1
|
Derosa G, D’Angelo A, Maffioli P, Cucinella L, Nappi RE. The Use of Nigella sativa in Cardiometabolic Diseases. Biomedicines 2024; 12:405. [PMID: 38398007 PMCID: PMC10886913 DOI: 10.3390/biomedicines12020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 02/25/2024] Open
Abstract
Nigella sativa L. is an herb that is commonly used in cooking and in traditional medicine, particularly in Arab countries, the Indian subcontinent, and some areas of eastern Europe. Nigella sativa is also called "black cumin" or "black seeds", as the seeds are the most-used part of the plant. They contain the main bioactive component thymoquinone (TQ), which is responsible for the pleiotropic pharmacological properties of the seeds, including anti-oxidant, anti-inflammatory, anti-hypertensive, anti-hepatotoxic, hypoglycemic, and lipid-lowering properties. In this narrative review, both the potential mechanisms of action of Nigella sativa and the fundamental role played by pharmaceutical technology in optimizing preparations based on this herb in terms of yield, quality, and effectiveness have been outlined. Moreover, an analysis of the market of products containing Nigella sativa was carried out based on the current literature with an international perspective, along with a specific focus on Italy.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, 27100 Pavia, Italy;
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Italian Nutraceutical Society (SINut), 40100 Bologna, Italy
- Laboratory of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Angela D’Angelo
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, 27100 Pavia, Italy;
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Italian Nutraceutical Society (SINut), 40100 Bologna, Italy
| | - Laura Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology, Menopause Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Rossella Elena Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology, Menopause Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
2
|
Mohan ME, Mohan MC, Prabhakaran P, Syam Das S, Krishnakumar IM, Baby Chakrapani PS. Exploring the short-term influence of a proprietary oil extract of black cumin ( Nigella sativa) on non-restorative sleep: a randomized, double-blinded, placebo-controlled actigraphy study. Front Nutr 2024; 10:1200118. [PMID: 38288065 PMCID: PMC10822901 DOI: 10.3389/fnut.2023.1200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Background Nigella sativa (black cumin, or black seed) is popularly known as the seed of blessings in the Arab system of medicine. Though not widely recommended for sleep, a unique proprietary black cumin extract (BlaQmax®/ThymoDream™; BCO-5) has been shown to be helpful in the management of stress and sleep issues. Methods This randomized, double-blind, placebo-controlled trial aimed to investigate the efficacy of BCO-5 on the sleep quality of volunteers characterized with a self-reported non-restorative sleep disorder. Healthy male and female participants (n = 70), aged 18-65 years (BMI 22-28 Kg/m2) were randomized to either placebo or BCO-5 (n = 35/group). Both interventions were supplemented at 200 mg/day for seven days. Actigraphy and a validated restorative sleep questionnaire (RSQ-W) were used to monitor the influence of BCO-5 on sleep. Results Compared to placebo, BCO-5 significantly improved sleep quality, as evidenced by both intra-group and inter-group analyses of the actigraphy data. The relative improvements observed were sleep efficiency (7.8%, p < 0.001), total sleep time (19.1%, p < 0.001), sleep onset latency (35.4%; p < 0.001), and wake-after-sleep-onset (22.5%; p < 0.001) compared with placebo. BCO-5 also improved sleep by 75.3% compared to baseline (p < 0.001) and by 68.9% compared to placebo (p < 0.001), when monitored by RSQ-W. BCO-5 was well-tolerated with no reports of side effects or toxicity. Conclusion BCO-5 significantly improved non-restorative sleep in seven days, indicating its potential role as a natural sleep aid.
Collapse
Affiliation(s)
- M. E. Mohan
- Department of General Medicine, BGS Global Institute of Medical Sciences, Kengeri, India
| | - Mohind C. Mohan
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | - S. Syam Das
- R&D Centre, Akay Natural Ingredients, Cochin, Kerala, India
| | | | - P. S. Baby Chakrapani
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
- Centre of Excellence in Neurodegeneration and Brain Health, Cochin, Kerala, India
| |
Collapse
|
3
|
Sadeghi E, Imenshahidi M, Hosseinzadeh H. Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: a review. Mol Biol Rep 2023; 50:5439-5454. [PMID: 37155017 DOI: 10.1007/s11033-023-08363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/01/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Nigella sativa and its main bioactive ingredient, thymoquinone, exhibit various pharmacological activities, including neuroprotective, nephroprotective, cardioprotective, gastroprotective, hepatoprotective, and anti-cancer effects. Many studies have been conducted trying to elucidate the molecular signaling pathways that mediate these diverse pharmacological properties of N. sativa and thymoquinone. Accordingly, the goal of this review is to show the effects of N. sativa and thymoquinone on different cell signaling pathways. METHODS The online databases Scopus, PubMed and Web of Science were searched to identify relevant articles using a list of related keywords such as Nigella sativa, black cumin, thymoquinone, black seed, signal transduction, cell signaling, antioxidant, Nrf2, NF-κB, PI3K/AKT, apoptosis, JAK/STAT, AMPK, MAPK, etc. Only articles published in the English language until May 2022 were included in the present review article. RESULTS Studies indicate that N. sativa and thymoquinone improve antioxidant enzyme activities, effectively scavenges free radicals, and thus protect cells from oxidative stress. They can also regulate responses to oxidative stress and inflammation via Nrf2 and NF-κB pathways. N. sativa and thymoquinone can inhibit cancer cell proliferation through disruption of the PI3K/AKT pathway by upregulating phosphatase and tensin homolog. Thymoquinone can modulate reactive oxygen species levels in tumor cells, arrest the cell cycle in the G2/M phase as well as affect molecular targets including p53, STAT3 and trigger the mitochondrial apoptosis pathway. Thymoquinone, by adjusting AMPK, can regulate cellular metabolism and energy hemostasis. Finally, N. sativa and thymoquinone can elevate brain GABA content, and thus it may ameliorate epilepsy. CONCLUSIONS Taken together, the improvement of antioxidant status and prevention of inflammatory process by modulating the Nrf2 and NF-κB signaling and inhibition of cancer cell proliferation through disruption of the PI3K/AKT pathway appear to be the main mechanisms involved in different pharmacological properties of N. sativa and thymoquinone.
Collapse
Affiliation(s)
- Ehsan Sadeghi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Mohan ME, Thomas JV, Mohan MC, Das S S, Prabhakaran P, Pulikkaparambil Sasidharan BC. A proprietary black cumin oil extract ( Nigella sativa) (BlaQmax ®) modulates stress-sleep-immunity axis safely: Randomized double-blind placebo-controlled study. Front Nutr 2023; 10:1152680. [PMID: 37139438 PMCID: PMC10149792 DOI: 10.3389/fnut.2023.1152680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
Objective Stress, sleep, and immunity are important interdependent factors that play critical roles in the maintenance of health. It has been established that stress can affect sleep, and the quality and duration of sleep significantly impact immunity. However, single drugs capable of targeting these factors are limited because of their multi-targeting mechanisms. The present study investigated the influence of a proprietary thymoquinone-rich black cumin oil extract (BCO-5) in modulating stress, sleep, and immunity. Methods A randomized double-blinded placebo-controlled study was carried out on healthy volunteers with self-reported non-refreshing sleep issues (n = 72), followed by supplementation with BCO-5/placebo at 200 mg/day for 90 days. Validated questionnaires, PSQI and PSS, were employed for monitoring sleep and stress respectively, along with the measurement of cortisol and melatonin levels. Immunity markers were analyzed at the end of the study. Results In the BCO-5 group, 70% of the participants reported satisfaction with their sleep pattern on day 7 and 79% on day 14. Additionally, both inter- and intra- group analyses of the total PSQI scores and component scores (sleep latency, duration, efficiency, quality, and daytime dysfunction) on days 45 and 90 showed the effectiveness of BCO-5 in the improvement of sleep (p < 0.05). PSS-14 analysis revealed a significant reduction in stress, upon both intra (p < 0.001) and inter-group (p < 0.001) comparisons. The observed reduction in stress among the BCO-5 group, with respect to the placebo, was significant with an effect size of 1.19 by the end of the study (p < 0.001). A significant correlation was also observed between improved sleep and reduced stress as evident from PSQI and PSS. Furthermore, there was a significant modulation in melatonin, cortisol, and orexin levels. Hematological/immunological parameters further revealed the immunomodulatory effects of BCO-5. Conclusion BCO-5 significantly modulated the stress-sleep-immunity axis with no side effects and restored restful sleep.
Collapse
Affiliation(s)
- Muttanahally Eraiah Mohan
- Department of General Medicine, BGS Global Institute of Medical Sciences, Bengaluru, Karnataka, India
| | - Jestin V. Thomas
- Leads Clinical Research and Bio Services Private Limited, Bengaluru, Karnataka, India
| | - Mohind C. Mohan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Syam Das S
- R&D Centre, Akay Natural Ingredients, Kochi, Kerala, India
| | | | - Baby Chakrapani Pulikkaparambil Sasidharan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
5
|
Ittiyavirah SP, Ramalingam K, Sathyan A, Rajasree R, Kuruniyan MS, Quadri SA, Elayadeth-Meethal M, Naseef PP. Thymoquinone-rich black cumin oil attenuates ibotenic acid-induced excitotoxicity through glutamate receptors in Wistar rats. Saudi Pharm J 2022; 30:1781-1790. [PMID: 36601514 PMCID: PMC9805979 DOI: 10.1016/j.jsps.2022.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Inflammation-mediated alterations in glutamate neurotransmission constitute the most important pathway in the pathophysiology of various brain disorders. The excessive signalling of glutamate results in excitotoxicity, neuronal degeneration, and neuronal cell death. In the present study, we investigated the relative efficacy of black cumin (Nigella sativa) oil with high (5 % w/w) and low (2 % w/w) thymoquinone content (BCO-5 and BCO-2, respectively) in alleviating ibotenic acid-induced excitotoxicity and neuroinflammation in Wistar rats. It was found that BCO-5 reversed the abnormal behavioural patterns and the key inflammatory mediators (TNF-α and NF-κB) when treated at 5 mg/kg body weight. Immunohistochemical studies showed the potential of BCO-5 to attenuate the glutamate receptor subunits NMDA and GluR-2 along with increased glutamate decarboxylase levels in the brain tissues. Histopathological studies revealed the neuroprotection of BCO-5 against the inflammatory lesions, as evidenced by the normal cerebellum, astrocytes, and glial cells. BCO-2 on the other hand showed either a poor protective effect or no effect even at a 4-fold higher concentration of 20 mg/kg body weight indicating a very significant role of thymoquinone content on the neuroprotective effect of black cumin oil and its plausible clinical efficacy in counteracting the anxiety and stress-related neurological disorders under conditions such as depression and Alzheimer's disease.
Collapse
Affiliation(s)
- Sibi P Ittiyavirah
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences, Cheruvandoor, Kottayam 686631, India
| | - Kannan Ramalingam
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences, Cheruvandoor, Kottayam 686631, India
| | - Arathy Sathyan
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences, Cheruvandoor, Kottayam 686631, India
| | - R.S. Rajasree
- College of Pharmaceutical Sciences, Government Thirumala Devaswom Medical College, Alappuzha 688005, India
| | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Syed Altafuddin Quadri
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammed Elayadeth-Meethal
- Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 675621, India
| | - Punnoth Poonkuzhi Naseef
- Department of Pharmaceutics, Moulana College of Pharmacy, Perinthalmanna 679321, India,Corresponding author.
| |
Collapse
|
6
|
Black Seed (Nigella sativa): A Favourable Alternative Therapy for Inflammatory and Immune System Disorders. Inflammopharmacology 2022; 30:1623-1643. [PMID: 35972596 DOI: 10.1007/s10787-022-01035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022]
Abstract
In the recent years, various food additives, medicinal plants, and their bioactive components have been utilized in anti-inflammatory and immunomodulatory therapy. Nigella sativa is a key dietary supplement and food additive which has a strong traditional background. It is also one of the most broadly studied seeds in the global pharmaceutical and nutraceutical sector. N. sativa seeds are potential sources of natural metabolite such as phenolic compounds and alkaloids. The anti-inflammatory and immunomodulatory abilities of these seeds, most peculiarly with reference to some inflammatory and immune mediators, are reviewed. N. sativa and its bioactive compounds modulate inflammatory and immunomodulatory mediators including tumor necrosis factor-alpha (TNF-α), interferon gamma (IFN-γ), nuclear factor kappa B (NF-kB) cyclooxygenase (COX), lipoxygenase (LOX), transforming growth factor beta (TGF-β), interleukins, and immunoglobulin levels. This paper comprehensively describes the biomarkers and signaling pathways underlying the anti-inflammatory and immunomodulatory potential of N. sativa. This review also explains the scientific basis and the pharmacological properties of core bioactive ingredients of N. sativa responsible for these biological activities which indicates that their bioactive components could be possibly regarded as favorable therapy for disorders linked to inflammation and immune-dysregulation.
Collapse
|
7
|
Pottoo FH, Ibrahim AM, Alammar A, Alsinan R, Aleid M, Alshehhi A, Alshehri M, Mishra S, Alhajri N. Thymoquinone: Review of Its Potential in the Treatment of Neurological Diseases. Pharmaceuticals (Basel) 2022; 15:ph15040408. [PMID: 35455405 PMCID: PMC9026861 DOI: 10.3390/ph15040408] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
Thymoquinone (TQ) possesses anticonvulsant, antianxiety, antidepressant, and antipsychotic properties. It could be utilized to treat drug misuse or dependence, and those with memory and cognitive impairment. TQ protects brain cells from oxidative stress, which is especially pronounced in memory-related regions. TQ exhibits antineurotoxin characteristics, implying its role in preventing neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. TQ’s antioxidant and anti-inflammatory properties protect brain cells from damage and inflammation. Glutamate can trigger cell death by causing mitochondrial malfunction and the formation of reactive oxygen species (ROS). Reduction in ROS production can explain TQ effects in neuroinflammation. TQ can help prevent glutamate-induced apoptosis by suppressing mitochondrial malfunction. Several studies have demonstrated TQ’s role in inhibiting Toll-like receptors (TLRs) and some inflammatory mediators, leading to reduced inflammation and neurotoxicity. Several studies did not show any signs of dopaminergic neuron loss after TQ treatment in various animals. TQ has been shown in clinical studies to block acetylcholinesterase (AChE) activity, which increases acetylcholine (ACh). As a result, fresh memories are programmed to preserve the effects. Treatment with TQ has been linked to better outcomes and decreased side effects than other drugs.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
- Correspondence: (F.H.P.); (A.M.I.)
| | - Abdallah Mohammad Ibrahim
- Department of Fundamentals of Nursing, College of Nursing, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: (F.H.P.); (A.M.I.)
| | - Ali Alammar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Rida Alsinan
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Mahdi Aleid
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Ali Alshehhi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Muruj Alshehri
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Supriya Mishra
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad 201204, UP, India;
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates;
| |
Collapse
|