1
|
Silva RMGD, Barbosa FC, Santos HH, Granero FO, Figueiredo CCM, Nicolau-Junior N, Hamaguchi A, Silva LP. Antioxidant and anti-glycation activities of Mandevilla velutina extract and effect on parasitemia levels in Trypanosoma cruzi experimental infection: In vivo, in vitro and in silico approaches. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118994. [PMID: 39461387 DOI: 10.1016/j.jep.2024.118994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mandevilla velutina (Mart. Ex Stadelm.) Woodson, known in Brazil as "infalível" and "jalapa", is a medicinal plant native from the Cerrado region (Brazilian Savannah). The underground organ (xylopodium) of this species is prepared as ethanolic extract or infusion and it is commonly used in traditional medicine to treat snake venom. Although, locals and indigenous populations from Cerrado have used M. velutina for the treatment of infection by Trypanosoma cruzi (Chagas' disease). AIM OF THE STUDY This study aimed to evaluate the in vitro antioxidant and anti-glycation activities of the crude hydroethanolic extract of M. velutina xylopodium. Besides, it aimed to evaluate its effect on parasitemia levels in vivo T. cruzi experimental infection. In addition, this study aimed to determine possible interactions between the main compound of the extract and molecular targets associated with survival and virulence of T. cruzi in silico approaches. MATERIALS AND METHODS Determination of total polyphenols, flavonoids and steroidal aglycones content were performed. In addition, high performance liquid chromatography (HPLC) was carried out to identify main compounds of the extract. Antioxidant activity was determined by DPPH radical scavenging, ferric ion reducing power (FRAP), Thiobarbituric acid reactive species (TBARS) and Oxygen Radical Absorbance Capacity (ORAC) methods. Anti-glycation activity was demonstrated through relative mobility in electrophoresis (RME), determination of free amino groups and inhibition of AGEs formation. Determination of the action of extract in parasitemia levels was performed by T. cruzi experimental infection of mice and nitrite levels were measured in the serum of animals evaluated in this study. Molecular docking analyses of the main compound (Velutinol A) with DNA and molecular targets associated with survival and virulence of T. cruzi. RESULTS Phytoconstituents evaluation exhibited the presence polyphenols, flavonoids and steroidal aglycone, and HPLC identified the major presence of Velutinol A. Antioxidant and anti-glycation evaluations showed that the extract present significant activity in all methods evaluated. In addition, extract reduced the number of trypomastigotes and increased the survival of treated animals. The treatment using extract showed an interference in the synthesis of physiological nitric oxide as an immune response to infection. In silico assays demonstrated interaction between Velutinol A and DNA and molecular targets of T. cruzi. CONCLUSIONS The results showed that the hydroethanolic extract of M. velutina xylopodium contains bioactive compounds including polyphenols, flavonoids and steroidal aglycones (mainly Velutinol A) of which may be responsible for the antioxidant, anti-glycation and anti-parasitic activity against T. cruzi. Trypanocidal activity of M. velutina compounds may be linked to their influence on NO synthesis during infection and/or their capacity to bind and inhibit molecules associated to virulence and survival of T. cruzi.
Collapse
Affiliation(s)
- Regildo Márcio Gonçalves da Silva
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Assis, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, Brazil.
| | - Fernando Cesar Barbosa
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Assis, São Paulo, Brazil
| | - Hugo Henrique Santos
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Assis, São Paulo, Brazil
| | | | | | - Nilson Nicolau-Junior
- Federal University of Uberlândia (UFU), Institute of Biotechnology, Laboratory of Molecular Modeling, Uberlândia, Minas Gerais, Brazil
| | - Amélia Hamaguchi
- Federal University of Uberlândia (UFU), Institute of Biotechnology, Uberlândia, Minas Gerais, Brazil
| | | |
Collapse
|
2
|
Ros-Lucas A, Gabaldón-Figueira JC, Martínez-Peinado N, Losada-Galván I, Posada E, Escabia E, Martín-Mur B, Gut M, Esteve-Codina A, Gascón J, Pinazo MJ, Alonso-Padilla J. Transcriptomic Evidence of Immune Modulation in Subjects With Chronic Trypanosoma cruzi Infection. J Infect Dis 2024; 230:1518-1528. [PMID: 39194054 DOI: 10.1093/infdis/jiae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024] Open
Abstract
Chagas disease is a neglected tropical infection that affects millions of people. This study explores transcriptomic changes in Trypanosoma cruzi-infected subjects before and after treatment. Using total RNA sequencing, gene transcription was analyzed in peripheral blood mononuclear cells from asymptomatic (n = 19) and symptomatic (n = 8) T. cruzi-infected individuals, and noninfected controls (n = 15). Differential expression was compared across groups, and before/after treatment in infected subgroups. Untreated infection showed 12 upregulated and 206 downregulated genes in all T. cruzi-infected subjects, and 47 upregulated and 215 downregulated genes in the symptomatic group. Few differentially expressed genes were found after treatment and between the different infected groups. Gene set enrichment analysis highlighted immune-related pathways activated during infection, with therapy normalizing immune function. Changes in the kynurenine to tryptophan ratio, increased pretreatment, suggested chronic immune fatigue, which was restored posttreatment. These differentially expressed genes offer insights for potential biomarkers and pathways associated with disease progression and treatment response.
Collapse
Affiliation(s)
- Albert Ros-Lucas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- El Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | - Beatriz Martín-Mur
- National Center for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Gut
- National Center for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Esteve-Codina
- National Center for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Joaquim Gascón
- ISGlobal, Barcelona, Spain
- El Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - María-Jesús Pinazo
- El Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Julio Alonso-Padilla
- ISGlobal, Barcelona, Spain
- El Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Gabaldón-Figueira JC, Ros-Lucas A, Martínez-Peinado N, Blackburn G, Losada-Galvan I, Posada E, Ballart C, Escabia E, Capellades J, Yanes O, Pinazo MJ, Gascón J, Alonso-Padilla J. Changes in lipid abundance are associated with disease progression and treatment response in chronic Trypanosoma cruzi infection. Parasit Vectors 2024; 17:459. [PMID: 39521974 PMCID: PMC11549750 DOI: 10.1186/s13071-024-06548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Chagas disease, caused by the parasite Trypanosoma cruzi, is a zoonosis that affects more than seven million people. Current limitations on the diagnosis of the disease hinder the prognosis of patients and the evaluation of treatment efficacy, slowing the development of new therapeutic options. The infection is known to disrupt several host metabolic pathways, providing an opportunity for the identification of biomarkers. METHODS The metabolomic and lipidomic profiles of a cohort of symptomatic and asymptomatic patients with T. cruzi infection and a group of uninfected controls were analysed using liquid chromatography/mass spectrometry. Differences among all groups and changes before and after receiving anti-parasitic treatment across those with T. cruzi infection were explored. RESULTS Three lipids were found to differentiate between symptomatic and asymptomatic participants: 10-hydroxydecanoic acid and phosphatidylethanolamines PE(18:0/20:4) and PE(18:1/20:4). Additionally, sphinganine, 4-hydroxysphinganine, hexadecasphinganine, and other sphingolipids showed post-treatment abundance similar to that in non-infected controls. CONCLUSIONS These molecules hold promise as potentially useful biomarkers for monitoring disease progression and treatment response in patients with chronic T. cruzi infection.
Collapse
Affiliation(s)
- Juan Carlos Gabaldón-Figueira
- ISGlobal, Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain.
| | - Albert Ros-Lucas
- ISGlobal, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Nieves Martínez-Peinado
- ISGlobal, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gavin Blackburn
- MVLS Shared Research Facilities, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - Irene Losada-Galvan
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | | | - Cristina Ballart
- ISGlobal, Barcelona, Spain
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain
| | | | - Jordi Capellades
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Yanes
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - María-Jesús Pinazo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Drugs for Neglected Diseases Initiative (DNDi), Rio de Janeiro, Brazil
| | - Joaquim Gascón
- ISGlobal, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Julio Alonso-Padilla
- ISGlobal, Barcelona, Spain.
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain.
| |
Collapse
|
4
|
Sellau J, Hansen CS, Gálvez RI, Linnemann L, Honecker B, Lotter H. Immunological clues to sex differences in parasitic diseases. Trends Parasitol 2024; 40:1029-1041. [PMID: 39379261 DOI: 10.1016/j.pt.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
The effect of sex on the prevalence and severity of parasitic diseases is an emerging area of research. Several factors underlie sex-based differences, including sociocultural influences that affect exposure to parasites, and physiological disparities linked to biological sex. Hence, human studies must be interpreted cautiously; however, studies conducted under controlled laboratory conditions are important to validate findings in humans. Such research can more effectively elucidate the role of sex-determining physiological factors (particularly their impact on immune responses), as well as the role of sex-specific differences in resistance to, or severity of, parasitic diseases. This review focuses on the overarching impact of biological sex variables on immunity. Both human and rodent experimental data are discussed, with a focus on selected protozoan and helminth infections.
Collapse
Affiliation(s)
- Julie Sellau
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Lara Linnemann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Lotter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
5
|
Ewald S, Nasuhidehnavi A, Feng TY, Lesani M, McCall LI. The intersection of host in vivo metabolism and immune responses to infection with kinetoplastid and apicomplexan parasites. Microbiol Mol Biol Rev 2024; 88:e0016422. [PMID: 38299836 PMCID: PMC10966954 DOI: 10.1128/mmbr.00164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
SUMMARYProtozoan parasite infection dramatically alters host metabolism, driven by immunological demand and parasite manipulation strategies. Immunometabolic checkpoints are often exploited by kinetoplastid and protozoan parasites to establish chronic infection, which can significantly impair host metabolic homeostasis. The recent growth of tools to analyze metabolism is expanding our understanding of these questions. Here, we review and contrast host metabolic alterations that occur in vivo during infection with Leishmania, trypanosomes, Toxoplasma, Plasmodium, and Cryptosporidium. Although genetically divergent, there are commonalities among these pathogens in terms of metabolic needs, induction of the type I immune responses required for clearance, and the potential for sustained host metabolic dysbiosis. Comparing these pathogens provides an opportunity to explore how transmission strategy, nutritional demand, and host cell and tissue tropism drive similarities and unique aspects in host response and infection outcome and to design new strategies to treat disease.
Collapse
Affiliation(s)
- Sarah Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Azadeh Nasuhidehnavi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
6
|
Kwakye-Nuako G, Middleton CE, McCall LI. Small molecule mediators of host-T. cruzi-environment interactions in Chagas disease. PLoS Pathog 2024; 20:e1012012. [PMID: 38457443 PMCID: PMC10923493 DOI: 10.1371/journal.ppat.1012012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
Small molecules (less than 1,500 Da) include major biological signals that mediate host-pathogen-microbiome communication. They also include key intermediates of metabolism and critical cellular building blocks. Pathogens present with unique nutritional needs that restrict pathogen colonization or promote tissue damage. In parallel, parts of host metabolism are responsive to immune signaling and regulated by immune cascades. These interactions can trigger both adaptive and maladaptive metabolic changes in the host, with microbiome-derived signals also contributing to disease progression. In turn, targeting pathogen metabolic needs or maladaptive host metabolic changes is an important strategy to develop new treatments for infectious diseases. Trypanosoma cruzi is a single-celled eukaryotic pathogen and the causative agent of Chagas disease, a neglected tropical disease associated with cardiac and intestinal dysfunction. Here, we discuss the role of small molecules during T. cruzi infection in its vector and in the mammalian host. We integrate these findings to build a theoretical interpretation of how maladaptive metabolic changes drive Chagas disease and extrapolate on how these findings can guide drug development.
Collapse
Affiliation(s)
- Godwin Kwakye-Nuako
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Caitlyn E. Middleton
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
7
|
Dean DA, Roach J, Ulrich vonBargen R, Xiong Y, Kane SS, Klechka L, Wheeler K, Jimenez Sandoval M, Lesani M, Hossain E, Katemauswa M, Schaefer M, Harris M, Barron S, Liu Z, Pan C, McCall LI. Persistent Biofluid Small-Molecule Alterations Induced by Trypanosoma cruzi Infection Are Not Restored by Parasite Elimination. ACS Infect Dis 2023; 9:2173-2189. [PMID: 37883691 PMCID: PMC10842590 DOI: 10.1021/acsinfecdis.3c00261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi (T. cruzi) protozoa, is a complicated parasitic illness with inadequate medical measures for diagnosing infection and monitoring treatment success. To address this gap, we analyzed changes in the metabolome of T. cruzi-infected mice via liquid chromatography tandem mass spectrometry of clinically accessible biofluids: saliva, urine, and plasma. Urine was the most indicative of infection status across mouse and parasite genotypes. Metabolites perturbed by infection in urine include kynurenate, acylcarnitines, and threonylcarbamoyladenosine. Based on these results, we sought to implement urine as a tool for the assessment of CD treatment success. Strikingly, it was found that mice with parasite clearance following benznidazole antiparasitic treatment had an overall urine metabolome comparable to that of mice that failed to clear parasites. These results provide a complementary hypothesis to explain clinical trial data in which benznidazole treatment did not improve patient outcomes in late-stage disease, even in patients with successful parasite clearance. Overall, this study provides insights into new small-molecule-based CD diagnostic methods and a new approach to assess functional responses to treatment.
Collapse
Affiliation(s)
- Danya A. Dean
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019, USA
| | - Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | | | - Yi Xiong
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Shelley S. Kane
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019, USA
| | - London Klechka
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Kate Wheeler
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | | | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Ekram Hossain
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019, USA
| | - Mitchelle Katemauswa
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019, USA
| | - Miranda Schaefer
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Morgan Harris
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Sayre Barron
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019, USA
| | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
8
|
Liu Z, Ulrich vonBargen R, Kendricks AL, Wheeler K, Leão AC, Sankaranarayanan K, Dean DA, Kane SS, Hossain E, Pollet J, Bottazzi ME, Hotez PJ, Jones KM, McCall LI. Localized cardiac small molecule trajectories and persistent chemical sequelae in experimental Chagas disease. Nat Commun 2023; 14:6769. [PMID: 37880260 PMCID: PMC10600178 DOI: 10.1038/s41467-023-42247-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Post-infectious conditions present major health burdens but remain poorly understood. In Chagas disease (CD), caused by Trypanosoma cruzi parasites, antiparasitic agents that successfully clear T. cruzi do not always improve clinical outcomes. In this study, we reveal differential small molecule trajectories between cardiac regions during chronic T. cruzi infection, matching with characteristic CD apical aneurysm sites. Incomplete, region-specific, cardiac small molecule restoration is observed in animals treated with the antiparasitic benznidazole. In contrast, superior restoration of the cardiac small molecule profile is observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy, even with less parasite burden reduction. Overall, these results reveal molecular mechanisms of CD treatment based on simultaneous effects on the pathogen and on host small molecule responses, and expand our understanding of clinical treatment failure in CD. This link between infection and subsequent persistent small molecule perturbation broadens our understanding of infectious disease sequelae.
Collapse
Affiliation(s)
- Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Rebecca Ulrich vonBargen
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | | | - Kate Wheeler
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Ana Carolina Leão
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Krithivasan Sankaranarayanan
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Danya A Dean
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Shelley S Kane
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Ekram Hossain
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Jeroen Pollet
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn M Jones
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA.
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA.
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
9
|
Dean DA, Roach J, vonBargen RU, Xiong Y, Kane SS, Klechka L, Wheeler K, Sandoval MJ, Lesani M, Hossain E, Katemauswa M, Schaefer M, Harris M, Barron S, Liu Z, Pan C, McCall LI. Persistent biofluid small molecule alterations induced by Trypanosoma cruzi infection are not restored by antiparasitic treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543565. [PMID: 37425694 PMCID: PMC10326868 DOI: 10.1101/2023.06.03.543565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Chagas Disease (CD), caused by Trypanosoma cruzi (T. cruzi) protozoa, is a complicated parasitic illness with inadequate medical measures for diagnosing infection and monitoring treatment success. To address this gap, we analyzed changes in the metabolome of T. cruzi-infected mice via liquid chromatography tandem mass spectrometry analysis of clinically-accessible biofluids: saliva, urine, and plasma. Urine was the most indicative of infection status, across mouse and parasite genotypes. Metabolites perturbed by infection in the urine include kynurenate, acylcarnitines, and threonylcarbamoyladenosine. Based on these results, we sought to implement urine as a tool for assessment of CD treatment success. Strikingly, it was found that mice with parasite clearance following benznidazole antiparasitic treatment had comparable overall urine metabolome to mice that failed to clear parasites. These results match with clinical trial data in which benznidazole treatment did not improve patient outcomes in late-stage disease. Overall, this study provides insights into new small molecule-based CD diagnostic methods and a new approach to assess functional treatment response.
Collapse
Affiliation(s)
- Danya A. Dean
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019; USA
| | - Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | | | - Yi Xiong
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Shelley S. Kane
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019; USA
| | - London Klechka
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Kate Wheeler
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | | | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Ekram Hossain
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019; USA
| | - Mitchelle Katemauswa
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019; USA
| | - Miranda Schaefer
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Morgan Harris
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Sayre Barron
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019; USA
| | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, 73019; USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
10
|
Nasuhidehnavi A, McCall LI. It takes two to tango: How immune responses and metabolic changes jointly shape cardiac Chagas disease. PLoS Pathog 2023; 19:e1011399. [PMID: 37262078 PMCID: PMC10234536 DOI: 10.1371/journal.ppat.1011399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Affiliation(s)
- Azadeh Nasuhidehnavi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
| |
Collapse
|
11
|
Liu Z, Ulrich R, Kendricks AL, Wheeler K, Leão AC, Pollet J, Bottazzi ME, Hotez P, Gusovsky F, Jones KM, McCall LI. Localized cardiac metabolic trajectories and post-infectious metabolic sequelae in experimental Chagas disease. RESEARCH SQUARE 2023:rs.3.rs-2497474. [PMID: 36711878 PMCID: PMC9882638 DOI: 10.21203/rs.3.rs-2497474/v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Post-infectious conditions, where clinical symptoms fail to resolve even after pathogen clearance, present major health burdens. However, the mechanisms involved remain poorly understood. In Chagas disease (CD), caused by the parasite Trypanosoma cruzi, antiparasitic agents can clear T. cruzi but late-stage treatment does not improve clinical cardiac outcomes. In this study, we revealed differential metabolic trajectories of cardiac regions during T. cruzi infection, matching sites of clinical symptoms. Incomplete, region-specific, cardiac metabolic restoration was observed in animals treated with the antiparasitic benznidazole, even though parasites were successfully cleared. In contrast, superior metabolic restoration was observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy (Tc24-C4 T. cruzi flagellar protein and TLR4 agonist adjuvant), even though parasite burden reduction was lower. Overall, these results provide a mechanism to explain prior clinical treatment failures in CD and to test novel candidate treatment regimens. More broadly, our results demonstrate a link between persistent metabolic perturbation and post-infectious conditions, with broad implications for our understanding of post-infectious disease sequelae.
Collapse
Affiliation(s)
- Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Rebecca Ulrich
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, United States of America
| | - April L. Kendricks
- Southern Star Medical Research Institute, Houston, TX, United States of America
| | - Kate Wheeler
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Ana Carolina Leão
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| | - Jeroen Pollet
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| | - Maria Elena Bottazzi
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Peter Hotez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | | | - Kathryn M. Jones
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| |
Collapse
|