1
|
Li L, Zhang J, Cheng W, Di F, Wang C, An Q. Saponins of Paris polyphylla for the Improvement of Acne: Anti-Inflammatory, Antibacterial, Antioxidant and Immunomodulatory Effects. Molecules 2024; 29:1793. [PMID: 38675613 PMCID: PMC11052371 DOI: 10.3390/molecules29081793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Acne is a chronic inflammatory skin disease with a recurring nature that seriously impacts patients' quality of life. Currently, antibiotic resistance has made it less effective in treating acne. However, Paris polyphylla (P. polyphylla) is a valuable medicinal plant with a wide range of chemical components. Of these, P. polyphylla saponins modulate the effects in vivo and in vitro through antibacterial, anti-inflammatory, immunomodulatory, and antioxidant effects. Acne is primarily associated with inflammatory reactions, abnormal sebum function, micro-ecological disorders, hair follicle hyperkeratosis, and, in some patients, immune function. Therefore, the role of P. polyphylla saponins and their values in treating acne is worthy of investigation. Overall, this review first describes the distribution and characteristics of P. polyphylla and the pathogenesis of acne. Then, the potential mechanisms of P. polyphylla saponins in treating acne are listed in detail (reduction in the inflammatory response, antibacterial action, modulation of immune response and antioxidant effects, etc.). In addition, a brief description of the chemical composition of P. polyphylla saponins and its available extraction methods are described. We hope this review can serve as a quick and detailed reference for future studies on their potential acne treatment.
Collapse
Affiliation(s)
- Luyao Li
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Jiachan Zhang
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Wenjing Cheng
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Feiqian Di
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Changtao Wang
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, China;
| |
Collapse
|
2
|
Syed Mohamad SNA, Khatib A, So’ad SZM, Ahmed QU, Ibrahim Z, Nipun TS, Humaryanto H, AlAjmi MF, Khalifa SAM, El-Seedi HR. In Vitro Anti-Diabetic, Anti-Inflammatory, Antioxidant Activities and Toxicological Study of Optimized Psychotria malayana Jack Leaves Extract. Pharmaceuticals (Basel) 2023; 16:1692. [PMID: 38139818 PMCID: PMC10747829 DOI: 10.3390/ph16121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Psychotria malayana Jack (Family: Rubiaceae, local name: Salung) is a traditional herb used to treat diabetes. A previous study by our research group demonstrated that P. malayana methanolic and water extract exhibits significant potential as an effective agent for managing diabetes. Further research has been performed on the extraction optimization of this plant to enhance its inhibitory activity against α-glucosidase, a key enzyme associated with diabetes, and to reduce its toxicity. The objectives of this study are to evaluate the anti-diabetic, anti-inflammatory, and antioxidant properties of the optimized P. malayana leaf extract (OE), to evaluate its toxicity using a zebrafish embryo/larvae model, and to analyze its metabolites. The anti-diabetic effects were assessed by investigating α-glucosidase inhibition (AGI), while the inflammation inhibitory activity was performed using the soybean lipoxygenase inhibitory (SLOXI) test. The assessment of antioxidant activity was performed utilizing FRAP and DPPH assays. The toxicology study was conducted using the zebrafish embryo/larvae (Danio rerio) model. The metabolites present in the extracts were analyzed using GC-MS and LC-MS. OE demonstrated significant AGI and SLOXI activities, represented as 2.02 and 4.92 µg/mL for IC50 values, respectively. It exhibited potent antioxidant activities as determined by IC50 values of 13.08 µg/mL (using the DPPH assay) and 95.44 mmol TE/mg DW (using the FRAP assay), and also demonstrated an LC50 value of 224.29 µg/mL, which surpasses its therapeutic index of 111.03. OE exhibited a higher therapeutic index compared to that of the methanol extract (13.84) stated in the previous state of the art. This suggests that OE exhibits a lower level of toxicity, making it safer for use, and has the potential to be highly effective in its anti-diabetic activity. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) demonstrated the presence of several constituents in this extract. Among them, several compounds, such as propanoic acid, succinic acid, D-tagatose, myo-inositol, isorhamnetin, moracin M-3'-O-β-D-glucopyranoside, procyanidin B3, and leucopelargonidin, have been reported as possessing anti-diabetic and antioxidant activities. This finding offers great potential for future research in diabetes treatment.
Collapse
Affiliation(s)
- Sharifah Nurul Akilah Syed Mohamad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
- Central Research and Animal Facility, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Siti Zaiton Mat So’ad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Tanzina Sharmin Nipun
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | | | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Shaden A. M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
| |
Collapse
|
3
|
Nalimu F, Oloro J, Kahwa I, Ogwang PE. Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:145. [PMID: 34307697 PMCID: PMC8294304 DOI: 10.1186/s43094-021-00296-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background Aloe vera and Aloe ferox have over the years been among the most sought-after Aloe species in the treatment of ailments worldwide. This review provides categorized literature on the phytochemical and scientifically proven toxicological profiles of A. vera and A. ferox to facilitate their exploitation in therapy. Main body of the abstract Original full-text research articles were searched in PubMed, ScienceDirect, Research gate, Google Scholar, and Wiley Online Library using specific phrases. Phenolic acids, flavonoids, tannins, and anthraquinones were the main phytochemical classes present in all the two Aloe species. Most of the phytochemical investigations and toxicity studies have been done on the leaves. Aloe vera and Aloe ferox contain unique phytoconstituents including anthraquinones, flavonoids, tannins, sterols, alkaloids, and volatile oils. Aloe vera hydroalcoholic leaf extract showed a toxic effect on Kabir chicks at the highest doses. The methanolic, aqueous, and supercritical carbon dioxide extracts of A. vera leaf gel were associated with no toxic effects. The aqueous leaf extract of A. ferox is well tolerated for short-term management of ailments but long-term administration may be associated with organ toxicity. Long-term administration of the preparations from A. vera leaves and roots was associated with toxic effects. Short conclusion This review provides beneficial information about the phytochemistry and toxicity of A. vera and A. ferox and their potential in the treatment of COVID-19 which up to date has no definite cure. Clinical trials need to be carried out to clearly understand the toxic effects of these species.
Collapse
Affiliation(s)
- Florence Nalimu
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Joseph Oloro
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ivan Kahwa
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
4
|
van Vuuren S, Frank L. Review: Southern African medicinal plants used as blood purifiers. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112434. [PMID: 31812645 DOI: 10.1016/j.jep.2019.112434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMALOGICAL RELEVANCE Blood purification practices, also referred to as blood cleansing or detoxification, is an ancient concept which is widespread amongst African traditional medicine, but for which no modern scientific basis exists. There prevails considerable ambiguity in defining what a blood purifier is. AIM OF THE STUDY The purpose of this review is to firstly define what a blood purifier is in the context of African traditional medicine and compare to other cultural and westernized interpretations. Thereafter, this study identifies traditionally used medicinal plants used as blood purifiers in southern Africa and correlates these species to scientific studies, which may support evidence for these "blood purifying plant species". MATERIALS AND METHODS Ethnobotanical books and review articles were used to identify medicinal plants used for blood purification. Databases such as Scopus, ScienceDirect, PubMed and Google Scholar were used to source scientific articles. An evaluation was made to try correlate traditional use to scientific value of the plant species. RESULTS One hundred and fifty nine plant species have been documented as traditional remedies for blood purification. Most of the plant species have some pharmacological activity, however, very little link to the traditional use for blood purification. There has been some justification of the link between blood purification and the use as an antimicrobial and this has been explored in many of the plant species identified as blood purifiers. Other pharmacological studies specifically pertaining to the blood require further attention. CONCLUSION Irrespective of the ambiguity of interpretation, medicinal plants used to "cleanse the blood", play an important holistic role in traditional medicine and this review with recommendations for further study provides some value of exploring this theme in the future.
Collapse
Affiliation(s)
- S van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| | - L Frank
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
5
|
De Canha MN, Komarnytsky S, Langhansova L, Lall N. Exploring the Anti-Acne Potential of Impepho [ Helichrysum odoratissimum (L.) Sweet] to Combat Cutibacterium acnes Virulence. Front Pharmacol 2020; 10:1559. [PMID: 32082144 PMCID: PMC7002546 DOI: 10.3389/fphar.2019.01559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
The Gram-positive bacterium Cutibacterium acnes (previously Propionibacterium acnes), plays an important role in the pathogenesis and progression of the dermatological skin disorder acne vulgaris. The methanolic extract of Helichrysum odoratissimum (L.) Sweet (HO-MeOH) was investigated for its ability to target bacterial growth and pathogenic virulence factors associated with acne progression. The gas chromatography-mass spectrometry (GC-MS) analysis of HO-MeOH identified α-humulene (3.94%), α-curcumene (3.74%), and caryophyllene (8.12%) as major constituents, which correlated with previous reports of other Helichrysum species. The HO-MeOH extract exhibited potent antimicrobial activity against C. acnes (ATCC 6919) with a minimum inhibitory concentration (MIC) of 7.81 µg/ml. It enhanced the antimicrobial activity of benzoyl peroxide (BPO). The extract showed high specificity against C. acnes cell aggregation at sub-inhibitory concentrations, preventing biofilm formation. Mature C. acnes biofilms were disrupted at a sub-inhibitory concentration of 3.91 µg/ml. At 100 µg/ml, HO-MeOH reduced interleukin-1α (IL-1α) cytokine levels in C. acnes-induced human keratinocytes (HaCaT) by 11.08%, highlighting its potential as a comedolytic agent for the treatment of comedonal acne. The extract exhibited a 50% inhibitory concentration (IC50) of 157.50 µg/ml against lipase enzyme activity, an enzyme responsible for sebum degradation, ultimately causing inflammation. The extract's anti-inflammatory activity was tested against various targets associated with inflammatory activation by the bacterium. The extract inhibited pro-inflammatory cytokine levels of IL-8 by 48.31% when compared to C. acnes-induced HaCaT cells at 7.81 µg/ml. It exhibited cyclooxygenase-II (COX-II) enzyme inhibition with an IC50 of 22.87 µg/ml. Intracellular nitric oxide (NO) was inhibited by 40.39% at 7.81 µg/ml when compared with NO production in lipopolysaccharide (LPS)-induced RAW264.7 cells. The intracellular NO inhibition was potentially due to the 2.14 fold reduction of inducible nitric oxide synthase (iNOS) gene expression. The HO-MeOH extract exhibited an IC50 of 145.45 µg/ml against virulent hyaluronidase enzyme activity, which is responsible for hyaluronan degradation and scar formation. This study provides scientific validation for the traditional use of H. odoratissimum as an ointment for pimples, not only due to its ability to control C. acnes proliferation but also due to its inhibitory activity on various targets associated with bacterial virulence leading to acne progression.
Collapse
Affiliation(s)
- Marco Nuno De Canha
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Slavko Komarnytsky
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Lenka Langhansova
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czechia
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- School of Natural Resources, University of Missouri, Columbia, MO, United States
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
6
|
Hou HS, Bonku EM, Zhai R, Zeng R, Hou YL, Yang ZH, Quan C. Extraction of essential oil from Citrus reticulate Blanco peel and its antibacterial activity against Cutibacterium acnes (formerly Propionibacterium acnes). Heliyon 2019; 5:e02947. [PMID: 31872120 PMCID: PMC6909146 DOI: 10.1016/j.heliyon.2019.e02947] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/01/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Citrus is one of the largest output fruits in the word. In China, the major orange variety is the Citrus reticulate Blanco (Ponkan). The peels are discarded as waste material, its comprehensive utilization is urgently needed. In this work, hydrodistillation method was developed to extract citrus essential oil (EO) from Blanco peel. With the optimal extraction conditions, the EO yield was more than 3%. By GC-MS analysis, 53 compounds were identified from the citrus EO. Terpenes compounds accounted for 71.2%, especially d-limonene (major composition) accounted for 58.9%. The obtained citrus EO showed remarkable antibacterial activity against Cutibacterium acnes (C. acnes, Formerly P. acnes) and common microorganisms such as S. aureus, B. subtilis, and E. coli. Even compared with the common antibiotics (such as erythromycin, clindamycin, and tetracycline) for acne therapy, its antibacterial activity against C. acnes is more excellent. This work provides a potential therapy material for the treatment of acne.
Collapse
Affiliation(s)
- He-Shuai Hou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Emmanuel Mintah Bonku
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Rong Zhai
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Rong Zeng
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Ya-Li Hou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhong-Hua Yang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Can Quan
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, China
| |
Collapse
|
7
|
Optimization of hydrogel containing toluidine blue O for photodynamic therapy in treating acne. Lasers Med Sci 2019; 34:1535-1545. [PMID: 30825010 DOI: 10.1007/s10103-019-02727-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/17/2019] [Indexed: 01/23/2023]
Abstract
Antibiotics and photodynamic therapy (PDT) are widely employed in curing acne. However, antibiotics as an effective treatment would lead to bacterial resistance and severe side effects. In this study, we aimed to develop a novel TBO hydrogel, which could prolong the retention time of photosensitizer (TBO) at the lesion site and improve therapeutic effect. In vitro antibacterial experiments (against Staphylococcus aureus and Escherichia coli), the response surface methodology was used to optimize the formulation of TBO hydrogel. The results indicated that the optimal formulation was 0.5% (v/v) carbomer, 0.01 mg/mL TBO, 0.5% (v/v) ethanol concentration, 0.5% (v/v) Tween 80, the mass ratio of NaOH to carbomer of 0.4 (w/w). The TBO hydrogel formulation showed the strong antibacterial activity for Propionibacterium acnes. The stability, pH, and antibacterial activity of TBO hydrogel did not significantly change under 4 °C, 25 °C, and 40 °C during 6-week storage. Furthermore, TBO combined with carbomer hydrogel showed the 51.28% (4 h) and 69.80% (24 h) release. In summary, the hydrogel TBO might be a vital therapeutic strategy to promote the PDT applied in the topical therapy of acne. Graphical abstract A TBO hydrogel for photodynamic therapy in the treatment of acne.
Collapse
|