 54 African countries had eliminated at least one neglected tropical disease, and more countries were close to achieving this milestone. Between 2020 and 2021, there was an 80 million reduction in people requiring intervention. However, continued efforts are needed to manage neglected tropical diseases and address their social and economic burden, as they deepen marginalisation and stigmatisation. Wastewater-based epidemiology involves analyzing wastewater to detect and quantify biomarkers of disease-causing pathogens. This approach can complement current disease surveillance systems in Africa and provide an additional layer of information for monitoring disease spread and detecting outbreaks. This is particularly important in Africa due to limited traditional surveillance methods. Wastewater-based epidemiology also provides a tsunami-like warning system for neglected tropical disease outbreaks and can facilitate timely intervention and optimised resource allocation, providing an unbiased reflection of the community's health compared to traditional surveillance systems. In this review, we highlight the potential of wastewater-based epidemiology as an innovative approach for monitoring neglected tropical disease transmission within African communities and improving existing surveillance systems. Our analysis shows that wastewater-based epidemiology can enhance surveillance of neglected tropical diseases in Africa, improving early detection and management of Buruli ulcers, hookworm infections, ascariasis, schistosomiasis, dengue, chikungunya, echinococcosis, rabies, and cysticercosis for better disease control.
Collapse
Affiliation(s)
- Benedict Ofori
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Righteous Kwaku Agoha
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Edem Kwame Bokoe
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | | | - Collins Misita Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Kwabena Amofa Nketia Sarpong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Mirabile A, Sangiorgio G, Bonacci PG, Bivona D, Nicitra E, Bonomo C, Bongiorno D, Stefani S, Musso N. Advancing Pathogen Identification: The Role of Digital PCR in Enhancing Diagnostic Power in Different Settings. Diagnostics (Basel) 2024; 14:1598. [PMID: 39125474 PMCID: PMC11311727 DOI: 10.3390/diagnostics14151598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Digital polymerase chain reaction (dPCR) has emerged as a groundbreaking technology in molecular biology and diagnostics, offering exceptional precision and sensitivity in nucleic acid detection and quantification. This review highlights the core principles and transformative potential of dPCR, particularly in infectious disease diagnostics and environmental surveillance. Emphasizing its evolution from traditional PCR, dPCR provides accurate absolute quantification of target nucleic acids through advanced partitioning techniques. The review addresses the significant impact of dPCR in sepsis diagnosis and management, showcasing its superior sensitivity and specificity in early pathogen detection and identification of drug-resistant genes. Despite its advantages, challenges such as optimization of experimental conditions, standardization of data analysis workflows, and high costs are discussed. Furthermore, we compare various commercially available dPCR platforms, detailing their features and applications in clinical and research settings. Additionally, the review explores dPCR's role in water microbiology, particularly in wastewater surveillance and monitoring of waterborne pathogens, underscoring its importance in public health protection. In conclusion, future prospects of dPCR, including methodological optimization, integration with innovative technologies, and expansion into new sectors like metagenomics, are explored.
Collapse
Affiliation(s)
- Alessia Mirabile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Paolo Giuseppe Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Dalida Bivona
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| |
Collapse
|
4
|
Rashid SA, Rajendiran S, Nazakat R, Mohammad Sham N, Khairul Hasni NA, Anasir MI, Kamel KA, Muhamad Robat R. A scoping review of global SARS-CoV-2 wastewater-based epidemiology in light of COVID-19 pandemic. Heliyon 2024; 10:e30600. [PMID: 38765075 PMCID: PMC11098849 DOI: 10.1016/j.heliyon.2024.e30600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Recently, wastewater-based epidemiology (WBE) research has experienced a strong impetus during the Coronavirus disease 2019 (COVID-19) pandemic. However, a few technical issues related to surveillance strategies, such as standardized procedures ranging from sampling to testing protocols, need to be resolved in preparation for future infectious disease outbreaks. This review highlights the study characteristics, potential use of WBE and overview of methods, as well as methods utilized to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) including its variant in wastewater. A literature search was performed electronically in PubMed and Scopus according to PRISMA guidelines for relevant peer-reviewed articles published between January 2020 and March 2022. The search identified 588 articles, out of which 221 fulfilled the necessary criteria and are discussed in this review. Most global WBE studies were conducted in North America (n = 75, 34 %), followed by Europe (n = 68, 30.8 %), and Asia (n = 43, 19.5 %). The review also showed that most of the application of WBE observed were to correlate SARS-CoV-2 ribonucleic acid (RNA) trends in sewage with epidemiological data (n = 90, 40.7 %). The techniques that were often used globally for sample collection, concentration, preferred matrix recovery control and various sample types were also discussed. Overall, this review provided a framework for researchers specializing in WBE to apply strategic approaches to their research questions in achieving better functional insights. In addition, areas that needed more in-depth analysis, data collection, and ideas for new initiatives were identified.
Collapse
Affiliation(s)
- Siti Aishah Rashid
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Sakshaleni Rajendiran
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Raheel Nazakat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Noraishah Mohammad Sham
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Nurul Amalina Khairul Hasni
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Mohd Ishtiaq Anasir
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Khayri Azizi Kamel
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Rosnawati Muhamad Robat
- Occupational & Environmental Health Unit, Public Health Division, Selangor State Health Department, Ministry of Health Malaysia, Malaysia
| |
Collapse
|
5
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. Exploring the role of wastewater-based epidemiology in understanding tuberculosis burdens in Africa. ENVIRONMENTAL RESEARCH 2023; 231:115911. [PMID: 37105295 PMCID: PMC10318412 DOI: 10.1016/j.envres.2023.115911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
Tuberculosis (TB) remains a persistent challenge to public health and presents a substantial menace, especially in developing nations of sub-Saharan Africa. It exerts a considerable strain on healthcare systems in these regions. Effective control requires reliable surveillance, which can be improved by incorporating environmental data alongside clinical data. Molecular advances have led to the development of alternative surveillance methods, such as wastewater-based epidemiology. This studyinvestigated the presence, concentration, and diversity of Mycobacterium tuberculosis complex, the cause of TB, in from six African countries: Ghana, Nigeria, Kenya, Uganda, Cameroon, and South Africa. Samples were collected from wastewater treatment plants. All samples were found to contain Mycobacterium species that have been linked to TB in both humans and animals, including Mycobacterium tuberculosis complex, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium africanum, and Mycobacterium caprae, at varying concentrations. The highest median concentration was found in Ghana, reaching up to 4.7 Log copies/ml for MTBC, 4.6 Log copies/ml for M. bovis, and 3.4 Log copies/ml for M. africanum. The presence of M. africanum outside of West Africa was found in South Africa, Kenya, and Uganda and could indicate the spread of the pathogen. The study underscores the usefulness of wastewater-based epidemiology for tracking TB and shows that even treated wastewater may contain these pathogens, posing potential public health risks.
Collapse
Affiliation(s)
- Hlengiwe N Mtetwa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa; Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Isaac D Amoah
- Department of Environmental Science, University of Arizona, Tuscon, USA
| | - Sheena Kumari
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poovendhree Reddy
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa; Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
7
|
Gentry Z, Zhao L, Faust RA, David RE, Norton J, Xagoraraki I. Wastewater surveillance beyond COVID-19: a ranking system for communicable disease testing in the tri-county Detroit area, Michigan, USA. Front Public Health 2023; 11:1178515. [PMID: 37333521 PMCID: PMC10272568 DOI: 10.3389/fpubh.2023.1178515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Throughout the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has been utilized to monitor the disease in the United States through routine national, statewide, and regional monitoring projects. A significant canon of evidence was produced showing that wastewater surveillance is a credible and effective tool for disease monitoring. Hence, the application of wastewater surveillance can extend beyond monitoring SARS-CoV-2 to encompass a diverse range of emerging diseases. This article proposed a ranking system for prioritizing reportable communicable diseases (CDs) in the Tri-County Detroit Area (TCDA), Michigan, for future wastewater surveillance applications at the Great Lakes Water Authority's Water Reclamation Plant (GLWA's WRP). Methods The comprehensive CD wastewater surveillance ranking system (CDWSRank) was developed based on 6 binary and 6 quantitative parameters. The final ranking scores of CDs were computed by summing the multiplication products of weighting factors for each parameter, and then were sorted based on decreasing priority. Disease incidence data from 2014 to 2021 were collected for the TCDA. Disease incidence trends in the TCDA were endowed with higher weights, prioritizing the TCDA over the state of Michigan. Results Disparities in incidences of CDs were identified between the TCDA and state of Michigan, indicating epidemiological differences. Among 96 ranked CDs, some top ranked CDs did not present relatively high incidences but were prioritized, suggesting that such CDs require significant attention by wastewater surveillance practitioners, despite their relatively low incidences in the geographic area of interest. Appropriate wastewater sample concentration methods are summarized for the application of wastewater surveillance as per viral, bacterial, parasitic, and fungal pathogens. Discussion The CDWSRank system is one of the first of its kind to provide an empirical approach to prioritize CDs for wastewater surveillance, specifically in geographies served by centralized wastewater collection in the area of interest. The CDWSRank system provides a methodological tool and critical information that can help public health officials and policymakers allocate resources. It can be used to prioritize disease surveillance efforts and ensure that public health interventions are targeted at the most potentially urgent threats. The CDWSRank system can be easily adopted to geographical locations beyond the TCDA.
Collapse
Affiliation(s)
- Zachary Gentry
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Randy E. David
- Wayne State University School of Medicine, Detroit, MI, United States
| | - John Norton
- Great Lakes Water Authority, Detroit, MI, United States
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Ramanujam H, Palaniyandi K. Bovine tuberculosis in India: The need for One Health approach and the way forward. One Health 2023; 16:100495. [PMID: 36817978 PMCID: PMC9932178 DOI: 10.1016/j.onehlt.2023.100495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Bovine tuberculosis (bTB) is a chronic granulomatous infectious illness in cattle. The etiological agent of bTB is Mycobacterium bovis. However, other members belonging to the Mycobacterium tuberculosis complex, like M. tuberculosis, M. africanum, M. caprae, M. orygis, and M. microti are known to cause bTB in cattle. There are 303.76 million bovines in India, and it is the largest producer of milk and the second largest producer of meat worldwide. The prevalence of bTB among farm and dairy cattle in India is estimated to be around 7.3%, which makes it a country with one of the largest infected herds in the world. While bTB control programs have had considerable success in reducing the prevalence of the disease in many developed countries, they have yet to be formulated or implemented in India. Bovine TB also has a zoonotic and reverse component, which means that the disease can spread from cattle to human and from human to cattle. In a country like India, which contributes to nearly one-fourth of the global TB burden, the zoonotic aspect must be addressed so that the disease can be curbed. While cattle are the primary reservoir host to bTB, animals like goats, deer, bison, pigs, dogs, badgers, possums, and primates are also susceptible to the disease. This review talks about the burden of bTB in India and the necessity of One Health approach to combat the disease.
Collapse
Affiliation(s)
- Harini Ramanujam
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| |
Collapse
|
9
|
Whitmore L, McCauley M, Farrell JA, Stammnitz MR, Koda SA, Mashkour N, Summers V, Osborne T, Whilde J, Duffy DJ. Inadvertent human genomic bycatch and intentional capture raise beneficial applications and ethical concerns with environmental DNA. Nat Ecol Evol 2023; 7:873-888. [PMID: 37188965 PMCID: PMC10250199 DOI: 10.1038/s41559-023-02056-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
The field of environmental DNA (eDNA) is advancing rapidly, yet human eDNA applications remain underutilized and underconsidered. Broader adoption of eDNA analysis will produce many well-recognized benefits for pathogen surveillance, biodiversity monitoring, endangered and invasive species detection, and population genetics. Here we show that deep-sequencing-based eDNA approaches capture genomic information from humans (Homo sapiens) just as readily as that from the intended target species. We term this phenomenon human genetic bycatch (HGB). Additionally, high-quality human eDNA could be intentionally recovered from environmental substrates (water, sand and air), holding promise for beneficial medical, forensic and environmental applications. However, this also raises ethical dilemmas, from consent, privacy and surveillance to data ownership, requiring further consideration and potentially novel regulation. We present evidence that human eDNA is readily detectable from 'wildlife' environmental samples as human genetic bycatch, demonstrate that identifiable human DNA can be intentionally recovered from human-focused environmental sampling and discuss the translational and ethical implications of such findings.
Collapse
Affiliation(s)
- Liam Whitmore
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Mark McCauley
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Jessica A Farrell
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Maximilian R Stammnitz
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Samantha A Koda
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Narges Mashkour
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Victoria Summers
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Todd Osborne
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Jenny Whilde
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - David J Duffy
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA.
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Dergal NB, Ghermi M, Imre K, Morar A, Acaroz U, Arslan-Acaroz D, Herman V, Ayad A. Estimated Prevalence of Tuberculosis in Ruminants from Slaughterhouses in Constantine Province (Northeastern Algeria): A 10-Year Retrospective Survey (2011–2020). Life (Basel) 2023; 13:life13030817. [PMID: 36983972 PMCID: PMC10057201 DOI: 10.3390/life13030817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Tuberculosis (TB) is considered one of the most widespread and devastating zoonotic diseases in low-income countries, with a cosmopolitan distribution. The aim of this 10-year retrospective survey (from 2011 to 2020) was to determine the frequency of bovine, ovine, and goat tuberculosis in different local slaughterhouses across Constantine Province, Algeria. The control of livestock carcasses was systematically performed by veterinarian inspectors, after each stage of the slaughter process. The routine abattoir inspection included the detection of visible abnormalities on different organs and lymph nodes. The overall prevalence of tuberculosis recorded in slaughtered animals was 0.83%, with the following distribution among species: 2.73% in cattle, 0.001% in sheep, and 0.0% in goats. During the study period, there was a strong correlation (R = 0.82) (p < 0.01) between tuberculosis occurrence and the number of slaughtered cattle. Fluctuations in monthly TB prevalence ranged from 2% to 24.8% between 2018 and 2020, although there were no statistically significant correlations between infection and the age or gender of the animals, except for the year 2020 when a significantly higher (p = 0.017) percentage of TB cases were recorded in female cattle compared to male cattle. The average monthly weight of the confiscated livers and lungs ranged significantly (p ≤ 0.05) from 150 kg to 350 kg. The study results provide baseline data regarding livestock tuberculosis monitoring in the area of Constantine, Algeria, indicating that the disease incidence is not highly alarming, yet remains a serious public and animal health issue in the screened region.
Collapse
Affiliation(s)
- Nadir Boudjlal Dergal
- Laboratory of Biotechnology for Food Security and Energetic, Department of Biotechnology, Faculty of Natural and Life Sciences, University of Oran 1, Ahmed Ben Bella, Oran 31000, Algeria
- Correspondence: (N.B.D.); or (K.I.); Tel.: +213-557-142-516 (N.B.D.); +40-256277186 (K.I.)
| | - Mohamed Ghermi
- Laboratory of Microorganisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural and Life Sciences, University of Oran 1, Ahmed Ben Bella, Oran 31000, Algeria
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
- Correspondence: (N.B.D.); or (K.I.); Tel.: +213-557-142-516 (N.B.D.); +40-256277186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Ulaș Acaroz
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Damla Arslan-Acaroz
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timişoara, Romania
| | - Abdelhanine Ayad
- Department of Biological and Environmental Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| |
Collapse
|
11
|
Eaton CJ, Coxon S, Pattis I, Chappell A, Hewitt J, Gilpin BJ. A Framework for Public Health Authorities to Evaluate Health Determinants for Wastewater-Based Epidemiology. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:125001. [PMID: 36520537 PMCID: PMC9754092 DOI: 10.1289/ehp11115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) is rapidly developing as a powerful public health tool. It can provide information about a wide range of health determinants (HDs), including community exposure to environmental hazards, trends in consumption of licit and illicit substances, spread of infectious diseases, and general community health. As such, the list of possible candidate HDs for WBE is almost limitless. Consequently, a means to evaluate and prioritize suitable candidates for WBE is useful, particularly for public health authorities, who often face resource constraints. OBJECTIVES We have developed a framework to assist public health authorities to decide what HDs may be appropriate for WBE and what biomarkers could be used. This commentary reflects the experience of the authors, who work at the interface of research and public health implementation. DISCUSSION To be suitable for WBE, a candidate HD should address a public health or scientific issue that would benefit from better understanding at the population level. For HDs where information on individual exposures or stratification by population subgroups is required, WBE is less suitable. Where other methodologies are already used to monitor the candidate HD, consideration must be given to whether WBE could provide better or complementary information to the current approach. An essential requirement of WBE is a biomarker specific for the candidate HD. A biomarker in this context refers to any human-excreted chemical or biological that could act as an indicator of consumption or exposure to an environmental hazard or of the human health state. Suitable biomarkers should meet several criteria outlined in this commentary, which requires background knowledge for both the biomarker and the HD. An evaluation tree summarizing key considerations for public health authorities when assessing the suitability of candidate HDs for WBE and an example evaluation are presented. https://doi.org/10.1289/EHP11115.
Collapse
Affiliation(s)
- Carla J. Eaton
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Sarah Coxon
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Isabelle Pattis
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Andrew Chappell
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd., Porirua, New Zealand
| | - Brent J. Gilpin
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| |
Collapse
|