1
|
Stewart CF, McGoldrick P, Anderson JG, MacGregor SJ, Atreya CD, Maclean M. Microbial reduction of prebagged human plasma using 405 nm light and its effects on coagulation factors. AMB Express 2024; 14:66. [PMID: 38842656 PMCID: PMC11156813 DOI: 10.1186/s13568-024-01725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Bacterial contamination is the most prevalent infectious complication of blood transfusion in the developed world. To mitigate this, several ultraviolet light-based pathogen reduction technologies (PRTs), some of which require photo-chemicals, have been developed to minimize infection transmission. Relative to UV light, visible 405-nm light is safer and has shown potential to be developed as a PRT for the in situ treatment of ex vivo human plasma and platelet concentrates, without the need for photo-chemicals. This study investigates the effect of 405-nm light on human plasma, with focus on the compatibility of antimicrobial light doses with essential plasma clotting factors. To determine an effective antimicrobial dose that is compatible with plasma, prebagged human plasma (up to 300 mL) was seeded with common microbial contaminants and treated with increasing doses of 405-nm light (16 mW cm-2; ≤ 403 J cm-2). Post-exposure plasma protein integrity was investigated using an AOPP assay, in vitro coagulation tests, and ELISA-based measurement of fibrinogen and Protein S. Microbial contamination in 300 mL prebagged human plasma was significantly reduced (P ≤ 0.05) after exposure to ≤ 288 J cm-2, with microbial loads reduced by > 96.2%. This dose did not significantly affect the plasma protein quality parameters tested (P > 0.05). Increased doses (≥ 345 J cm-2) resulted in a 4.3% increase in clot times with no statistically significant change in protein activity or levels. Overall, this study has demonstrated that the effective microbicidal 405 light dose shows little to no negative effect on plasma quality.
Collapse
Affiliation(s)
- Caitlin F Stewart
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, UK
| | - Preston McGoldrick
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, UK
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, UK
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD, USA
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, UK.
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
2
|
Farrugia A. The Evolution of the Safety of Plasma Products from Pathogen Transmission-A Continuing Narrative. Pathogens 2023; 12:318. [PMID: 36839590 PMCID: PMC9967166 DOI: 10.3390/pathogens12020318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Chronic recipients of plasma products are at risk of infection from blood-borne pathogens as a result of their inevitable exposure to agents which will contaminate a plasma manufacturing pool made up of thousands of individual donations. The generation of such a pool is an essential part of the large-scale manufacture of these products and is required for good manufacturing practice (GMP). Early observations of the transmission of hepatitis by pooled plasma and serum led to the incorporation of heat treatment of the albumin solution produced by industrial Cohn fractionation of plasma. This led to an absence of pathogen transmission by albumin over decades, during which hepatitis continued to be transmitted by other early plasma fractions, as well as through mainstream blood transfusions. This risk was decreased greatly over the 1960s as an understanding of the epidemiology and viral aetiology of transfusion-transmitted hepatitis led to the exclusion of high-risk groups from the donor population and the development of a blood screening test for hepatitis B. Despite these measures, the first plasma concentrates to treat haemophilia transmitted hepatitis B and other, poorly understood, forms of parenterally transmitted hepatitis. These risks were considered to be acceptable given the life-saving nature of the haemophilia treatment products. The emergence of the human immunodeficiency virus (HIV) as a transfusion-transmitted infection in the early 1980s shifted the focus of attention to this virus, which proved to be vulnerable to a number of inactivation methods introduced during manufacture. Further developments in the field obviated the risk of hepatitis C virus (HCV) which had also infected chronic recipients of plasma products, including haemophilia patients and immunodeficient patients receiving immunoglobulin. The convergence of appropriate donor selection driven by knowledge of viral epidemiology, the development of blood screening now based on molecular diagnostics, and the incorporation of viral inactivation techniques in the manufacturing process are now recognised as constituting a "safety tripod" of measures contributing to safety from pathogen transmission. Of these three components, viral inactivation during manufacture is the major contributor and has proven to be the bulwark securing the safety of plasma derivatives over the past thirty years. Concurrently, the safety of banked blood and components continues to depend on donor selection and screening, in the absence of universally adopted pathogen reduction technology. This has resulted in an inversion in the relative safety of the products of blood banking compared to plasma products. Overall, the experience gained in the past decades has resulted in an absence of pathogen transmission from the current generation of plasma derivatives, but maintaining vigilance, and the surveillance of the emergence of infectious agents, is vital to ensure the continued efficacy of the measures in place and the development of further interventions aimed at obviating safety threats.
Collapse
Affiliation(s)
- Albert Farrugia
- UWA Medical School, Surgery The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| |
Collapse
|
3
|
Delila L, Nebie O, Le NTN, Barro L, Chou M, Wu Y, Watanabe N, Takahara M, Buée L, Blum D, Devos D, Burnouf T. Neuroprotective activity of a virus-safe nanofiltered human platelet lysate depleted of extracellular vesicles in Parkinson's disease and traumatic brain injury models. Bioeng Transl Med 2023; 8:e10360. [PMID: 36684076 PMCID: PMC9842020 DOI: 10.1002/btm2.10360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 01/25/2023] Open
Abstract
Brain administration of human platelet lysates (HPL) is a potential emerging biotherapy of neurodegenerative and traumatic diseases of the central nervous system. HPLs being prepared from pooled platelet concentrates, thereby increasing viral risks, manufacturing processes should incorporate robust virus-reduction treatments. We evaluated a 19 ± 2-nm virus removal nanofiltration process using hydrophilic regenerated cellulose hollow fibers on the properties of a neuroprotective heat-treated HPL (HPPL). Spiking experiments demonstrated >5.30 log removal of 20-22-nm non-enveloped minute virus of mice-mock particles using an immuno-quantitative polymerase chain reaction assay. The nanofiltered HPPL (NHPPL) contained a range of neurotrophic factors like HPPL. There was >2 log removal of extracellular vesicles (EVs), associated with decreased expression of pro-thrombogenic phosphatidylserine and procoagulant activity. LC-MS/MS proteomics showed that ca. 80% of HPPL proteins, including neurotrophins, cytokines, and antioxidants, were still found in NHPPL, whereas proteins associated with some infections and cancer-associated pathways, pro-coagulation and EVs, were removed. NHPPL maintained intact neuroprotective activity in Lund human mesencephalic dopaminergic neuron model of Parkinson's disease (PD), stimulated the differentiation of SH-SY5Y neuronal cells and showed preserved anti-inflammatory function upon intranasal administration in a mouse model of traumatic brain injury (TBI). Therefore, nanofiltration of HPL is feasible, lowers the viral, prothrombotic and procoagulant risks, and preserves the neuroprotective and anti-inflammatory properties in neuronal pre-clinical models of PD and TBI.
Collapse
Affiliation(s)
- Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
- Univ. Lille, Inserm, CHU‐Lille, U1172, Lille Neuroscience & CognitionLilleFrance
- Alzheimer & TauopathiesLabex DISTALZLilleFrance
| | - Nhi Thao Ngoc Le
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
| | - Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
- Present address:
National Center of Blood TransfusionOuagadougouBurkina Faso
| | - Ming‐Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
- Present address:
Institute of Clinical Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yu‐Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
| | | | | | - Luc Buée
- Univ. Lille, Inserm, CHU‐Lille, U1172, Lille Neuroscience & CognitionLilleFrance
- Alzheimer & TauopathiesLabex DISTALZLilleFrance
- NeuroTMULilleLille Neuroscience & CognitionLilleFrance
| | - David Blum
- Univ. Lille, Inserm, CHU‐Lille, U1172, Lille Neuroscience & CognitionLilleFrance
- Alzheimer & TauopathiesLabex DISTALZLilleFrance
- NeuroTMULilleLille Neuroscience & CognitionLilleFrance
| | - David Devos
- Univ. Lille, Inserm, CHU‐Lille, U1172, Lille Neuroscience & CognitionLilleFrance
- NeuroTMULilleLille Neuroscience & CognitionLilleFrance
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
- International PhD Program in Biomedical Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
- NeuroTMULilleTaipei Medical UniversityTaipeiTaiwan
- International PhD Program in Cell Therapy and Regeneration MedicineTaipei Medical UniversityTaipeiTaiwan
- PhD Program in Graduate Institute of Mind Brain and Consciousness, College of Humanities and Social SciencesTaipei Medical UniversityTaipeiTaiwan
- Neuroscience Research CenterTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
4
|
Liu H, Wang X. Pathogen reduction technology for blood component: A promising solution for prevention of emerging infectious disease and bacterial contamination in blood transfusion services. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
5
|
Sarker T, Katz LM, Bloch EM, Goel R. Blood Product (Donor) Noninfectious and Infectious Testing and Modification. Clin Lab Med 2021; 41:579-598. [PMID: 34689966 DOI: 10.1016/j.cll.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Blood transfusion begins with safe donor selection and testing. In the United States, the blood supply and transfusion are highly regulated. Blood transfusion safety is multifaceted, whereby each of the elements of the blood safety value chain, spanning donor recruitment and qualification, to collection, blood processing, testing, transfusion practice, and posttransfusion surveillance, must be optimized to minimize risk. Pathogen inactivation is a promising approach to decrease bacterial contamination of platelets, inactivate parasites and viruses, and decrease risks associated with emerging and unidentified pathogens. This article offers an overview of blood donor infectious and noninfectious testing in the United States.
Collapse
Affiliation(s)
- Tania Sarker
- Department of Pathology and Laboratory Medicine, Center for Transfusion and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Louis M Katz
- Mississippi Valley Regional Blood Center, Davenport, IA, USA; Carver College of Medicine, UIHC, Iowa City, IA, USA
| | - Evan M Bloch
- Department of Pathology, Transfusion Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street/Carnegie 446 D1, Baltimore, MD 21287, USA
| | - Ruchika Goel
- Mississippi Valley Regional Blood Center, Davenport, IA, USA; Division of Hematology/Oncology, Simmons Cancer Institute at SIU SOM; Division of Transfusion Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Delabranche X, Kientz D, Tacquard C, Bertrand F, Roche A, Tran Ba Loc P, Humbrecht C, Sirlin F, Pivot X, Collange O, Levy F, Oulehri W, Gachet C, Mertes P. Impact of COVID-19 and lockdown regarding blood transfusion. Transfusion 2021; 61:2327-2335. [PMID: 34255374 PMCID: PMC8447413 DOI: 10.1111/trf.16422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The outbreak of a SARS-CoV-2 resulted in a massive afflux of patients in hospital and intensive care units with many challenges. Blood transfusion was one of them regarding both blood banks (safety, collection, and stocks) and consumption (usual care and unknown specific demand of COVID-19 patients). The risk of mismatch was sufficient to plan blood transfusion restrictions if stocks became limited. STUDY DESIGN AND METHODS Analyses of blood transfusion in a tertiary hospital and blood collection in the referring blood bank between February 24 and May 31, 2020. RESULTS Withdrawal of elective surgery and non-urgent care and admission of 2291 COVID-19 patients reduced global activity by 33% but transfusion by 17% only. Only 237 (10.3) % of COVID-19 patients required blood transfusion, including 45 (2.0%) with acute bleeding. Lockdown and cancellation of mobile collection resulted in an 11% reduction in blood donation compared to 2019. The ratio of reduction in blood transfusion to blood donation remained positive and stocks were slightly enhanced. DISCUSSION Reduction of admissions due to SARS-CoV-2 pandemic results only in a moderate decrease of blood transfusion. Incompressible blood transfusions concern urgent surgery, acute bleeding (including some patients with COVID-19, especially under high anticoagulation), or are supportive for chemotherapy-induced aplasia or chronic anemia. Lockdown results in a decrease of blood donation by cancellation of mobile donation but with little impact on a short period by mobilization of usual donors. No mismatch between demand and donation was evidenced and no planned restriction to blood transfusion was necessary.
Collapse
Affiliation(s)
- Xavier Delabranche
- Anaesthesia, Intensive Care and Perioperative Medicine, Nouvel Hôpital CivilStrasbourg University HospitalStrasbourgFrance
| | - Daniel Kientz
- Établissement Français du Sang Grand‐Est, site de StrasbourgStrasbourgFrance
| | - Charles Tacquard
- Anaesthesia, Intensive Care and Perioperative Medicine, Nouvel Hôpital CivilStrasbourg University HospitalStrasbourgFrance
- Établissement Français du Sang Grand‐Est, site de StrasbourgStrasbourgFrance
| | | | - Anne‐Claude Roche
- Anaesthesia, Intensive Care and Perioperative Medicine, Nouvel Hôpital CivilStrasbourg University HospitalStrasbourgFrance
| | - Pierre Tran Ba Loc
- Department for Medical InformationStrasbourg University HospitalStrasbourgFrance
| | - Catherine Humbrecht
- Établissement Français du Sang Grand‐Est, site de StrasbourgStrasbourgFrance
| | | | | | - Olivier Collange
- Anaesthesia, Intensive Care and Perioperative Medicine, Nouvel Hôpital CivilStrasbourg University HospitalStrasbourgFrance
| | - François Levy
- Anaesthesia, Intensive Care and Perioperative Medicine, Nouvel Hôpital CivilStrasbourg University HospitalStrasbourgFrance
- Transfusion MedicineStrasbourg University HospitalStrasbourgFrance
| | - Walid Oulehri
- Anaesthesia, Intensive Care and Perioperative Medicine, Nouvel Hôpital CivilStrasbourg University HospitalStrasbourgFrance
| | - Christian Gachet
- Établissement Français du Sang Grand‐Est, site de StrasbourgStrasbourgFrance
| | - Paul‐Michel Mertes
- Anaesthesia, Intensive Care and Perioperative Medicine, Nouvel Hôpital CivilStrasbourg University HospitalStrasbourgFrance
| |
Collapse
|
7
|
Barro L, Delila L, Nebie O, Wu YW, Knutson F, Watanabe N, Takahara M, Burnouf T. Removal of minute virus of mice-mock virus particles by nanofiltration of culture growth medium supplemented with 10% human platelet lysate. Cytotherapy 2021; 23:902-907. [PMID: 34238658 DOI: 10.1016/j.jcyt.2021.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AIMS Platelet concentrates (PCs) are pooled to prepare human platelet lysate (HPL) supplements of growth media to expand primary human cells for transplantation; this increases the risk of contamination by known, emerging, and unknown viruses. This possibility should be of concern because viral contamination of cell cultures is difficult to detect and may have detrimental consequences for recipients of cell therapies. Viral reduction treatments of chemically defined growth media have been proposed, but they are not applicable when media contain protein supplements currently needed to expand primary cell cultures. Recently, we successfully developed a Planova 35NPlanova 20N nanofiltration sequence of growth media supplemented with two types of HPL. The nanofiltered medium was found to be suitable for mesenchymal Stromal cell (MSC) expansion. METHODS Herein, we report viral clearance achieved by this nanofiltration process used for assessing a new experimental model using non-infectious minute virus of mice-mock virus particle (MVM-MVP) and its quantification by an immunoqPCR. Then, high doses of MVM-MVP (1012 MVPs/mL) were spiked to obtain a final concentration of 1010 MVPs/mL in Planova 35N-nanofiltered growth medium supplemented with both types of HPLs [serum converted platelet lysate SCPL) and intercept human platelet lysate (I-HPL)] at 10% (v/v) and then filtering through Planova 20N. RESULTS No substantial interference of growth medium matrices by the immune-qPCR assay was first verified. Log reduction values (LRVs) were ≥ 5.43 and ≥ 5.36 respectively, SCPL and I-HPL media. MVM-MVPs were also undetectable by dynamic light scattering and transmission electron microscopy. CONCLUSIONS The nanofiltration of growth media supplemented with 10% HPL provides robust removal of small nonenveloped viruses, and is an option to improve the safety of therapeutic cells expanded using HPL supplements.
Collapse
Affiliation(s)
- Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | | | | | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International Program in Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Thomas KA, Shea SM, Spinella PC. Effects of pathogen reduction technology and storage duration on the ability of cryoprecipitate to rescue induced coagulopathies in vitro. Transfusion 2021; 61:1943-1954. [PMID: 33755208 PMCID: PMC8252673 DOI: 10.1111/trf.16376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Background Fibrinogen concentrates and cryoprecipitate are currently used for fibrinogen supplementation in bleeding patients with dysfibrinogenemia. Both products provide an abundant source of fibrinogen but take greater than 10 min to prepare for administration. Fibrinogen concentrates lack coagulation factors (i.e., factor VIII [FVIII], factor XIII [FXIII], von Willebrand factor [VWF]) important for robust hemostatic function. Cryoprecipitate products contain these factors but have short shelf lives (<6 h). Pathogen reduction (PR) of cryoprecipitate would provide a shelf‐stable immediately available adjunct containing factors important for rescuing hemostatic dysfunction. Study Design and Methods Hemostatic adjunct study products were psoralen‐treated PR‐cryoprecipitated fibrinogen complex (PR‐Cryo FC), cryoprecipitate (Cryo), and fibrinogen concentrates (FibCon). PR‐Cryo FC and Cryo were stored for 10 days at 20–24°C. Adjuncts were added to coagulopathies (dilutional, 3:7 whole blood [WB]:normal saline; or lytic, WB + 75 ng/ml tissue plasminogen activator), and hemostatic function was assessed by rotational thromboelastometry and thrombin generation. Results PR of cryoprecipitate did not reduce levels of FVIII, FXIII, or VWF. PR‐Cryo FC rescued dilutional coagulopathy similarly to Cryo, while generating significantly more thrombin than FibCon, which also rescued dilutional coagulopathy. Storage out to 10 days at 20–24°C did not diminish the hemostatic function of PR‐Cryo FC. Discussion PR‐Cryo FC provides similar and/or improved hemostatic rescue compared to FibCon in dilutional coagulopathies, and this rescue ability is stable over 10 days of storage. In hemorrhaging patients, where every minute delay is associated with a 5% increase in mortality, the immediate availability of PR‐Cryo FC has the potential to improve outcomes.
Collapse
Affiliation(s)
- Kimberly A Thomas
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan M Shea
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Philip C Spinella
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Kostin AI, Lundgren MN, Bulanov AY, Ladygina EA, Chirkova KS, Gintsburg AL, Logunov DY, Dolzhikova IV, Shcheblyakov DV, Borovkova NV, Godkov MA, Bazhenov AI, Shustov VV, Bogdanova AS, Kamalova AR, Ganchin VV, Dombrovskiy EA, Volkov SE, Drozdova NE, Petrikov SS. Impact of pathogen reduction methods on immunological properties of the COVID-19 convalescent plasma. Vox Sang 2021; 116:665-672. [PMID: 33734455 PMCID: PMC8250394 DOI: 10.1111/vox.13056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES COVID-19 convalescent plasma is an experimental treatment against SARS-CoV-2. The aim of this study is to assess the impact of different pathogen reduction methods on the levels and virus neutralizing activity of the specific antibodies against SARS-CoV2 in convalescent plasma. MATERIALS AND METHODS A total of 140 plasma doses collected by plasmapheresis from COVID-19 convalescent donors were subjected to pathogen reduction by three methods: methylene blue (M)/visible light, riboflavin (R)/UVB and amotosalen (A)/UVA. To conduct a paired comparison, individual plasma doses were divided into 2 samples that were subjected to one of these methods. The titres of SARS-CoV2 neutralizing antibodies (NtAbs) and levels of specific immunoglobulins to RBD, S- and N-proteins of SARS-CoV-2 were measured before and after pathogen reduction. RESULTS The methods reduced NtAbs titres differently: among units with the initial titre 80 or above, 81% of units remained unchanged and 19% decreased by one step after methylene blue; 60% were unchanged and 40% decreased by one step after amotosalen; after riboflavin 43% were unchanged and 50% (7%, respectively) had a one-step (two-step, respectively) decrease. Paired two-sample comparisons (M vs. A, M vs. R and A vs. R) revealed that the largest statistically significant decrease in quantity and activity of the specific antibodies resulted from the riboflavin treatment. CONCLUSION Pathogen reduction with methylene blue or with amotosalen provides the greater likelihood of preserving the immunological properties of the COVID-19 convalescent plasma compared to riboflavin.
Collapse
Affiliation(s)
- Alexander I Kostin
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Maria N Lundgren
- Department of Clinical Immunology and Transfusion Medicine, Office of Medical Services, Lund, Sweden
| | - Andrey Y Bulanov
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Elena A Ladygina
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Karina S Chirkova
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Alexander L Gintsburg
- The Federal State Budgetary Institution 'National Research Center of Epidemiology and Microbiology N.F. Gamaleya' of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Denis Y Logunov
- The Federal State Budgetary Institution 'National Research Center of Epidemiology and Microbiology N.F. Gamaleya' of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Inna V Dolzhikova
- The Federal State Budgetary Institution 'National Research Center of Epidemiology and Microbiology N.F. Gamaleya' of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V Shcheblyakov
- The Federal State Budgetary Institution 'National Research Center of Epidemiology and Microbiology N.F. Gamaleya' of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalia V Borovkova
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Mikhail A Godkov
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Alexey I Bazhenov
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Valeriy V Shustov
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Alina S Bogdanova
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Alina R Kamalova
- Healthcare Ministry of Russia, N.I. Pirogov Federal Russian National Research Medical University, Moscow, Russia
| | - Vladimir V Ganchin
- Autonomous Non-Commercial Organization «Center of Analytical Development of the Social Sector», Moscow, Russia
| | - Eugene A Dombrovskiy
- Autonomous Non-Commercial Organization «Center of Analytical Development of the Social Sector», Moscow, Russia
| | | | - Nataliya E Drozdova
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Sergey S Petrikov
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| |
Collapse
|