1
|
Girouard MP, Chang AJ, Liang Y, Hamilton SA, Bhatt AS, Svetlichnaya J, Fitzpatrick JK, Carey ECB, Avula HR, Adatya S, Lee KK, Solomon MD, Parikh RV, Go AS, Ambrosy AP. Clinical and research applications of natural language processing for heart failure. Heart Fail Rev 2024:10.1007/s10741-024-10472-0. [PMID: 39699708 DOI: 10.1007/s10741-024-10472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Natural language processing (NLP) is a burgeoning field of machine learning/artificial intelligence that focuses on the computational processing of human language. Researchers and clinicians are using NLP methods to advance the field of medicine in general and in heart failure (HF), in particular, by processing vast amounts of previously untapped semi-structured and unstructured textual data in electronic health records. NLP has several applications to clinical research, including dramatically improving processes for cohort assembly, disease phenotyping, and outcome ascertainment, among others. NLP also has the potential to improve direct clinical care through early detection, accurate diagnosis, and evidence-based management of patients with HF. In this state-of-the-art review, we present a general overview of NLP methods and review clinical and research applications in the field of HF. We also propose several potential future directions of this emerging and rapidly evolving technological breakthrough.
Collapse
Affiliation(s)
- Michael P Girouard
- Department of Cardiology, Kaiser Permanente San Francisco Medical Center, 2425 Geary Boulevard, San Francisco, CA, 94115, USA
| | - Alex J Chang
- Department of Medicine, Kaiser Permanente San Francisco Medical Center, 2425 Geary Boulevard, San Francisco, CA, 94115, USA
| | - Yilin Liang
- Department of Medicine, Kaiser Permanente San Francisco Medical Center, 2425 Geary Boulevard, San Francisco, CA, 94115, USA
| | - Steven A Hamilton
- Department of Cardiology, Kaiser Permanente San Francisco Medical Center, 2425 Geary Boulevard, San Francisco, CA, 94115, USA
| | - Ankeet S Bhatt
- Department of Cardiology, Kaiser Permanente San Francisco Medical Center, 2425 Geary Boulevard, San Francisco, CA, 94115, USA
- Division of Research, Kaiser Permanente Northern California, 4480 Hacienda Drive, Pleasanton, CA, 94588, USA
| | - Jana Svetlichnaya
- Department of Cardiology, Kaiser Permanente San Francisco Medical Center, 2425 Geary Boulevard, San Francisco, CA, 94115, USA
| | - Jesse K Fitzpatrick
- Department of Cardiology, Kaiser Permanente San Francisco Medical Center, 2425 Geary Boulevard, San Francisco, CA, 94115, USA
| | - Evan C B Carey
- Touro University California College of Osteopathic Medicine, 1310 Club Drive, Vallejo, CA, 94592, USA
| | - Harshith R Avula
- Kaiser Permanente Walnut Creek Medical Center, 1425 S Main St, Walnut Creek, CA, 94596, USA
| | - Sirtaz Adatya
- Kaiser Permanente Santa Clara Medical Center, 700 Lawrence Expy, Santa Clara, CA, 95051, USA
| | - Keane K Lee
- Kaiser Permanente Santa Clara Medical Center, 700 Lawrence Expy, Santa Clara, CA, 95051, USA
| | - Matthew D Solomon
- Department of Cardiology, Kaiser Permanente San Francisco Medical Center, 2425 Geary Boulevard, San Francisco, CA, 94115, USA
- Kaiser Permanente Oakland Medical Center, 3600 Broadway, Oakland, CA, 94611, USA
| | - Rishi V Parikh
- Division of Research, Kaiser Permanente Northern California, 4480 Hacienda Drive, Pleasanton, CA, 94588, USA
| | - Alan S Go
- Division of Research, Kaiser Permanente Northern California, 4480 Hacienda Drive, Pleasanton, CA, 94588, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Andrew P Ambrosy
- Department of Cardiology, Kaiser Permanente San Francisco Medical Center, 2425 Geary Boulevard, San Francisco, CA, 94115, USA.
- Division of Research, Kaiser Permanente Northern California, 4480 Hacienda Drive, Pleasanton, CA, 94588, USA.
| |
Collapse
|
2
|
Sun GK, Ambrosy AP. Applying Natural Language Processing to Electronic Health Record Data-From Text to Triage. JAMA Netw Open 2024; 7:e2443934. [PMID: 39509135 DOI: 10.1001/jamanetworkopen.2024.43934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Affiliation(s)
- Grace K Sun
- Division of Research, Kaiser Permanente Northern California, Oakland
| | - Andrew P Ambrosy
- Division of Research, Kaiser Permanente Northern California, Oakland
- Department of Cardiology, Kaiser Permanente San Francisco Medical Center, San Francisco, California
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| |
Collapse
|
3
|
Luo Y, Mao C, Sanchez‐Pinto LN, Ahmad FS, Naidech A, Rasmussen L, Pacheco JA, Schneider D, Mithal LB, Dresden S, Holmes K, Carson M, Shah SJ, Khan S, Clare S, Wunderink RG, Liu H, Walunas T, Cooper L, Yue F, Wehbe F, Fang D, Liebovitz DM, Markl M, Michelson KN, McColley SA, Green M, Starren J, Ackermann RT, D'Aquila RT, Adams J, Lloyd‐Jones D, Chisholm RL, Kho A. Northwestern University resource and education development initiatives to advance collaborative artificial intelligence across the learning health system. Learn Health Syst 2024; 8:e10417. [PMID: 39036530 PMCID: PMC11257059 DOI: 10.1002/lrh2.10417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction The rapid development of artificial intelligence (AI) in healthcare has exposed the unmet need for growing a multidisciplinary workforce that can collaborate effectively in the learning health systems. Maximizing the synergy among multiple teams is critical for Collaborative AI in Healthcare. Methods We have developed a series of data, tools, and educational resources for cultivating the next generation of multidisciplinary workforce for Collaborative AI in Healthcare. We built bulk-natural language processing pipelines to extract structured information from clinical notes and stored them in common data models. We developed multimodal AI/machine learning (ML) tools and tutorials to enrich the toolbox of the multidisciplinary workforce to analyze multimodal healthcare data. We have created a fertile ground to cross-pollinate clinicians and AI scientists and train the next generation of AI health workforce to collaborate effectively. Results Our work has democratized access to unstructured health information, AI/ML tools and resources for healthcare, and collaborative education resources. From 2017 to 2022, this has enabled studies in multiple clinical specialties resulting in 68 peer-reviewed publications. In 2022, our cross-discipline efforts converged and institutionalized into the Center for Collaborative AI in Healthcare. Conclusions Our Collaborative AI in Healthcare initiatives has created valuable educational and practical resources. They have enabled more clinicians, scientists, and hospital administrators to successfully apply AI methods in their daily research and practice, develop closer collaborations, and advanced the institution-level learning health system.
Collapse
Affiliation(s)
- Yuan Luo
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Health and Biomedical Informatics, Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Chengsheng Mao
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Health and Biomedical Informatics, Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Lazaro N. Sanchez‐Pinto
- Division of Health and Biomedical Informatics, Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Division of Critical Care, Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
| | - Faraz S. Ahmad
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Cardiology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Andrew Naidech
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Neurocritical Care, Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Luke Rasmussen
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Division of Health and Biomedical Informatics, Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jennifer A. Pacheco
- Center for Genetic MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Daniel Schneider
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
| | - Leena B. Mithal
- Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Division of Infectious Diseases, Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Scott Dresden
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Emergency MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Kristi Holmes
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Health and Biomedical Informatics, Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Galter Health Sciences LibraryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Matthew Carson
- Galter Health Sciences LibraryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Sanjiv J. Shah
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Cardiology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Seema Khan
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Susan Clare
- Department of SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Richard G. Wunderink
- Division of Critical Care, Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Pulmonary and Critical Care Division, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Huiping Liu
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of PharmacologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Division of Hematology and Oncology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Theresa Walunas
- Division of Health and Biomedical Informatics, Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Division of General Internal Medicine, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Health Information PartnershipsInstitute for Public Health and Medicine, Northwestern UniversityChicagoIllinoisUSA
- Department of Microbiology‐ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Lee Cooper
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Health and Biomedical Informatics, Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Feng Yue
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Firas Wehbe
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Deyu Fang
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - David M. Liebovitz
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Health and Biomedical Informatics, Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Division of General Internal Medicine, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Health Information PartnershipsInstitute for Public Health and Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Michael Markl
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Kelly N. Michelson
- Division of Critical Care, Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Center for Bioethics and Medical Humanities, Institute for Public Health and MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Susanna A. McColley
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Division of Pulmonary and Sleep Medicine, Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Marianne Green
- Division of General Internal Medicine, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Justin Starren
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Health and Biomedical Informatics, Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Ronald T. Ackermann
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Division of General Internal Medicine, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Institute for Public Health and MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Richard T. D'Aquila
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Division of Infectious Diseases, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - James Adams
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Emergency MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Donald Lloyd‐Jones
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Epidemiology, Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Rex L. Chisholm
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Health Information PartnershipsInstitute for Public Health and Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Abel Kho
- Northwestern University Clinical and Translational Sciences InstituteChicagoIllinoisUSA
- Institute for Augmented Intelligence in MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Health and Biomedical Informatics, Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Division of General Internal Medicine, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Health Information PartnershipsInstitute for Public Health and Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
4
|
Medhi D, Kamidi SR, Mamatha Sree KP, Shaikh S, Rasheed S, Thengu Murichathil AH, Nazir Z. Artificial Intelligence and Its Role in Diagnosing Heart Failure: A Narrative Review. Cureus 2024; 16:e59661. [PMID: 38836155 PMCID: PMC11148729 DOI: 10.7759/cureus.59661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2024] [Indexed: 06/06/2024] Open
Abstract
Heart failure (HF) is prevalent globally. It is a dynamic disease with varying definitions and classifications due to multiple pathophysiologies and etiologies. The diagnosis, clinical staging, and treatment of HF become complex and subjective, impacting patient prognosis and mortality. Technological advancements, like artificial intelligence (AI), have been significant roleplays in medicine and are increasingly used in cardiovascular medicine to transform drug discovery, clinical care, risk prediction, diagnosis, and treatment. Medical and surgical interventions specific to HF patients rely significantly on early identification of HF. Hospitalization and treatment costs for HF are high, with readmissions increasing the burden. AI can help improve diagnostic accuracy by recognizing patterns and using them in multiple areas of HF management. AI has shown promise in offering early detection and precise diagnoses with the help of ECG analysis, advanced cardiac imaging, leveraging biomarkers, and cardiopulmonary stress testing. However, its challenges include data access, model interpretability, ethical concerns, and generalizability across diverse populations. Despite these ongoing efforts to refine AI models, it suggests a promising future for HF diagnosis. After applying exclusion and inclusion criteria, we searched for data available on PubMed, Google Scholar, and the Cochrane Library and found 150 relevant papers. This review focuses on AI's significant contribution to HF diagnosis in recent years, drastically altering HF treatment and outcomes.
Collapse
Affiliation(s)
- Diptiman Medhi
- Internal Medicine, Gauhati Medical College and Hospital, Guwahati, Guwahati, IND
| | | | | | - Shifa Shaikh
- Cardiology, SMBT Institute of Medical Sciences and Research Centre, Igatpuri, IND
| | - Shanida Rasheed
- Emergency Medicine, East Sussex Healthcare NHS Trust, Eastbourne, GBR
| | | | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, Quetta, PAK
| |
Collapse
|
5
|
Canning C, Guo J, Narang A, Thomas JD, Ahmad FS. The Emerging Role of Artificial Intelligence in Valvular Heart Disease. Heart Fail Clin 2023; 19:391-405. [PMID: 37230652 PMCID: PMC11267973 DOI: 10.1016/j.hfc.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Valvular heart disease (VHD) is a morbid condition in which timely identification and evidence-based treatments can lead to improved outcomes. Artificial intelligence broadly refers to the ability for computers to perform tasks and problem solve like the human mind. Studies applying AI to VHD have used a variety of structured (eg, sociodemographic, clinical) and unstructured (eg, electrocardiogram, phonocardiogram, and echocardiograms) and machine learning modeling approaches. Additional researches in diverse populations, including prospective clinical trials, are needed to evaluate the effectiveness and value of AI-enabled medical technologies in clinical care for patients with VHD.
Collapse
Affiliation(s)
- Caroline Canning
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Suite 600, Chicago, IL 60611, USA; Bluhm Cardiovascular Institute Center for Artificial Intelligence, Northwestern Medicine, Chicago, IL, USA. https://twitter.com/carolinecanning
| | - James Guo
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Suite 600, Chicago, IL 60611, USA; Bluhm Cardiovascular Institute Center for Artificial Intelligence, Northwestern Medicine, Chicago, IL, USA
| | - Akhil Narang
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Suite 600, Chicago, IL 60611, USA; Bluhm Cardiovascular Institute Center for Artificial Intelligence, Northwestern Medicine, Chicago, IL, USA. https://twitter.com/AkhilNarangMD
| | - James D Thomas
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Suite 600, Chicago, IL 60611, USA; Bluhm Cardiovascular Institute Center for Artificial Intelligence, Northwestern Medicine, Chicago, IL, USA. https://twitter.com/jamesdthomasMD1
| | - Faraz S Ahmad
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Suite 600, Chicago, IL 60611, USA; Bluhm Cardiovascular Institute Center for Artificial Intelligence, Northwestern Medicine, Chicago, IL, USA; Division of Health and Biomedical informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Puthumana JJ, Baliga RR, Bossone E. Monitoring for Valve Decrepitude: Surveillance Echo for All at Age 60…? Heart Fail Clin 2023; 19:xi-xiv. [PMID: 37230653 DOI: 10.1016/j.hfc.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Jyothy J Puthumana
- Division of Cardiology, Department of Medicine, Northwestern Medicine, Feinberg School of Medicine, 676 North St. Clair Street, Chicago, IL 60611, USA.
| | - Ragavendra R Baliga
- Division of Cardiology, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
| | | |
Collapse
|
7
|
Borlaug BA, Sharma K, Shah SJ, Ho JE. Heart Failure With Preserved Ejection Fraction: JACC Scientific Statement. J Am Coll Cardiol 2023; 81:1810-1834. [PMID: 37137592 DOI: 10.1016/j.jacc.2023.01.049] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 05/05/2023]
Abstract
The incidence and prevalence of heart failure with preserved ejection fraction (HFpEF) continue to rise in tandem with the increasing age and burdens of obesity, sedentariness, and cardiometabolic disorders. Despite recent advances in the understanding of its pathophysiological effects on the heart, lungs, and extracardiac tissues, and introduction of new, easily implemented approaches to diagnosis, HFpEF remains under-recognized in everyday practice. This under-recognition presents an even greater concern given the recent identification of highly effective pharmacologic-based and lifestyle-based treatments that can improve clinical status and reduce morbidity and mortality. HFpEF is a heterogenous syndrome and recent studies have suggested an important role for careful, pathophysiological-based phenotyping to improve patient characterization and to better individualize treatment. In this JACC Scientific Statement, we provide an in-depth and updated examination of the epidemiology, pathophysiology, diagnosis, and treatment of HFpEF.
Collapse
Affiliation(s)
- Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| | - Kavita Sharma
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sanjiv J Shah
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jennifer E Ho
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Kline A, Wang H, Li Y, Dennis S, Hutch M, Xu Z, Wang F, Cheng F, Luo Y. Multimodal machine learning in precision health: A scoping review. NPJ Digit Med 2022; 5:171. [PMID: 36344814 PMCID: PMC9640667 DOI: 10.1038/s41746-022-00712-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Machine learning is frequently being leveraged to tackle problems in the health sector including utilization for clinical decision-support. Its use has historically been focused on single modal data. Attempts to improve prediction and mimic the multimodal nature of clinical expert decision-making has been met in the biomedical field of machine learning by fusing disparate data. This review was conducted to summarize the current studies in this field and identify topics ripe for future research. We conducted this review in accordance with the PRISMA extension for Scoping Reviews to characterize multi-modal data fusion in health. Search strings were established and used in databases: PubMed, Google Scholar, and IEEEXplore from 2011 to 2021. A final set of 128 articles were included in the analysis. The most common health areas utilizing multi-modal methods were neurology and oncology. Early fusion was the most common data merging strategy. Notably, there was an improvement in predictive performance when using data fusion. Lacking from the papers were clear clinical deployment strategies, FDA-approval, and analysis of how using multimodal approaches from diverse sub-populations may improve biases and healthcare disparities. These findings provide a summary on multimodal data fusion as applied to health diagnosis/prognosis problems. Few papers compared the outputs of a multimodal approach with a unimodal prediction. However, those that did achieved an average increase of 6.4% in predictive accuracy. Multi-modal machine learning, while more robust in its estimations over unimodal methods, has drawbacks in its scalability and the time-consuming nature of information concatenation.
Collapse
Affiliation(s)
- Adrienne Kline
- Department of Preventive Medicine, Northwestern University, Chicago, 60201, IL, USA
| | - Hanyin Wang
- Department of Preventive Medicine, Northwestern University, Chicago, 60201, IL, USA
| | - Yikuan Li
- Department of Preventive Medicine, Northwestern University, Chicago, 60201, IL, USA
| | - Saya Dennis
- Department of Preventive Medicine, Northwestern University, Chicago, 60201, IL, USA
| | - Meghan Hutch
- Department of Preventive Medicine, Northwestern University, Chicago, 60201, IL, USA
| | - Zhenxing Xu
- Department of Population Health Sciences, Cornell University, New York, 10065, NY, USA
| | - Fei Wang
- Department of Population Health Sciences, Cornell University, New York, 10065, NY, USA
| | - Feixiong Cheng
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, 44195, OH, USA
| | - Yuan Luo
- Department of Preventive Medicine, Northwestern University, Chicago, 60201, IL, USA.
| |
Collapse
|